Évaluation de la relation entre les apports en antioxydants et le niveau d’expression de marqueurs inflammatoires dans le tissu mammaire normal de femmes atteintes du cancer du sein

Mémoire

Danielle Larouche

Maîtrise en épidémiologie
Maître ès sciences (M. Sc.)

Québec, Canada

© Danielle Larouche, 2017
Évaluation de la relation entre les apports en antioxydants et le niveau d’expression de marqueurs inflammatoires dans le tissu mammaire normal de femmes atteintes du cancer du sein

Mémoire

Danielle Larouche

Sous la direction de :

Caroline Diorio, directrice de recherche
Résumé

Le régime alimentaire joue un rôle dans le développement du cancer du sein, mais le mode d'action des facteurs nutritionnels sur le tissu mammaire est mal compris. Un des mécanismes potentiels est la création d'un stress oxydatif qui favoriserait le processus tumoral et l'inflammation. Par conséquent, la consommation d'antioxydants pourrait contribuer à réduire l'inflammation dans les tissus et à prévenir le cancer du sein. Cependant, peu d'études ont exploré la relation entre les apports en antioxydants et l'expression de marqueurs inflammatoires dans le tissu mammaire.

Ce projet visait à évaluer la relation entre les apports en antioxydants et l'expression de 11 marqueurs inflammatoires dans le tissu mammaire normal de 160 femmes atteintes d'un cancer du sein. Les données alimentaires ont été obtenues par un questionnaire de fréquence alimentaire auto-administré mesurant les apports alimentaires et la prise de suppléments de l'année précédente. L'expression des marqueurs inflammatoires a été évaluée par immunohistochimie. La corrélation entre les apports en antioxydants et l'expression des marqueurs inflammatoires a été analysée par le coefficient de corrélation partiel de Spearman. Les analyses ont été effectuées pour l'ensemble de l'échantillon et pour les femmes pré-ménopausées et post-ménopausées prises séparément. Après la correction de Bonferroni, les apports élevés en bêta-tocophérol corrélaient avec une diminution de l'expression de l'IL-10 pour l'ensemble de l'échantillon (r=−0,26) et chez les femmes post-ménopausées (r=−0,39). Parmi toutes les femmes, les apports en zinc corrélaient négativement avec l'expression de l'IL-10 (r=−0,26) et parmi les femmes post-ménopausées, les apports en sélénium corrélaient négativement avec l'expression de la lactoferrine (r=−0,39). Aucune association significative n'a été observée chez les femmes pré-ménopausées.

Nos résultats suggèrent que le bêta-tocophérol, le zinc et le sélénium pourraient agir sur le tissu mammaire par des mécanismes affectant l'expression de certains marqueurs inflammatoires et que ceci serait influencé par le statut ménopausique.
Abstract

Diet plays an important role in the development of breast cancer, but the influence of dietary factors on the mammary tissue is poorly understood. One possible underlying mechanism is the generation of oxidative stress favoring inflammation and tumorigenic processes. Consequently, antioxidant consumption that fosters tissue inflammation reduction could prevent breast cancer risk. However, few studies have explored relationships between antioxidant intakes and inflammation marker expression in breast tissue.

This project aimed to evaluate potential link between the intake of antioxidants that have been associated with breast cancer risk and the protein expression level of 11 inflammatory markers in normal breast tissue of 160 women diagnosed with breast cancer. Antioxidant intakes were collected using a self-administered semi-quantitative food frequency questionnaire designed to measure dietary patterns and supplement intake over the past year. Inflammation marker expression was assessed by immunohistochemistry. Correlations between antioxidant intakes and inflammatory marker expression were explored using the Spearman’s partial correlation coefficients (r) for all women, and then for premenopausal and postmenopausal women separately. After Bonferroni correction, negative correlations were observed between dietary beta-tocopherol and IL-10 expression in all women combined (r=−0.26) and among postmenopausal women (r=−0.39). For all women, negative correlation was found between total zinc intakes and IL-10 (r=−0.26). Among postmenopausal women, dietary selenium intake was negatively correlated with the expression of lactoferrin (r=−0.39). No associations were observed in premenopausal women.

Our findings suggest that consumption of specific antioxidants, including beta-tocopherol, zinc and selenium, may act on the breast tissue through mechanisms affecting the expression of certain inflammation markers and that this would be influenced by the menopausal status.
# Table des matières

Résumé.................................................................................................................................................. iii
Abstract.................................................................................................................................................. iv
Table des matières.................................................................................................................................. v
Liste des tableaux..................................................................................................................................... v
Liste des figures......................................................................................................................................... vii
Liste des abréviations............................................................................................................................... viii
Remerciements.......................................................................................................................................... x
Avant-propos.......................................................................................................................................... xi

Chapitre 1. Introduction .......................................................................................................................... 1
  1.1. Pertinence de l’étude ....................................................................................................................... 1
  1.2. Les différentes sources d’antioxydants et leur mode d’action.................................................. 1
      1.2.1. Vitamine A et rétinoïdes........................................................................................................ 3
      1.2.2. Vitamine C .............................................................................................................................. 4
      1.2.3. Vitamine E .............................................................................................................................. 4
      1.2.4. Minéraux ................................................................................................................................ 5
  1.3. Les antioxydants et le risque du cancer du sein ....................................................................... 5
      1.3.1. Vitamine A et rétinoïdes........................................................................................................ 5
      1.3.2. Caroténoïdes .......................................................................................................................... 12
      1.3.3. Vitamine C .............................................................................................................................. 14
      1.3.4. Vitamine E .............................................................................................................................. 14
      1.3.5. Sélénium et zinc .................................................................................................................... 15
  1.4. Les marqueurs inflammatoires et le risque du cancer du sein .................................................... 15
  1.5. Association entre antioxydants et inflammation .................................................................... 16
      1.5.1. Vitamine A ............................................................................................................................. 21
      1.5.2. Caroténoïdes .......................................................................................................................... 21
      1.5.3. Vitamine C .............................................................................................................................. 22
      1.5.4. Vitamine E .............................................................................................................................. 22
      1.5.5. Sélénium et Zinc .................................................................................................................... 23

Chapitre 2. Hypothèse et objectif ......................................................................................................... 24

Chapitre 3. Méthodologie ...................................................................................................................... 25
  3.1. Devis et population....................................................................................................................... 25
Chapitre 4. Evaluation of antioxidant intakes in relation to inflammatory markers expression within the normal breast tissue of breast cancer patients

Avant propos ...................................................................................................................................... 30

Résumé de l'article ............................................................................................................................. 30

4.1. Abstract ......................................................................................................................................... 33

4.2. Introduction .................................................................................................................................... 33

4.3. Methods .......................................................................................................................................... 35

4.3.1. Study population .......................................................................................................................... 35

4.3.2. Data collection .............................................................................................................................. 35

4.3.3. Assessment of dietary intakes ....................................................................................................... 36

4.3.4. Inflammatory marker evaluation ................................................................................................. 37

4.3.5. Statistical analysis ........................................................................................................................ 38

4.4. Results ........................................................................................................................................... 39

4.5. Discussion ...................................................................................................................................... 45

4.6. Conclusions ..................................................................................................................................... 48

4.7. Acknowledgements ....................................................................................................................... 48

4.8. Funding statement ......................................................................................................................... 48

4.9. Conflict of interest ........................................................................................................................ 49

4.10. References ...................................................................................................................................... 49

Chapitre 5. Discussion et conclusion générale .................................................................................... 52

Bibliographie générale ......................................................................................................................... 59
Liste des tableaux

Tableau 1-1 Études cas-témoins portant sur l’association entre antioxydants et le risque du cancer du sein .... 7
Tableau 1-2 Études prospectives portant sur l’association entre antioxydants et le risque du cancer du sein .10
Tableau 1-3 Études portant sur l’association entre antioxydants et expression de marqueurs inflammatoires
dans le contexte du cancer du sein ................................................................................................................. 18
Table 4-1 Characteristics of the study population ............................................................................................. 39
Table 4-2 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast
tissue among all the study population ............................................................................................................ 42
Table 4-3 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast
tissue among premenopausal women ............................................................................................................. 43
Table 4-4 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast
tissue among postmenopausal women .............................................................................................................. 44

Liste des figures

Figure 1-1 Mécanismes potentiels soutenant l’association entre le stress oxydatif, l’inflammation et la
diminution de l’inflammation dans le tissu mammaire ...................................................................................... 2
Liste des abréviations

ANCOVA : ANalysis of COVAriance/Analyse de covariance
ATE : Alpha-Tocopherol Equivalent/Équivalent alpha-tocophérol
BMI : Body Mass Index/Indice de masse corporelle
C-DHQ : Canadian Diet History Questionnaire
Cl : Confidence Interval/Intervalle de confiance
COX-2 : CycLOXygenase 2/Cyclo-oxygénase 2
CRP : C-Reactive Protein/Protéine C réactive
DAB : 3,3′-DiAminoBenzidine/Diaminobenzidine
DHQ : Diet History Questionnaire
ELISA : Enzyme-Linked Immunosorbent Assay/Méthode immunoenzymatique ELISA
ER : Estrogen Receptor/Récepteur aux oestrogènes
FFQ : Food Frequency Questionnaire/Questionnaire de fréquence alimentaire
H&E : Hematoxylin and Eosin/Hématoxyline et éosine
HPLC : High-Performance Liquid Chromatography/Chromatographie en phase liquide à haute performance
HR : Hazard Ratio/Rapport de hasard
HRT : Hormone Replacement Therapy/Hormonothérapie substitutive
IL : Interleukin/Interleukine
IMC : Indice de masse corporelle
INF-gamma : InterFeron-Gamma/Interféron gamma
IU : International Unit/Unité internationale
LDL : Low Density Lipoprotein/Cholestérol LDL
MEtS : Metabolic Equivalents of Task/Équivalent métabolique
OR : Odds Ratio/Rapport de cotes
PGEM : Prostaglandin E Metabolite/Métabolite E de la prostaglandine
PPAR-gamma : Peroxisome Proliferator-Activated Receptor-gamma/Récepteur activé par les proliférateurs de peroxysomes-gamma
PYTPAQ : Past Year Total Physical Activity Questionnaire
qPCR : quantitative PCR/PCR en temps réel
RAE : Retinol Activity Equivalent/Équivalent d’activité rétinol
RAR : Retinoic Acid Receptor/Récepteur de l’acide rétinoïque
RB : RetinoBlastoma/Rétinoblastome
RE : Retinol Equivalent/Équivalent rétinol
ROS : Reactive Oxygen Species/Radicaux libres oxygénés
RR : Risk Ratio/Rapport de risque
SAA : Serum Amyloid A/Amyloïde sérique A
SAA1 : Serum Amyloid A1/Amyloïde sérique A1
SD : Standard Deviation/Déviation standard
STAT3 : Signal Transducer and Activator of Transcription 3/Transducteur de signal et activateur de transcription 3
TGF-bêta : Transforming Growth Factor Beta 1/Facteur de croissance transformant bêta
TGF-bêta1 : Transforming Growth Factor Beta 1-1/Facteur de croissance transformant bêta 1
TMA : Tissue Microarray/Micromatrice tissulaire
TNF-alpha : Tumor Necrosis Factor alpha/Facteur de nécrose tumorale alpha
WHR : Waist to Hip Ratio/Ratio tour de taille tour de hanche
Quidquid latine dictum sit, altum sonatur
Remerciements

Je voudrais remercier Caroline Diorio qui m’a accueillie dans son laboratoire. J’ai particulièrement apprécié nos discussions sur des sujets dépassant le cadre du projet, mais qui étaient toutes aussi enrichissantes.

Ce retour aux études m’aura permis de faire des rencontres exceptionnelles : Kaoutar, Ludivine et Daniela, des femmes inspirantes que j’ai adoré côtoyer. Merci également à Mirette pour son aide dans la réalisation de mon projet.

Merci à Caty Blanchette pour le soutien aux analyses SAS, et merci à tout le personnel qui a contribué de près ou de loin à mes travaux.

Merci à Stan pour son appui et sa compréhension dans mon désir de faire ce retour aux études et qui a dû tenir le gouvernail à la maison pendant mes absences répétées. Merci à mes enfants adorés : Matéo, Oli et Anna. Vous êtes si doués et autonomes qu’il m’a été possible de concrétiser ce projet alliant travail, vie de famille et études sans trop de compromis sur notre qualité de vie.
Avant-propos

L'étude présentée dans le cadre de ce mémoire de maîtrise visait à évaluer l'association entre les apports en antioxydants dans l'alimentation, et sous forme de supplément, et le niveau d'expression de différents marqueurs inflammatoires dans le tissu mammaire. Notre équipe de recherche collabore avec les pathologistes du Centre de recherche du CHU de Québec – Université Laval qui évaluent les tissus mammaires de toutes les patientes traitées au Centre des maladies du sein Deschênes-Fabia, un centre d'excellence en maladie du sein. L'accès à ces tissus a rendu possible la mise sur pied de plusieurs projets de recherche en offrant l'occasion d'effectuer des marquages par immunohistochimie de différentes protéines permettant de caractériser le microenvironnement du tissu mammaire humain.

Le devis proposé est une étude transversale à visée analytique effectuée chez des patientes ayant subi une chirurgie pour le cancer du sein entre janvier 2011 et mai 2012. Nous avons évalué la relation entre les apports en antioxydants les plus associés au cancer du sein (la vitamine A, le rétinol, le bêta-carotène, l'alpha-carotène, la bêta-cryptoxanthine, la lutéine, la zéaxanthine, le lycopène, la vitamine C, la vitamine E, le sélénium et le zinc) et le niveau d'expression de marqueurs inflammatoires qui s'expriment dans le tissu mammaire et qui ont été associés au cancer du sein (interleukine [IL]-6, facteur de nécrose tumorale alpha, protéine C réactive, cyclo-oxygénase 2, leptine, amyloïde sérique A, transducteur de signal et activateur de transcription 3, IL-8, IL-10, lactoferrine et facteur de croissance transformant bêta). Il s'agit d'une analyse secondaire des données provenant d'une étude menée par l'équipe de Caroline Diorio portant sur le lien entre ces marqueurs inflammatoires et la densité mammaire.

Le premier chapitre est une introduction visant à présenter la pertinence du projet dans le cadre du cancer du sein, de définir la problématique qui a mené à l'hypothèse de recherche et à l'objectif du projet qui sont présentés au chapitre 2, ainsi que de dresser l'état des connaissances sur le sujet. L'introduction propose une synthèse des connaissances sur les différentes sources d'antioxydants et leur mode d'action, une revue de littérature sur les études épidémiologiques ayant étudié les apports en antioxydants et le risque du cancer du sein, une synthèse des connaissances sur l'inflammation et le risque du cancer et une revue de littérature sur les études ayant évalué l'association entre les apports en antioxydants et l'inflammation dans le cadre du cancer du sein.

Le chapitre 3 apporte des détails sur le choix de l’approche méthodologique utilisée, tandis que le chapitre 4 présente l'article de recherche original en anglais rédigé à partir des résultats des analyses. L'article s’intitule “Evaluation of antioxidant intakes in relation to inflammatory markers expression within the normal breast tissue of breast cancer patients”. Je suis le premier auteur et les autres auteurs sont, dans l’ordre,
Mirette Hanna, Sue-Ling Chang, Simon Jacob, Bernard Têtu et Caroline Diorio. L’article a été accepté le 19 septembre 2016 pour publication dans le journal *Integrative Cancer Therapies*. Il est disponible en ligne depuis le 30 novembre 2016. J’ai planifié le protocole de recherche et d’analyse sous la direction de Caroline Diorio et effectué toutes les analyses statistiques des résultats présentés dans l’article. J’estime ma contribution à la rédaction de l’article à 90%; le 10% restant correspond principalement aux révisions apportées par les autres auteurs. Mirette Hanna, Simon Jacob, Bernard Têtu et Caroline Diorio ont développé la méthodologie visant à évaluer l’expression de marqueurs inflammatoires dans le tissu mammaire. Mirette Hanna et Caroline Diorio ont effectué la plupart des analyses tissulaires. Caroline Diorio a supervisé la collecte des données alimentaires et la conversion des aliments en nutriments. L’aide de Caty Blanchette (soutien aux analyses statistiques), Isabelle Dumas (acquisition des données) et Michèle Orain (soutien aux analyses histologiques et immunohistochimiques) est mentionnée dans les remerciements.

Le chapitre 5 présente un retour sur les principaux résultats du projet et une discussion sur les forces et limites de l’étude. Différentes perspectives pour la poursuite du projet sont également proposées.
Chapitre 1. Introduction

1.1. Pertinence de l’étude

Malgré les progrès importants au niveau du dépistage, de la prise en charge et du traitement du cancer du sein, on estime actuellement à 24 000 le nombre de nouveaux cas de cancer du sein diagnostiqués au Canada à chaque année, dont 22% sont mortels [1]. L’identification des facteurs de risque modifiables demeure donc grandement pertinente, non seulement pour la prévention de nouveaux cas, mais également pour augmenter les chances de survie, ou pour diminuer les récidives chez des patients ayant déjà reçu un diagnostic.

Parmi les processus physiopathologiques suspectés comme favorisant le processus tumoral, de plus en plus d’évidences scientifiques pointent vers une série d’événements cellulaires qui seraient initiés par l’inflammation ou le stress oxydatif dans le tissu. En effet, il a été décrit que l’inflammation chronique mène à la production excessive de radicaux libres qui causent des dommages aux lipides, protéines et acides nucléiques dans les cellules [2]. À leur tour, ces dommages causent de l’inflammation au sein du tissu créant un cercle vicieux [2]. Ceci confèrerait un microenvironnement propice à la néoplasie liant ainsi l’inflammation au cancer [2].

Dans le cadre du cancer du sein, la plupart des études épidémiologiques qui ont exploré le lien entre les marqueurs inflammatoires et les apports alimentaires ont évalué les marqueurs dans la circulation sanguine ou dans l’urine [3-9]. Toutefois, des études ont décrit que le niveau d’expression de certains marqueurs inflammatoires circulants, tels que la leptine, l’adiponectine et le facteur de croissance transformant bêta (TGF-bêta pour Transforming Growth Factor beta), ne corrélaït pas avec leur expression dans le tissu mammaire [10, 11]. Ceci suggère que la mesure des marqueurs inflammatoires dans le tissu ne donne pas la même information que les résultats issus des analyses dans le sang ou dans l’urine. Ainsi, si l’objectif est de mesurer l’inflammation au sein du microenvironnement tissulaire, la mesure des marqueurs inflammatoires directement dans le tissu pourrait être une approche plus spécifique que la mesure dans le sang ou l’urine où de la confondance par des facteurs non reliés à l’environnement tissulaire peut biaiser les associations.

1.2. Les différentes sources d’antioxydants et leur mode d’action

De façon générale, les antioxydants sont des molécules qui empêchent ou diminuent l’oxydation d’autres molécules. Toutefois, certains exercent plutôt leur activité antioxydante en assurant le fonctionnement d’enzymes nécessaires à la défense contre le stress oxydatif [12, 13]. Les antioxydants se divisent en trois groupes en fonction de leur nature biochimique et de leur origine alimentaire : 1) les vitamines (vitamine A, les rétinoïdes, les caroténoïdes, les tocophérols et tocotriénoïls [vitamine E] et la vitamine C), 2) les minéraux (le
sélénium, le zinc, le cuivre, le fer et le manganèse) et 3) les phytochimiques (les polyphénols et les flavonoïdes). La plupart des antioxydants se trouvent facilement dans l’alimentation, mais peuvent également être consommés sous forme de supplément provenant d’extraits naturels ou synthétiques.

Le stress oxydatif est relié à plusieurs conditions pathologiques, dont le cancer [14, 15]. Les principaux antioxydants qui ont été associés au risque du cancer du sein et qui ont été étudiés dans le cadre de ce projet sont la vitamine A, le rétinol, le bêta-carotène, l’alpha-carotène, la bêta-cryptoxanthine, la lutéine, la zéaxanthine, le lycopène, la vitamine C, la vitamine E, le sélénium et le zinc. L’action biologique de ces antioxydants sur le processus de tumorigénicité au sein de la cellule mammaire pourrait s’expliquer par leur effet antioxydant, mais également par leur rôle au sein de différents mécanismes cellulaires illustrés à la Figure 1-1.

**Figure 1-1** Mécanismes potentiels soutenant l’association entre les antioxydants, le stress oxydatif, l’inflammation et la diminution de l’inflammation dans le tissu mammaire

ER, Estrogen Receptor/Récepteur aux oestrogènes; COX-2, CycLOxygenase-2/Cyclo-oxégénase 2; INF-γ, INterFeron-gamma/Interféron-gamma; RAR, Retinoic Acid Receptor/Récepteur de l’acide rétinoïque; RB, RetinoBlastoma/Rétinoblastome; TGF-β, Transforming Growth Factor Beta/Facteur de croissance transformant bêta; TNFα, Tumor Necrosis Factor alpha/Facteur de nécrose tumorale alpha; +, Activation; -, Inhibition
1.2.1. Vitamine A et rétinoïdes

Le terme vitamine A est le terme générique utilisé pour décrire les substances qui présentent une activité biologique analogue à celle du rétinol [16]. Le rétinol fait partie des rétinoïdes, un groupe de composés chimiques liposolubles qui partagent une structure chimique similaire au rétinol [16]. L’activité biologique des différents rétinoïdes varie en fonction de leur bioconversion en rétinol.

L’effet préventif des rétinoïdes sur le cancer a beaucoup été étudié (voir section 1.3.1) et l’utilisation de dérivés d’acide rétinoïque pour le traitement ou la prévention du cancer du sein a fait l’objet d’une vingtaine d’essais cliniques [17]. Outre leur propriété antioxydante, différents mécanismes soutiennent la plausibilité biologique de cet effet. Notamment, l’activation des récepteurs RAR (pour Retinoic Acid Receptor), dont la voie classique déclenche l’arrêt du cycle cellulaire, la différenciation et éventuellement l’apoptose [18]. Il a aussi été décrit à l’aide de modèle de culture que l’activation des récepteurs RAR par l’acide rétinoïque menait à la transcription du gène de la cyclo-oxynénase 2 (COX-2) [19]. Plusieurs sentiers de signalisation importants sont induits par l’acide rétinoïque et ses récepteurs (pour des revues de littérature, voir [17, 20]). L’activation des RAR aurait notamment un effet antagoniste sur l’activation du sentier associé à l’inflammation NF-κB, dont l’activation peut mener à la transcription des gènes de l’interleukine (IL)-6, du facteur de nécrose tumorale alpha (TNF-alpha pour Tumor Necrosis Factor alpha), de COX-2 et du transducteur de signal et activateur de transcription 3 (STAT-3 pour Signal Transducer and Activator of Transcription 3) [21-23]. Plus spécifiques au cancer du sein, les interactions importantes entre les RAR et le sentier de signalisation des œstrogènes pourraient expliquer les liens observés entre l’effet des rétinoïdes et le développement du cancer du sein ainsi que l’effet modifiant du statut ménopausique [20, 24, 25].

Les caroténoïdes sont liposolubles et plusieurs, tels que le bêta-carotène, l’alpha-carotène, la bêta-cryptoxanthine, la lutéine, la zéaxanthine et le lycopène, sont des précurseurs de la vitamine A [16]. Comme pour les rétinoïdes, l’activité biologique des caroténoïdes varie en fonction de leur bioconversion en rétinol. Par exemple, 1 µg de rétinol correspond à 12 µg de bêta-carotène et 24 µg d’alpha-carotène [16]. Ainsi, en diététique, les recommandations pour la consommation des rétinoïdes et des caroténoïdes sont souvent exprimées en équivalent rétinol ou équivalent d’activité rétinol (RE ou RAE pour Retinol Equivalent ou Retinol Activity Equivalent) [26]. Tout comme la vitamine A et les rétinoïdes, l’effet préventif de cette classe de nutriments sur le cancer du sein a beaucoup été étudié (voir section 1.3.2) et cet effet pourrait passer par leur activité rétinol via l’activation des RAR tel que discuté dans le paragraphe précédent [27]. Outre cette activité, les caroténoïdes participent à la protection de la membrane cellulaire contre les dommages causés par le dioxyde d’azote (NO2) [28] et contribuent à diminuer le stress oxydatif dans le sang [29, 30]. Le bêta-carotène, la lutéine, la zéaxanthine et le lycopène sont d’importants piègeurs de radicaux libres oxygénés (ROS pour Reactive Oxygen Species) [31, 32]. Certains caroténoïdes, comme le lycopène, présentent un effet inhibiteur
sur le cycle cellulaire [33], notamment la prolifération induite par les œstrogènes [34, 35]. L’effet bénéfique du bêta-carotène sur la diminution du risque du cancer du sein pourrait également passer par un effet anti-prolifératif et pro-apoptotique [35, 36]. Il a en outre été observé que la bêta-cryptoxanthine pouvait stimuler l’expression de l’anti-oncogène rétinoblastome [37].

1.2.2. Vitamine C
La vitamine C, ou acide ascorbique, est soluble dans l’eau. On lui reconnaît plusieurs activités biologiques, notamment au niveau de la synthèse du collagène et des catécholamines [38]. De plus, c’est un cofacteur de plusieurs enzymes reliées au métabolisme [39-41]. Dans le plasma, la vitamine C constituerait la première ligne de défense contre le stress oxydatif grâce à sa propriété de réagir avec les radicaux libres et les ROS solubilisés, ce qui préviendrait, entre autres, l’oxydation du cholestérol LDL (pour Low Density Lipoprotein) [38].

Certaines études ont observé une augmentation de la survie chez des patientes atteintes de cancer du sein consommant beaucoup de vitamine C [42-44]. Ceci pourrait s’expliquer par son effet anti-prolifératif sur les cellules épithéliales mammaires normales ou cancéreuses [45], ou encore ses effets inhibiteurs sur l’angiogénèse [46]. La vitamine C a également un effet inhibiteur sur différents sentiers impliqués dans la réponse inflammatoire, notamment le sentier NF-κB [47, 48].

1.2.3. Vitamine E
Le terme vitamine E englobe les composés dont la structure est connexe aux tocophérols et tocotriénols qui se retrouvent sous la forme de huit variants : alpha-, bêta-, delta-, et gamma-tocophérols et alpha-, bêta-, delta-, et gamma-tocotriénols [16]. La vitamine E est une composante des membranes cellulaires et des lipoprotéines où elle agit comme une barrière contre les radicaux libres et joue un rôle important pour limiter la peroxydation des lipides, notamment du LDL [38]. Des études, effectuées sur des modèles animaux ou cellulaires (pour une revue de littérature, voir Smolarek 2011 [49]), ont montré que l’action bénéfique contre le cancer du sein de la vitamine E pourrait s’expliquer par la stimulation du sentier de signalisation du récepteur activé par les proliférateurs de peroxyosomes-gamma (PPAR-gamma pour Peroxisome Proliferator-Activated Receptor-gamma) [50]. Ainsi, la voie PPAR-gamma a été associée à l’inhibition de marqueurs inflammatoires tels que COX-2 [51], et interférerait avec la voie inflammatoire NF-κB [52, 53]. L’action de la vitamine E sur la diminution du stress oxydatif pourrait également passer par l’induction du facteur de transcription Nrf2, qui régule l’expression de gènes de la défense antioxydante [53, 54], ou par l’induction de l’apoptose au niveau des cellules cancéreuses mammaires [55].
1.2.4. Minéraux
Les minéraux comme le sélénium, le zinc, le cuivre, le fer et le manganèse, participent à la défense antioxydante en tant que cofacteurs nécessaires au fonctionnement d'enzymes antioxydantes telles que la superoxyde dismutase, la méthionine réductase, la catalase et la glutathion peroxydase. Les minéraux ont un rôle clé dans le maintien de la réponse immunitaire. Entre autres, ils affectent l'expression de gènes codant pour de nombreuses protéines de l'inflammation et de la réponse immune [12, 13]. Notamment, certains facteurs de transcription qui dépendent du zinc sont impliqués dans la régulation de l'expression des gènes de l'IL-6 et du TNF-alpha [56, 57]. La sélénoprotéine SEPS1 affecte également l'expression de l'IL-6 et du TNF-alpha [58]. En effet, SEPS1 est une protéine du réticulum endoplasmique qui participe au traitement et l'élimination des protéines mal repliées par l'activation du sentier NF-κB [58].

1.3. Les antioxydants et le risque du cancer du sein
Bien que des études chez l'animal aient montré que la consommation d'antioxydants prévenait ou ralentissait le processus tumoral [59-61], les résultats issus des études épidémiologiques sont inconstants on non significatifs. L'association entre les apports en vitamine A/rétinol, bêta-carotène, alpha-carotène, lycopène, luteïne/zéaxanthine, bêta-cryptoxanthine, vitamine C, vitamine E, sélénium, zinc et le risque du cancer du sein a été étudiée dans plus d'une centaine d'études d'observation (voir Tableaux 1-1 et 1-2). Une association négative avec un ou plusieurs de ces antioxydants a été trouvée dans au moins 72 études et une association positive avec un ou plusieurs de ces antioxydants a été trouvée dans au moins 15 études. Pour ce qui est des associations négatives, 72% des devis étaient des études cas-témoins rétrospectives (Tableau 1-1) et 28% étaient des études prospectives (Tableau 1-2). Pour ce qui est des études cas-témoins effectuées sur un échantillon de population contrôle sélectionné en milieu hospitalier, la proportion des études ayant mesuré une association négative est similaire à celle des études cas-témoins basées sur un échantillon contrôle sélectionné dans la population générale, soit respectivement 78 et 75% des devis. Finalement, à cause de l'inconsistance des observations rapportées dans la littérature, plusieurs méta-analyses faisant la synthèse des publications portant sur l'association entre la consommation de différents antioxydants et le risque de cancer du sein ont tenté de faire ressortir des évidences et d'expliquer la variabilité des résultats. Sans surprise, beaucoup d'hétérogénéité a été observée. Notamment, lorsque la consommation des apports en antioxydants était mesurée dans le sang plutôt que par questionnaire de fréquence alimentaire (FFQ pour Food Frequency Questionnaire).

1.3.1. Vitamine A et rétinoïdes
L'association entre les apports en vitamine A ou en rétinol et le risque du cancer du sein a été évaluée dans une soixantaine d'études d'observation (voir Tableaux 1-1 et 1-2). Une association négative a été trouvée
dans 17 études (13 cas-témoins, 4 prospectives). Un risque différent selon le statut ménopausique a été observé dans six études [62-67]. Bien qu’aucune association n’a été mise en évidence pour la majorité des études, les hauts apports en vitamine A ont été associés à une diminution du risque du cancer du sein dans deux études prospectives d’envergure importante sur deux échantillons de la population américaine de plus de 80 000 participants [67, 68]. Ainsi, le risque de cancer était diminué chez les femmes pré-ménopausées présentant une histoire familiale de cancer du sein [67] (rapport de risques [RR pour Risk Ratio]: 0,38; intervalle de confiance [CI pour Confidence Interval] 95% : 0,19 à 0,77) et chez les femmes consommant du tabac (p de la tendance dose-réponse <0.001, 109 cas pour 85 224 personnes/année) [68]. La diminution du risque du cancer du sein chez les femmes avec un apport total (apports alimentaires et supplément) élevé en vitamine A a aussi été démontrée dans une méta-analyse [69] combinant les résultats de cinq études de cohorte (rapport de cotes [OR pour Odds Ratio] : 0,83; CI 95% : 0,78 à 0,88 [68, 70-73]). L’effet de la Fenretinide, un rétinoïde synthétique, sur le risque du cancer du sein ou l’expression de marqueur associé au cancer du sein, a été testé dans le cadre d’au moins quatre essais randomisés chez des femmes à risque de cancer du sein [74-78]. L’étude la plus importante, sur le plan de la taille de population, est l’étude de Veronesi effectuée sur 877 femmes ayant pris du Fenretinide pendant cinq ans suite à un premier cancer du sein. Alors qu’après un suivi de sept ans, aucune diminution significative de la survenue d’un second cancer n’a été observée chez des femmes ayant pris du Fenretinide par rapport au groupe placebo [76], une seconde analyse effectuée après 14,6 ans a révélé une réduction du risque de 38% dans le groupe des femmes pré-ménopausées (rapport de hasard [HR pour Hazard Ratio] : 0,62; 95% CI : 0,46 à 0,83 [74]).
Tableau 1-1 Études cas-témoin portant sur l’association entre antioxydants et le risque du cancer du sein

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graham (1982) [79]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Schrauzer (1985) [80]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>La Vecchia (1987) [81]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Katsouyanni (1988) [82]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Marubini (1988) [83]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Roohan (1988) [84]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Iscovich (1989) [85]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gerber (1990) [86]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Polschmann (1990) [87]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ewertz (1990) [88]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Van ‘t Veer (1990) [89]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Van ‘t Veer (1990) [90]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Graham (1991) [91]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lee (1991) [92]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Richardson (1991) [92]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zalidze (1991) [93]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gupta (1991) [93]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>London (1992) [94]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>London (1992) [94]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Levi (1993) [95]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Qi (1994) [96]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Landa (1994) [97]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ambrosone (1995) [98]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Negri (1996) [99]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Piccinini (1996) [100]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Freudenberg (1996) [101]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Braga (1997) [102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Longnecker (1997) [103]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mezzetti (1998) [104]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Challier (1998) [105]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bohlke (1999) [106]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ronco (1999) [107]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mannisto (1999) [108]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Aucune association | Association négative | Association positive
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potischman (1999) [109]</td>
<td></td>
</tr>
<tr>
<td>Simon (2000) [110]</td>
<td></td>
</tr>
<tr>
<td>Mannisto (2000) [65]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Levi (2001) [111]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ray (2001) [112]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ching (2002) [113]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Moorman (2001) [114]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kuo (2002) [115]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Adzersen (2003) [116]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bonilla-Fernandez (2003) [117]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Malin (2003) [118]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Do (2003) [119]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gaudet (2004) [120]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nikondjick (2004) [121]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lee (2005) [122]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Singh (2005) [123]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zarakian (2005) [124]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Charalabopoulos (2006) [125]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Huang (2007) [126]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rejali (2007) [127]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sharhar (2008) [128]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dorjgochoo (2008) [129]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Moradi (2009) [130]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zhang (2009) [131]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mignone (2009) [66]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Suzana (2009) [132]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wang (2009) [133]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kim (2010) [134]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lee (2010) [135]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Yang (2010) [136]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pian (2011) [137]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Feng (2012) [138]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rosati (2013) [139]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang (2014) [140]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wei (2014) [141]</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>Pavithra (2015) [142]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Tableau 1-2 Études prospectives portant sur l’association entre antioxydants et le risque du cancer du sein

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald (1984) [143]</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Knekt (1986) [144]</td>
<td></td>
</tr>
<tr>
<td>Russell (1986) [145]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hunter (1990) [146]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Graham (1992) [70]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Shibata (1992) [73]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hunter (1993) [71]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Friedenreich (1993) [147]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rohan (1993) [148]</td>
<td></td>
</tr>
<tr>
<td>van Noord (1993) [149]</td>
<td></td>
</tr>
<tr>
<td>Kushi (1996) [72]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Garland (1996) [151]</td>
<td></td>
</tr>
<tr>
<td>Jarvis (1997) [152]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Verhoeven (1997) [153]</td>
<td></td>
</tr>
<tr>
<td>Dorgan (1998) [154]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zhang (1999) [67]</td>
<td></td>
</tr>
<tr>
<td>Jumaan (1999) [155]</td>
<td></td>
</tr>
<tr>
<td>Michaels (2001) [156]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hulten (2001) [157]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Toniolo (2001) [158]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Horn-Ross (2002) [159]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sato (2002) [160]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Terry (2002) [161]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cho (2003) [68]</td>
<td></td>
</tr>
<tr>
<td>Nissen (2003) [162]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sesso (2005) [163]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tamimi (2005) [164]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cui (2007) [165]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cui (2008) [166]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Dorjgochoo (2009) [167]</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eppelein (2009) [168]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kabat (2009) [169]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Larsson (2010) [170]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nagel (2010) [171]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Roswall (2010) [172]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mairiard (2010) [173]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hutchinson (2012) [174]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pouchieu (2014) [175]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pantavos (2015) [176]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Elissen (2015) [177]</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sisti (2015) [178]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
1.3.2. Caroténoïdes


L’association entre les apports en alpha-carotène et le risque du cancer du sein a été évaluée dans une trentaine d’études d’observation (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans 15 études (6 cas-témoins, 9 prospectives). Un risque différent selon le statut ménopausique a été observé dans quatre études [66, 67, 120, 121]. Même si aucune association n’a été trouvée dans plusieurs des études, deux méta-analyses ont permis de démontrer une relation inverse entre la consommation d’alpha-carotène et le risque du cancer du sein [183, 184]. Dans une de ces méta-analyses [183], le RR combiné pour les études cas-témoins était de 0,82 (95% CI : 0,70 à 0,97). Même si aucune des études de cohorte prises séparément ne présentait d’association significative, le RR combiné était de 0,91 (95% CI : 0,85 à 0,98). Dans l’autre méta-analyse [184], la comparaison des études de cohorte qui ont mesuré l’alpha-carotène dans le sang plutôt que par FFQ a donné un RR combiné de 0,82 (95% CI : 0,73 à 0,92) tandis que le RR combiné n’était pas significatif pour les études ayant mesuré l’alpha-carotène par FFQ [184]. Ceci suggère qu’il est plus facile de détecter l’association entre la prise d’alpha-carotène et le risque du cancer du sein en mesurant l’antioxydant directement dans le sang.
L’association entre les apports en bêta-cryptoxanthine et le risque du cancer du sein a été évaluée dans 28 études d’observation (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans quatre études (3 cas-témoins, 1 prospective). Un risque différent selon le statut ménopausique a été observé dans une de ces études où le risque de cancer du sein était plus élevé chez les femmes post-ménopausées aux apports élevés en bêta-cryptoxanthine [66]. Deux méta-analyses portant sur les études prospectives n’ont pas révélé d’association entre les apports en bêta-cryptoxanthine et le risque du cancer du sein (RR : 1,02; 95% CI : 0,95 à 1,09 [184], et RR : 0,98; 95% CI : 0,83 à 1,17 [185]). Toutefois, une étude prospective récente, non considérée dans ces méta-analyses, a mis en évidence une association inverse entre les niveaux plasmatiques de bêta-cryptoxanthine et le risque du cancer du sein (OR : 0,89; 95% CI : 0,81 à 0,99 [175]).

La lutéine et la zéaxanthine sont des isomères qui sont la plupart du temps présentés comme une seule variable dans les études car ils sont impossibles à distinguer en chromatographie en phase liquide à haute performance (HPLC pour High-Performance Liquid Chromatography) [186]. L’association entre l’apport en lutéine/zéaxanthine et le risque du cancer du sein a été évaluée dans une trentaine d’études d’observation (voir Tableaux 1-1 et 1-2). Une association négative a été trouvée dans huit études dont la moitié sont des études prospectives. Un risque différent selon le statut ménopausique a été observé dans trois études [66, 67, 133]. La relation a également fait l’objet de deux méta-analyses. Une d’entre elles suggère que les études cas-témoins ayant montré des associations négatives entre la prise de lutéine/zéaxanthine et le risque du cancer du sein se limitaient aux études basées en milieu hospitalier (OR : 0,54; 95% CI : 0,35 à 0,84) suggérant un biais de sélection [183]. La seconde, où seules des études prospectives étaient incluses, a montré que la diminution du risque du cancer du sein était détectable seulement lorsque les résultats des études ayant mesuré le niveau de lutéine dans le sang étaient combinés (RR : 0,68; 95% CI : 0,52 à 0,89 [184]).

L’association entre les apports en lycopène et le risque du cancer du sein a été évaluée dans 35 études d’observation. Une diminution du risque a été trouvée dans huit de ces études (3 cas-témoins, 5 prospectives). Un risque différent selon le statut ménopausique a été observé dans une étude où l’effet bénéfique des apports élevés en lycopène sur la diminution du risque du cancer du sein a été mesuré seulement chez les post-ménopausées [120]. L’association a fait l’objet d’au moins deux méta-analyses [183, 184]. Comme pour la lutéine/zéaxanthine, la mesure de l’exposition au lycopène dans le sang a permis de détecter une relation inverse avec le risque du cancer du sein dans les études prospectives (RR : 0,78; 95% CI : 0,62 à 0,99 [184]), alors que la relation était non-significative lorsque les apports alimentaires en lycopène étaient mesurés (RR : 0,99; 95% CI : 0,93 à 1,06 [183] et RR : 1,00; 95% CI : 0,93 à 1,07 [184]).

Plutôt que de seulement évaluer l’association de chacun des différents antioxydants de la famille des caroténoïdes séparément avec le risque du cancer du sein, 17 études d’observation ont mesuré l’apport total
en caroténoïdes (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans neuf études (4 cas-témoins, 5 prospectives). Une augmentation du risque dans le groupe des femmes post-ménopausées prises séparément a été mesurée dans une étude [121]. Aucune association entre la consommation totale en caroténoïdes et le risque du cancer du sein n’a été révélée par la méta-analyse de Aune [184] lorsque les résultats de trois études prospectives ayant mesuré l’apport en caroténoïdes par FFQ ont été combinés (RR : 0,95; CI : 0,84 à 1,08), alors qu’une association négative est ressortie des résultats de six études prospectives où les caroténoïdes ont plutôt été quantifiés dans la circulation sanguine (RR : 0,74; 95% CI; 0,57 à 0,96).

1.3.3. Vitamine C


1.3.4. Vitamine E

L’association entre les apports en vitamine E et le risque du cancer du sein a été évaluée dans au moins 65 études d’observation (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans 23 études (21 cas-témoins, 2 prospectives). Un risque différent selon le statut ménopausique a été observé dans cinq études [108, 117, 135, 137, 143]. Dans une méta-analyse [69] combinant les résultats de 38 études, une diminution de 11% du risque du cancer du sein a été observée chez les femmes aux apports élevés en vitamine E (apports alimentaires et supplément, OR : 0,89; 95% CI : 0,81 à 0,97). Cependant, suite à la subdivision des études selon le devis cas-témoins ou cohorte prospective, la diminution du risque ne demeurait significative que dans le groupe des études cas-témoins. L’administration empirique de vitamine E sur la prévention du cancer du sein a été évaluée lors d’au moins trois essais cliniques randomisés [122, 181, 187], et la vitamine E faisait partie des antioxydants inclus dans le supplément administré dans l’étude Su.Vi.Max [182]. Aucune de ces études ne soutient la recommandation de consommer de la vitamine E sous forme de supplément pour réduire le risque de la survenue d’un cancer du sein.
1.3.5. Sélénium et zinc

L’association entre les apports en sélénium et le risque du cancer du sein a été évaluée dans 24 études d’observation (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans dix études cas-témoins, mais dans aucune des sept études prospectives. Un risque différent selon le statut ménopausique a été observé dans une étude où les apports élevés en zinc étaient inversement associés au risque du cancer dans le groupe des femmes pré-ménopausées mais pas dans le groupe des femmes post-ménopausées [137]. La relation entre les niveaux de sélénium et le cancer du sein a été évaluée dans une méta-analyse réunissant les résultats de 16 études [188]. Dans les études où le sélénium a été mesuré dans le sérum, le niveau de sélénium chez les cas par rapport aux témoins était en moyenne inférieur de 1,04 µg/L (95% CI : -1,71 à -0,38) tandis que l’association n’était pas significative pour l’analyse combinée des résultats des études où le sélénium a été mesuré dans les ongles (-0,07 µg/L; 95% CI : -0,16 à 0,03).

L’association entre les apports en zinc et le risque du cancer du sein a été évaluée dans une dizaine d’études d’observation (voir Tableaux 1-1 et 1-2). Une diminution du risque a été trouvée dans cinq études cas-témoins, dont l’étude canadienne de Pan [137], soit l’étude à l’effectif le plus important. Dans cette étude, une diminution du risque a été obtenue dans le groupe des femmes pré-ménopausées consommant du zinc sous forme de supplément depuis plus de dix ans comparé au groupe de femmes n’en prenant pas (OR : 0,47; 95% CI : 0,28 à 0,78).

1.4. Les marqueurs inflammatoires et le risque du cancer du sein

Plusieurs études épidémiologiques suggèrent que l’inflammation chronique prédisposerait à différents types de cancer [2, 189]. On estime même que 25% de tous les cas de cancers seraient associés à l’inflammation [190].

La piste de l’inflammation chronique comme facteur de risque du cancer du sein est soutenue par son association avec le diabète de type 2 et l’obésité. En effet, il a été estimé dans une méta-analyse portant sur 23 études publiées entre 1997 et 2007 que le risque du cancer du sein était de 20% supérieur chez les femmes diabétiques [191]. Ce résultat a été corroboré par une autre méta-analyse portant sur 16 études publiées entre 2000 et 2010 [192]. Pour ce qui est de l’obésité, une dysfonction du tissu adipeux serait à l’origine du cancer du sein parce qu’il subirait un stress oxydatif important à la suite de la libération de différentes cytokines inflammatoires [2, 189, 193, 194].

Aux fins de l’étude présentée au Chapitre 4, 11 marqueurs ont été sélectionnés en tant qu’indicateurs du niveau d’inflammation local en raison de leur expression dans le tissu mammaire normal et de leur lien potentiel avec le processus de tumorigénicité [195-199]. Ces marqueurs sont IL-6, TNF-alpha, la protéine C...
réactive (CRP pour *C-Reactive Protein*), COX-2, leptine, l’amyloïde sérique A1 (SAA1 pour *Serum Amyloid A1*), le transducteur de signal et activateur de transcription 3 (STAT3 pour *Signal Transducer and Activator of Transcription 3*), IL-8, IL-10, lactoferrine et TGF-bêta. En effet, une augmentation de l’expression des marqueurs pro-inflammatoires IL-6 [200], TNF-alpha [200, 201], COX-2 [202, 203], leptine [204] STAT3 [205, 206], IL-8 [3, 200] a été mesurée dans du tissu tumoral comparé au tissu normal du sein tandis que c’est plutôt une diminution de l’expression des marqueurs anti-inflammatoires TGF-bêta [207] et lactoferrine qui a été observée [208]. Une expression plus élevée de l’IL-6, le TNF-alpha et l’IL-8 a également été mesurée dans les cellules obtenues par fluide d’aspiration du mamelon de femmes atteintes de cancer du sein par rapport à des femmes en santé [209]. Par ailleurs, plusieurs études ont tenté de mesurer l’association entre l’inflammation et le risque du cancer du sein en mesurant les marqueurs inflammatoires dans la circulation sanguine tels que IL-6, TNF-alpha, CRP et leptine. Même si plusieurs de ces études ont montré des résultats inconsistants [210-217], des taux circulants plus élevés de CRP [218-221] et de leptine [220, 222-224] ont été associés à un risque accru de cancer du sein.

Finalement, la thèse du lien entre une dérégulation de la fonction de certains marqueurs inflammatoires et l’augmentation de la susceptibilité au cancer du sein est également étayée par l’association entre certains polymorphismes des gènes codant pour IL-6 [225, 226], TNF-alpha [227-231], COX-2 [232], STAT-3 [233], TGF-bêta [229, 234-236], IL-8 [237, 238] ou IL-10 [239, 240] et le risque du cancer du sein, ainsi que le lien entre l’expression de marqueurs inflammatoires dans le tissu mammaire et la densité mammaire [241, 242], qui est un marqueur de risque du cancer du sein [243].

### 1.5. Association entre antioxydants et inflammation

Le mode d’action des antioxydants dans la prévention du cancer du sein n’est pas bien compris. Les antioxydants pourraient agir en diminuant le niveau d’inflammation dans le tissu (voir Figure 1-1, page 2). En effet, l’inflammation génère du stress oxydatif et ce dernier active l’expression de plusieurs molécules pro-inflammatoires créant un cercle vicieux [134]. Ainsi, en rétablissant la balance d’oxydoréduction, les antioxydants pourraient diminuer l’inflammation à l’intérieur du tissu mammaire et réduire le risque de développer un premier ou un second cancer. Cependant, dans le cadre du cancer du sein, cette piste a été peu explorée par des recherches chez l’humain, probablement parce que de telles études requièrent de mesurer les marqueurs inflammatoires sur des échantillons biologiques ce qui passe par des techniques invasives associées à des coûts importants.

Parmi les études identifiées qui ont mesuré la consommation d’antioxydants et le niveau de différents marqueurs inflammatoires dans le cadre du cancer du sein, quatre sont observationnelles [3, 6, 7, 9] et trois sont expérimentales [4, 5, 8]. Les études se distinguent par les antioxydants évalués ainsi que les marqueurs
inflammatoires mesurés, ce qui fait qu’il est difficile d’en faire la comparaison. Comme pour les études chez les sujets en santé, la plupart ont mesuré les marqueurs inflammatoires dans la circulation sanguine ou l’urine sauf une, l’étude d’Abranches, qui a mesuré par PCR en temps réel (qPCR) le niveau d’expression des gènes de marqueurs inflammatoires (IL-10, IL-8 et interféron gamma [INF-gamma pour InterFeron-Gamma]) dans le tissu mammaire adjacent à la tumeur provenant de 25 cas de cancer du sein [3]. Finalement, il est connu que le statut ménopausique affecte l’expression de différentes cytokines liées à l’inflammation [69, 183, 242, 244-246] et seulement trois des études du Tableau 1-3 ont considéré le statut ménopausique dans les analyses [5, 6, 9].
<table>
<thead>
<tr>
<th>Premier auteur, année</th>
<th>Devis</th>
<th>Pays, ethnie ou particularité</th>
<th>Exposition/outil de mesure</th>
<th>Issue/outil de mesure</th>
<th>Contraste</th>
<th>Méthode d’analyse statistique</th>
<th>Facteurs d’ajustement</th>
<th>Résultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mccmillan, 2002 [7]</td>
<td>Transversal</td>
<td>Royaume-Uni</td>
<td>Non-fumeurs 30, contrôle, 60 ans (40-82) 15, cancer sein, 54 ans (40-67) 15, cancer prostate, 75 ans (62-83) 11, cancer colorectal, 72 ans (52-78)</td>
<td>Rétinol plasmatique/HPLC Bêta-carotène plasmatique/HPLC Alpha-carotène plasmatique /HPLC Lutéine plasmatique/HPLC Lycopène plasmatique/HPLC Alpha-tocopherol plasmatique/HPLC</td>
<td>CRP plasmatique/ELISA</td>
<td>Coefficient de corrélation de Spearman</td>
<td>Rétinol : CRP association négative, (r=0,162; p&lt;0,001) Bêta-carotène : CRP association négative, (r=0,254; p&lt;0,001) Alpha-carotène : CRP association négative (r=0,140; p&lt;0,001) Lutéine : CRP association négative (r=0,171; p&lt;0,001) Lycopène : CRP association négative, (r=0,297; p&lt;0,001)</td>
<td></td>
</tr>
<tr>
<td>Abranches, 2010 [3]</td>
<td>Transversal</td>
<td>Brésil</td>
<td>25, cancer sein, 52,4±13,1 ans</td>
<td>Concentration tissulaire de rétinol/HPLC Concentration tissulaire de bêta-carotène/HPLC Concentration tissulaire d’alpha-tocopherol/HPLC</td>
<td>Tissu adipeux adjacent à cancer du sein IL-10/qPCR IL-6/qPCR IFN-gamma/qPCR</td>
<td>Coefficient de corrélation de Spearman</td>
<td>Rétinol : IL-10 (r=0,450; p&lt;0,05) IL-8 (0,390; NS) IFN-gamma (0,133; NS) Bêta-carotène : IL-10 (r=0,075; NS) IL-8 (0,050; NS) IFN-gamma (-0,020; NS) Alpha-tocopherol : IL-10 (r=0,222; NS) IL-8 (-0,101; NS) IFN-gamma (-0,051; NS)</td>
<td></td>
</tr>
<tr>
<td>Yeon, 2011 [6]</td>
<td>Transversal</td>
<td>Corée</td>
<td>149, contrôle (âge 49,2±8,6) 134, cancer sein (âge 48,5±8,1)</td>
<td>Apports en vitamine A (RE) et rétinol dernière année/FFQ Apports en bêta-carotène dernière année/FFQ Apports en vitamine C dernière année/FFQ Apports en vitamine E dernière année/FFQ</td>
<td>IL-1-bêta plasmatique/ELISA IL-6 plasmatique/ELISA IL-8 plasmatique/ELISA</td>
<td>ANCOVA</td>
<td>Age IMC HRT Historique familial cancer sein Ménopause Âge ménarche Tabac Alcool Apport calorique total</td>
<td>Vitamine A (RE) IL-1-bêta association négative (p*=-0,0582) IL-6 aucune association (p*=0,3872) IL-6 aucune association (p*=0,7395) Rétinol : IL-1-bêta aucune association (p*=0,3211) IL-6 aucune association (p*=0,9031) IL-6 aucune association (p*=0,7293) Bêta-Carotène : IL-1-bêta association négative (p*=0,0140) IL-6 aucune association (p*=0,1242) IL-6 aucune association (p*=0,3750)</td>
</tr>
<tr>
<td>Premier auteur, année</td>
<td>Devis Pays, ethnicité ou particularité</td>
<td>Exposition/outil de mesure</td>
<td>Issue/outil de mesure</td>
<td>Contraste</td>
<td>Méthode d’analyse statistique</td>
<td>Facteurs d’ajustement</td>
<td>Résultat</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Llianos, 2014 [5]</td>
<td>Intervention/ chassé croisé</td>
<td>États-Unis 60, post-ménopause, à risque de cancer du sein, 57,2 ans, IMC moyen : 30,0 kg/m²</td>
<td>Période avec apports alimentaires limités en lycopène, suivi d’une période avec apports alimentaires riches en lycopène</td>
<td>Adiponectine sérique/ELISA Leptine sérique/ELISA</td>
<td>Modèles linéaires mixtes Ratio avant/après CI 95%</td>
<td></td>
<td>Vitamine C : IL-bêta association négative (p*=0,1580) IL-6 aucune association (p*=0,8899) IL-8 aucune association (p*=0,5552) Vitamine E : IL-bêta association négative (p*=0,2947) IL-6 aucune association (p*=0,7260) IL-8 association positive (p*=0,2947)</td>
<td></td>
</tr>
<tr>
<td>Butalla, 2010 [4]</td>
<td>Intervention</td>
<td>États-Unis 68 cancer sein, stage I, II ou IIIa invasif, surpoids (IMC : 25-45 kg/m²), non-fumeurs, moins de 5 portions de fruits et légumes par jour, âge : 70,5±8,0 ans.</td>
<td>Administration de jus de carottes Caroténoïdes plasmatiques/HPLC</td>
<td>Thromboxane B2 plasmaticque/ELISA PGEM plasmatique/ELISA hsCRP plasmaticque/ELISA</td>
<td>Tertiles caroténoïdies avant/après</td>
<td>Régression logistique (0=concentration identique ou inférieur, 1= concentration augmentée) OR (CI 95%)</td>
<td>Âge IMC Niveau de base du caroténoïde (transformation logarithmique) Niveau de base du biomarqueur (transformation logarithmique) Caroténoïdes Thromboxane B2 : Tertile 2 vs tertile 1 : 1,12 (0,28-4,45) Tertile 3 vs tertile 1 : 0,34 (0,06-1,82) PGEM Tertile 2 vs tertile 1 : 0,90 (0,24-3,34) Tertile 3 vs tertile 1 : 0,78 (0,19-3,19) hsCRP Tertile 2 vs tertile 1 : 1,12 (0,32-3,91) Tertile 3 vs tertile 1 : 0,38 (0,09-1,54)</td>
<td></td>
</tr>
<tr>
<td>Mikirova, 2012 [8]</td>
<td>Intervention/ chassé croisé</td>
<td>États-Unis Sous-groupe de 11 patients atteints de différents cancers (prostate, sein, vessie, pancréas, poumon, thyroïde, peau, lymphome à cellules B), d’un groupe de 45 patients, âge : 70,0±12,4 ans.</td>
<td>15-50 g/jour de vitamine C 1 fois par semaine pendant 6 semaines</td>
<td>INF-gamma sanguin/ELISA IL-1 sanguin/ELISA IL-2 sanguin/ELISA TNF-gamma sanguin/ELISA Éotaxine sanguin/ELISA</td>
<td>% de changement</td>
<td></td>
<td>Vitamine C : Changement faible pour IL-2 (+7%) TNF-alpha (+7%) et éotaxine (+17%) Niveau des autres cytokines significativement diminué</td>
<td></td>
</tr>
<tr>
<td>Premier auteur, année</td>
<td>Devis</td>
<td>Pays, ethnicité ou particularité</td>
<td>Exposition/outil de mesure</td>
<td>Issue/outil de mesure</td>
<td>Contraste</td>
<td>Méthode d’analyse statistique</td>
<td>Facteurs d’ajustement</td>
<td>Résultat</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Pierce, 2009 [9]    | Transversal | 735 (CRP) 741 (SAA) cancer sein in situ à stade IIIa 57.5±10.4 ans | Consommation actuelle vitamine E (oui/non)/Questionnaire | CRP séréque/néphélométrie SAA séréque/néphélométrie | Prise de vitamine E oui/non | Régression linéaire Transformation logarithmique de la concentration | Age IMC Ethicité Tour de taille Activité physique Tabac Education Ménopause Médication Angine Diabète Infarctus myocarde Crise cardiaque Hypertension Récepteur oestrogène Récepteur progestérone | Vitamine E ; CRP :  
β : -0,22 (p=0,008)  
β : -0,16 (p=0,007) |

ANTOVA, pour *Analysis of covariance/Analyse de covariance*; β, coefficient bêta; CRP, pour *C-Reactive Protein/Protéine C réactive*; ELISA, pour *Enzyme-Linked Immunosorbent Assay/Méthode immunoenzymatique ELISA*; FFQ, pour *Food Frequency Questionnaire/Questionnaire de fréquence alimentaire*; HPLC, pour *High-Performance Liquid Chromatography/Chromatographie en phase liquide à haute performance*; HRT, pour *Hormone Replacement Therapy/Hormonothérapie substitutive*; IL, pour *Interleukine/Interleukine*; IMC, Indice de Masse Corporelle; INF-gamma, pour *Interferon-Gamma/Interféron gamma*; TNF-alpha, pour *Tumor Necrosis Factor alpha/Facteur de nécrose tumorale alpha*; NS, Non Significatif; OR, pour *Odds Ratio/rapport de cotes*; p=valeur p; p*: valeur p pour hétérogénéité; PGEM, pour *Prostaglandin E Metabolite*; qPCR, PCR quantitative, RE, pour *Retinol Equivalent/Équivalent rétinol; CI 95%, pour *Confidence Interval/Intervalle de Confiance 95%*
1.5.1. Vitamine A
Dans des cohortes d’individus comprenant des cas de cancer du sein, trois études ont mesuré l’association entre la vitamine A et des marqueurs inflammatoires [3, 6, 7] (voir Tableau 1-3). Une association négative entre le niveau circulant de la CRP et le niveau sanguin de rétinol a été obtenue dans l’étude de McMillan qui portait sur 71 participants atteints ou non de cancer, dont 15 cas de cancer du sein, et l’association était statistiquement significative [7]. L’étude de Yeon et collaborateurs sur 134 cas de cancer du sein et 149 contrôles réunis n’a pas permis de détecter d’associations statistiquement significatives entre la consommation de rétinol, mesuré par FFQ, et le niveau sanguin de l’IL-1bêta, l’IL-6 et l’IL-8 [6]. Les auteurs ont également analysé les résultats en termes de RAE. Dans ce cas, une association négative presque significative (p=0,0582) a été observée entre l’IL-1bêta et l’augmentation du quartile de consommation de rétinol [6]. Une corrélation statistiquement significative entre la concentration de rétinol, mesurée par HPLC, et l’expression du gène de la cytokine anti-inflammatoire IL-10 dans le tissu adipeux mammaire adjacent à la tumeur, a été décrite dans l’étude d’Abranches [3]. La relation était plutôt inversée pour les cytokines pro-inflammatoires IL-8 et l’INF-gamma, mais non significative [3]. Ces résultats sont cohérents avec une diminution de l’inflammation en présence d’une plus grande concentration de rétinol dans l’organisme.

1.5.2. Caroténoïdes
Pour ce qui est des études en lien avec le cancer du sein, les trois études discutées dans la section précédente ont également évalué différents antioxydants du groupe des caroténoïdes, soit le bêta-carotène [3, 6, 7], l’alpha-carotène, la lutéine et le lycopène [7]. Dans l’étude de McMillan, une association négative statistiquement significative entre ces quatre antioxydants, mesurés dans le sang, et le niveau plasmatique de la CRP a été décrite. Une association négative entre l’IL-1-bêta et l’augmentation du quartile de consommation de bêta-carotène a été mesurée dans l’étude de Yeon, mais aucune association n’a été trouvée pour l’IL-6 et l’IL-8.

Dans le cadre d’une étude expérimentale, 68 patientes en rémission d’un cancer du sein de stade I, II ou IIIa invasif, ont été soumises à la consommation quotidienne d’un jus riche en caroténoïdes, soit huit onces de jus de betteraves (n=34) ou de carottes (n=34) par jour pendant trois semaines [4]. Avant et après l’intervention, les caroténoïdes totaux ont été mesurés par HPLC dans le sang ainsi que trois marqueurs inflammatoires : la CRP, la thromboxane B2, et la prostaglandine E2. Globalement, l’augmentation des caroténoïdes totaux était inversement associée à l’augmentation de chacun des marqueurs inflammatoires, mais aucun résultat n’était significatif.

Dans le cadre d’une étude expérimentale de type chassé-croisé, 65 femmes post-ménopausées, considérées à risque de développer un cancer du sein, se sont prêtées à des apports alimentaires riches en
lycopène, soit la consommation d’au moins 25 mg quotidiennement pendant dix semaines [5]. Chez les femmes présentant un indice de masse corporelle (IMC) inférieur à 30 kg/m², la concentration d’adiponectine, un marqueur anti-inflammatoire, a augmenté de façon significative après l’intervention, tandis que la leptine, un marqueur pro-inflammatoire, a diminué. Toutefois, les associations n’étaient pas significatives chez les femmes présentant un IMC de 30 kg/m² et plus.

1.5.3. Vitamine C

L’association entre le niveau plasmatique de IL-1bêta, l’IL-6 et l’IL-8, et l’augmentation du quartile de consommation de vitamine C, a été évaluée dans l’étude de Yeon [6]. Toutefois, aucune des valeurs obtenues n’était statistiquement significative, bien qu’une association à tendance négative ait été observée pour l’IL-1bêta. Une petite étude expérimentale sur la consommation de vitamine C a été menée sur un groupe de 11 patients atteints de différents types de cancer (prostate, sein, vessie, pancréas, poumon, thyroïde, peau, ou sanguin) [8]. Les participants ont consommé une dose de vitamine C une fois par semaine pendant six semaines, pour une dose croissante de 15, 25, 50 g les trois premières semaines et 50 g pour les trois suivantes. Le niveau de tous les marqueurs inflammatoires évalués, soit l’IL-2, le TNF-alpha et l’éotaxine, a été réduit après l’intervention, mais les auteurs n’ont pas présenté d’analyse statistique [8].

1.5.4. Vitamine E

Quatre études ont mesuré l’association entre la vitamine E et des marqueurs inflammatoires chez des cohortes d’individus comprenant des cas de cancer du sein [3, 6, 7, 9]. Deux de ces études ont montré une association négative entre le niveau circulant de CRP et le niveau de vitamine E, et cette association était statistiquement significative. Dans une de ces études, la vitamine E a été mesurée directement dans le plasma par HPLC chez 71 participants, dont 30 en santé, 15 atteints du cancer du sein, 15 atteints du cancer de la prostate et 11 atteints du cancer colorectal [7]. Dans l’autre étude, les individus consommant de la vitamine E sous forme de supplément ont été comparés à ceux n’en consommant pas dans un groupe de 741 patientes en rémission d’un cancer du sein [9]. Dans l’étude de Yeon, l’association entre le niveau plasmatique de l’IL-1bêta, l’IL-6 et l’IL-8 avec l’augmentation du quartile de consommation de vitamine E, mesurée par FFQ, a été évaluée [6]. Aucune des valeurs obtenues n’était statistiquement significative. Finalement, dans l’étude d’Abranches sur le tissu adipeux mammaire adjacent à la tumeur de 25 cas de cancer du sein, une association positive entre la concentration d’alpha-tocophérol, mesurée par HPLC, et l’expression du gène de l’IL-10 a été observée, alors que l’association était négative pour l’expression du gène de l’IL-8 et l’interféron-gamma. Ces résultats n’étaient toutefois pas statistiquement significatifs [3].
1.5.5. Sélénium et Zinc

Aucune étude n'a évalué l'association entre la consommation de sélénium ou de zinc et l'expression de marqueurs inflammatoires dans un contexte de cancer du sein. Toutefois, une étude effectuée sur un échantillon de plus de 15 000 personnes de la population américaine a montré une association négative entre les niveaux circulants de la CRP et les réserves sériques de sélénium et d'autres antioxydants tels que le rétinol, le bêta-carotène, l'alpha-carotène, la cryptoxanthine, la lutéine/zéaxanthine et la vitamine C [247].
Chapitre 2. Hypothèse et objectif

Notre hypothèse de recherche est que les apports alimentaires élevés en antioxydants diminuent l'inflammation dans le microenvironnement du tissu mammaire.

La plupart des études visant à évaluer la relation entre les apports en antioxydants et l'inflammation dans un contexte de risque de cancer du sein ont mesuré l'expression de marqueurs inflammatoires dans la circulation sanguine ou dans l'urine (voir section 1.5). Or, des études ont décrit que le niveau d'expression de certains marqueurs inflammatoires circulants, tels que la leptine, l'adiponectine et le TGF-bêta, ne corrélait pas avec leur expression dans le tissu mammaire [10, 11]. Ceci suggère que la mesure des marqueurs inflammatoires directement dans le tissu ne donne pas la même information que les résultats issus des analyses dans le sang ou dans l'urine et que les marqueurs mesurés dans ces derniers ne sont pas d’aussi bons facteurs de prédiction que ceux mesurés dans le tissu.

L'objectif général est donc d'évaluer l'association entre les apports de différents antioxydants possiblement associés au risque du cancer du sein (vitamine A/rétinol, vitamine C, vitamine E, bêta-carotène, alpha-carotène, lycopène, lutéine/zéaxanthine, bêta-cryptoxanthine, sélénium et zinc), et l'expression de marqueurs pro-inflammatoires (IL-6, TNF-alpha, CRP, COX-2, leptine, SAA1, STAT 3 et IL-8) ou anti-inflammatoires (IL-10, lactoferrine et TGF-bêta) dans le tissu mammaire normal de femmes atteintes d’un cancer du sein.
Chapitre 3. Méthodologie

3.1. Devis et population

Le devis proposé est une étude transversale à visée analytique effectuée sur un échantillon de commodité constitué de femmes qui ont été recrutées parmi les patientes traitées au Centre des maladies du sein Deschênes-Fabia, un centre d'excellence en maladie du sein. Tous les nouveaux cas de cancer du sein de la région de Québec et des environs sont référés à ce centre. Il s'agit d'une analyse secondaire des données provenant d'un échantillon de femmes qui ont subi une chirurgie pour le cancer du sein entre janvier 2011 et mai 2012, et qui ont été recrutées pour un projet portant sur la densité mammaire, une étude menée par l'équipe de Caroline Diorio au Centre de recherche sur le cancer de l'Université Laval.

Pour faire partie de l'étude, les femmes devaient répondre à certains critères d'inclusion, établis aux fins du projet portant sur la densité mammaire, soit : 1) avoir un cancer du sein, 2) subir une mastectomie partielle ou totale, 3) être âgée de moins de 70 ans, et 4) avoir eu une mammographie dans les six mois précédant le diagnostic. Les critères suivants entraînaient l'exclusion des femmes : 1) être enceinte, 2) avoir déjà subi une chirurgie mammaire, 3) avoir reçu de la chimiothérapie ou de la radiothérapie, et 4) avoir une histoire personnelle d'un cancer autre que le carcinome basal de la peau. Des 813 femmes qui ont été approchées, 226 ont rempli les critères d'éligibilité et 168 ont accepté de participer à l'étude (74%). Sur ces 168 femmes, huit ont été exclues après le recrutement parce qu'elle avait déjà subi une chirurgie du sein. Quatre participantes n'ont pas retourné le FFQ servant à mesurer les apports alimentaires en antioxydants. Chacune des participantes présentait un apport énergétique quotidien moyen dans la limite établie, utilisée lors de nos précédentes études [248, 249], d'au moins 600 kilocalories par jour et de moins de 5 000 kilocalories par jour. Pour finir, les données pour 160 femmes (81 pré- et 79 post-ménopausées) ont été utilisées pour les analyses.

3.2. Collecte des données

Les participantes ont été recrutées à la suite de la confirmation de leur diagnostic de cancer du sein par biopsie. Après obtention du consentement, la collecte des données s’est effectuée en différentes étapes. Au recrutement, les données anthropométriques sur le poids (kg) et la grandeur (cm) ont été recueillies par une infirmière de recherche formée afin d’éviter le biais des estimations auto-rapportées. Les tissus étudiés dans l'étude proviennent du tissu mammaire retiré lors de la chirurgie de résection tumorale subite par les participantes. Environ une semaine de délai s’écoule habituellement entre le diagnostic de cancer du sein et cette chirurgie. Au cours du mois suivant la chirurgie, les participantes ont répondu à un FFQ auto-administré qu’elles ont retourné par la poste. Au cours de ce mois, les participantes ont également répondu
à une entrevue téléphonique menée par un interviewer formé à l’aide d’un questionnaire utilisé lors d’études précédentes portant sur la densité mammaire [250, 251], ce qui a permis de recueillir l’information pour l’évaluation des différents facteurs de confusion et de compléter les oublis dans le FFQ.

3.2.1. Évaluation de l’alimentation

La mesure des variables indépendantes principales, soit les apports en certains antioxydants d’intérêt dans l’alimentation ou sous forme de supplément, a été évaluée sur l’année précédant la chirurgie de résection tumorale du sein. Cette fenêtre d’exposition a été établie pour les besoins du projet sur la densité mammaire, soit de mesurer la consommation alimentaire régulière des participantes. La mesure des apports alimentaires sur une période d’un an nous apparaissait cohérente avec les objectifs du présent projet. Bien qu’il soit décrit que le stress oxydatif mène à une réponse inflammatoire dans certaines cellules [252], la fenêtre temporelle entre l’exposition au stress oxydatif et la survenue de l’inflammation chronique est peu connue. Dans les études expérimentales citées au Tableau 1-3, la période d’administration empirique d’antioxydants précédant l’analyse de différents marqueurs de l’inflammation varie entre trois semaines à un an [4, 5, 8]. Puisque des différences significatives ont été détectées pour certains marqueurs d’inflammation, la période de un an nous paraissait adéquate. Notre étude se compare également à l’étude d’observation de Yeon qui a utilisé un FFQ portant sur une période d’un an avant la mesure des marqueurs inflammatoires [6].

Les habitudes nutritionnelles, autant sur la consommation alimentaire que sur la prise de suppléments, ont été mesurées par un FFQ. Il s’agit de la version Canadienne du Diet History Questionnaire (C-DHQ), élaboré par les National Institutes of Health, qui a été adapté pour la population canadienne et traduit en français. La version américaine a été validée dans le cadre de trois études [253-255] et une étude a validé la version canadienne qui tient compte des différentes habitudes alimentaires entre le Canada et les États-Unis [256]. Dans les études épidémiologiques, on retrouve trois principales façons d’évaluer les apports alimentaires : le rappel de l’apport alimentaire sur les dernières 24 heures, le journal alimentaire dans lequel le sujet consigne ce qu’il mange au fur et à mesure sur une courte période (habituellement trois à sept jours) et le FFQ. Bien que les journaux alimentaires soient considérés comme l’étalon de référence dans la mesure des apports alimentaires [257], ils ne tiennent pas compte de la variation de l’alimentation au cours des saisons et demandent une très grande motivation de la part du participant ce qui peut engendrer un biais de sélection qui favorise les personnes intéressées par le sujet de recherche. Pour l’étude d’un problème de santé qui se développe sur une longue période, comme c’est le cas du cancer du sein, un FFQ est approprié. Il a été montré que les données issues d’un FFQ, mesurant la fréquence alimentaire sur un an, administré de façon répétée chaque année pendant cinq ans, restaient stables à 82% dans le temps, et que la corrélation ne diminuait que de 0.07 entre la première et la cinquième année [258]. Ceci suggère que
les gens changent peu leur alimentation, à moins qu’il y ait apparition d’un problème de santé, et que la mesure par FFQ sur une période d’un an est représentative des habitudes de consommation régulière d’un individu.

Les questionnaires complétés ont été envoyés au Alberta Health Services – Cancer Care où les portions alimentaires consommées ont été traduites en apport quotidien en nutriments par le logiciel Diet*Cale adapté au C-DHQ canadien [256].

3.2.2. Évaluation des marqueurs inflammatoires

Pour mesurer l’inflammation dans le tissu mammaire, huit marqueurs ont été sélectionnés sur la base de leur participation connue dans le processus inflammatoire et leur implication probable dans l’inflammation du tissu mammaire selon les données de la littérature [3, 6, 201, 203, 214, 241, 242].

À la suite de la chirurgie de résection tumorale mammaire, le tissu a été envoyé au département de pathologie du centre hospitalier où il a été traité selon les procédures normalisées en vigueur qui assurent que tous les échantillons soient soumis aux mêmes conditions. Brèvement, les tissus ont été cartographiés et découps en morceaux. Les morceaux ont par la suite été fixés et enrobés en bloc de paraffine. Des coupes histologiques ont été préparées pour chaque bloc. Des blocs de tissus situés dans la zone de marge la plus éloignée de la tumeur (1 cm minimum), présentant les caractéristiques du tissu normal sur les coupes histologiques, ont été sélectionnés par un pathologiste. Des TMA (tissue microarray) ont été construits. Pour s’y faire, quatre à six poinçons de 1 mm de diamètre de tissu par bloc ont été prélevés et disposés aléatoirement sur un bloc de TMA qui peut contenir jusqu’à 144 poinçons. Des études de validation de TMA ont montré que le degré d’accord entre la mesure de marqueurs par immunohistochimie sur deux à quatre poinçons et le tissu complet était élevé (kappa > 0,7) et que la concordance variait entre 95% et 97% [259].

Dans le cadre de ce projet, une série de coupes consécutives des blocs de TMA a été préparée afin d’obtenir une lame par marqueur et deux lames, une au début et une à la fin de la série, pour une coloration histologique. Sur chaque lame, des contrôles internes positifs et négatifs ont été inclus afin d’être en mesure de contrôler la variabilité de marquage inter lot. Les marqueurs d’intérêt ont été identifiés par immunoperoxydase indirecte. Les coupes histologiques ont été observées au microscope une par une à l’aveugle. Le marquage a été quantifié par une adaptation de la méthode de quick score [260]. Brèvement, par comparaison à un étalon de référence, les coupes ont été classifiées selon l’intensité du marquage (1=nulle, 2=léger, 3=moyen, 4=fort) et selon le pourcentage de cellules marquées (1=0%, 2=1-9%, 3=10-50%, 4=>50%). Le quick score a été obtenu en multipliant les deux cotes. Une série de cinq lames a été
réévaluée par l'observateur principal et par un autre évaluateur. La concordance intra-évaluateur était de 0,75 (95% CI : 0,63 à 0,84) et la concordance inter-évaluateur de 0,74 (95% CI : 0,63 à 0,84).

3.2.3. Sélection des covariables

Dans les études épidémiologiques qui examinent l'association entre des facteurs nutritionnels et une mesure de l'état de santé, comme l'inflammation, se pose le problème de l'ajustement sur l'apport énergétique. Puisque la plupart des apports en nutriments sont fortement corrélés à l'apport énergétique, qui peut lui-même être associé au risque de maladie, il est indispensable d'ajuster sur ce facteur pour déterminer l'effet d'un nutriment. Pour le contrôle de l'apport énergétique, la méthode des résidus de Willett a été utilisée, car elle est recommandée pour la mesure des nutriments [261]. L'obésité, qui est associée à l'inflammation [2, 193, 194, 262], n'a pas été utilisée de manière préférentielle dans les analyses, car aux meilleures de nos connaissances, la plupart des sources riches en antioxydants ne sont pas associées à une prise importante de poids.

Les facteurs considérés dans les analyses comme l'âge [9, 263-265], la consommation de tabac [266, 267], la consommation d'alcool [266], l'hormonothérapie [268-272], le statut social [273, 274], l'activité physique [9, 269, 275-277], les maladies associées à l'inflammation [266], la consommation de médicaments anti-inflammatoires non stéroïdiens [9, 278-281] et l'adiposité [265, 275, 282, 283] ont été sélectionnés sur la base de leur association à l'inflammation. Comme indice de l'adiposité, nous avons utilisé le tour de taille parce que cette variable, lorsqu'analysée sous forme de variable continue, était la plus associée aux différents marqueurs de l'inflammation analysés comparativement à l'indice de masse corporelle et au ratio tour de taille/hanche.

Pour nous assurer d'un ajustement optimal du modèle, nous avons également considéré certains facteurs associés surtout au cancer du sein comme le statut ménopausique, l'âge à la ménarche, la parité, la prise de contraceptifs oraux et avoir une parente au premier degré qui a eu un cancer du sein.

Le statut ménopausique c'est-à-dire pré-ménopausé et post-ménopausé, a été déterminé tel que décrit précédemment [284]. Dans notre étude, nous avons utilisé les termes « pré-ménopausé » et « post-ménopausé » car la plupart des études portant sur le cancer du sein utilisent cette appellation. Toutefois, cette terminologie ne suit pas la terminologie qui a été recommandée à la suite du Stages of Reproductive Aging Workshop (STRAW) 2001 au cours duquel des critères pour identifier les différents stades du système reproducteur féminin ont été établis [285].
3.3. **Analyses statistiques**

L’association entre l’exposition à chacun des différents antioxydants d’intérêt consommés et le *quick score* de marquage obtenu pour chaque marqueur inflammatoire pris séparément a été analysée. Étant donné que la distribution des *quick scores* de marquage était fortement asymétrique, le coefficient de corrélation partielle de Spearman ajusté pour les covariables mentionnées à la section précédente qui corrélaient, en analyse univariée, avec au moins un marqueur d’inflammation à une valeur p de moins de 0,10, a été utilisé.

La stratification des résultats selon le statut ménopausique est couramment pratiquée dans les études sur le cancer du sein puisque plusieurs facteurs de risque varient selon ce statut. De plus, le statut ménopausique affecte l’expression de différentes cytokines [69, 242, 244-246, 286]. Ainsi, les résultats ont été stratifiés selon le statut ménopausique sans faire de test d’interaction *a priori*. 
Chapitre 4. Evaluation of antioxidant intakes in relation to inflammatory markers expression within the normal breast tissue of breast cancer patients

Avant propos

Cet article de recherche original a été accepté pour publication dans la revue Integrative Cancer Therapies le 12 septembre 2016. Il est disponible en ligne depuis le 30 novembre 2016. J’estime ma contribution à la rédaction de l’article à 90%. Le 10% restant correspond principalement aux révisions apportées par les autres auteurs : Mirette Hanna, Sue-Ling Chang, Simon Jacob, Bernard Têtu et Caroline Diorio. Mirette Hanna, Simon Jacob, Bernard Têtu et Caroline Diorio ont développé la méthodologie visant à évaluer l’expression de marqueurs inflammatoires dans le tissu mammaire. Mirette Hanna et Caroline Diorio ont effectué la plupart des analyses de tissus. Caroline Diorio a supervisé la collecte des données alimentaires et la conversion des aliments en nutriments.

Résumé de l’article

L’inflammation chronique serait impliquée dans le développement du cancer du sein. Un des mécanismes potentiels est la création d’un stress oxydatif qui favoriserait le processus tumoral. La consommation d’antioxydants pourrait contribuer à réduire l’inflammation dans les tissus. Cependant, peu d’études ont exploré cette relation dans le tissu mammaire. Ce projet avait pour objectif d’évaluer la corrélation entre les apports en antioxydants (vitamine A / rétinol, vitamine C, vitamine E, béta-carotène, alpha-carotène, lycopène, lutéine / zéaxanthine, béta-cryptoxanthine, sélénium et zinc) et l’expression de marqueurs inflammatoires (IL-6, TNF-alpha, CRP, COX-2, leptine, SAA1, STAT3, IL-8, IL-10, lactoferrine et TGF-bêta) mesurés dans le tissu mammaire normal de 160 femmes diagnostiquées d’un cancer du sein. Les données alimentaires ont été obtenues par un questionnaire de fréquence alimentaire auto-administré. L’expression des marqueurs inflammatoires a été évaluée par immunohistochimie. La corrélation entre les apports en antioxydants et l’expression des marqueurs inflammatoires a été analysée par le coefficient de corrélation partielle (r) de Spearman. Après la correction de Bonferroni, une corrélation négative a été observée entre les apports en béta-tocophérol alimentaire et l’expression de l’IL-10 chez toutes les femmes (r = -0.26, p = 0.003) et chez les femmes post-ménopausées (r = -0.39, p = 0.003). Parmi toutes les femmes, les apports en zinc corrélaient négativement avec l’expression de l’IL-10 (r=-0.26). Parmi les femmes post-ménopausées, les apports en sélénium corrélaient négativement avec l’expression de la lactoferrine (r=-0.39) et la corrélation négative entre les apports en béta-tocophérol et l’expression de l’IL-10 demeurait
significative ($r=-0.39$). Aucune association significative n’a été observée chez les femmes pré-ménopausées. Nos résultats suggèrent que les antioxydants, y compris le bêta-tocophérol, le zinc et le sélénium, pourraient agir sur le tissu mammaire par des mécanismes affectant l’expression de certains marqueurs inflammatoires, en particulier chez les femmes post-ménopausées.
Evaluation of antioxidant intakes in relation to inflammatory markers expression within the normal breast tissue of breast cancer patients

Danielle Larouche, PhD1,2,3, Mirette Hanna, PhD1,2,3, Sue-Ling Chang, PhD1,3, Simon Jacob, MD1,2,3,4,5, Bernard Têtu, MD1,2,3,4,5 and Caroline Diorio, PhD1,2,3,5

1Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
2Service de pathologie, Hôpital du Saint-Sacrement, Québec, QC, Canada
3Faculté de médecine de l’Université Laval, Québec, QC, Canada
4Centre des Maladies du Sein Deschêne-Fabia, Hôpital du Saint-Sacrement, Québec, QC, Canada
5Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada

Corresponding Author:

Caroline Diorio, Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 1050 chemin Sainte-Foy, Quebec City, QC, G1S 4L8, Canada.

Email: Caroline.Diorio@crchudequebec.ulaval.ca
4.1. Abstract

Chronic inflammation may be a causative factor in breast cancer. One possible underlying mechanism is the generation of oxidative stress, which may favor tumorigenic processes. Antioxidant consumption may therefore help reduce tissue inflammation levels. However, few studies have explored this relation in breast tissue. We aimed to evaluate correlations between antioxidant (vitamin A/retinol, vitamin C, vitamin E, beta-carotene, alpha-carotene, lycopene, lutein/zeaxanthin, beta-cryptoxanthin, selenium and zinc) intakes and protein expression levels of interleukin (IL)-6, tumor necrosis factor alpha, C-reactive protein, cyclooxygenase 2, leptin, serum amyloid A1, signal transducer and activator of transcription 3, IL-8, IL-10, lactoferrin and transforming growth factor beta measured in the normal breast tissue of 160 women diagnosed with breast cancer. Antioxidant intakes were collected using a self-administered food frequency questionnaire. Inflammation marker expression was assessed by immunohistochemistry. Correlations between antioxidant intakes and inflammatory marker expression were evaluated using Spearman’s partial correlation coefficients (r) for all women and for premenopausal and postmenopausal women separately. After Bonferroni correction, negative correlations were observed between dietary beta-tocopherol and IL-10 expression in all women combined (r=-0.26, p=0.003) and among postmenopausal women (r=-0.39, p=0.003). For all women, negative correlation was found between total zinc intakes and IL-10 (r=-0.26, p=0.002). Among postmenopausal women, dietary selenium intake was negatively correlated with the expression of lactoferrin (r=-0.39, p=0.003). No associations were observed in premenopausal women. Our findings suggest that consumption of specific antioxidants, including beta-tocopherol, zinc and selenium, may act on the breast tissue through mechanisms affecting the expression of some inflammation markers, particularly among postmenopausal women.

4.2. Introduction

Chronic inflammation is being increasingly recognized as an etiologic factor for breast cancer [1-4]. Inflammation within the breast tissue may create a hostile local microenvironment favoring breast epithelial cell transformation, cancer cell proliferation and invasion, and tumor-related angiogenesis [3]. Possible mechanisms by which inflammation can contribute to tumorigenesis include disrupting the normal balance of pro- and anti-inflammatory mediators which can facilitate tumor promotion and progression [2]. Alternatively, inflammation-induced oxidative stress may also drive malignant cell transformation by causing damage to important cellular components (e.g. DNA, proteins and lipids). In turn, these damages can cause inflammation within the tissue because numerous oxidative stress-sensitive transcription factors can mediate inflammatory responses [5]. Antioxidants may help reduce tissue level inflammation through different mechanisms. Some antioxidants such as vitamins A, E and C, lycopene, lutein, and beta-carotene act as reducing agents by restoring redox balance within tissue [2].
Regarding inflammation and breast cancer, experiments have shown that antioxidants like vitamins A, E and C as well as beta-carotenene regulate inflammatory signaling pathways in vitro and in vivo [6, 7]. Retinoic acid and its receptors regulate several important signaling pathways, including inflammatory response pathways such as the nuclear factor NF-κB pathway [6, 8, 9]. Vitamin C has shown the ability to interfere in inflammatory paths by inhibiting the activation of NF-κB [10, 11]. Furthermore, evidence from in vitro and in animal models of breast cancer [7, 12] suggests that vitamin E can also affect these pathways by activating the peroxisome proliferator activated receptor (PPAR)-gamma pathway. PPAR-gamma is able to interfere with NF-κB and to inhibit inflammatory markers such as cyclooxygenase 2 (COX-2) [13, 14]. These mechanisms could link vitamin E and inflammation and explain its benefits against breast cancer. Moreover, micronutrients, such as selenium and zinc, have also been shown to affect the expression of genes coding for many proteins involved in inflammation and immune responses [15, 16]. More importantly, they are essential co-factors for antioxidant enzymes [15].

Although data are somewhat inconsistent, there is some evidence suggesting associations between antioxidant intakes and breast cancer risk which is consistent with the notion that inflammation, and resulting oxidative stresses, may be involved in the carcinogenic process. However, less is known on the link between antioxidants and inflammation among breast cancer patients. Among the few studies that examined the association between antioxidant intakes and circulating levels of inflammatory markers (three observational [17-19] and three experimental [20-22]), intakes of retinol, carotenoids, lycopene, vitamin C or E tended to be negatively associated with C-reactive protein (CRP) [17, 18, 20], IL-1beta [19] or leptin [21] and positively associated with adiponectin [21]. However, since inflammatory marker concentrations were obtained from blood analysis, these may not adequately reflect levels found in the tumor microenvironment (breast tissue). Indeed, studies have shown that circulating levels of inflammatory markers such as leptin, adiponectin and transforming growth factor (TGF)-beta differ from concentrations measured in mammary tissue [23, 24]. Therefore, inflammatory marker levels determined from blood samples may not give the same information as that obtained from in situ measurements in breast tissue. Up to now, a single case-control study has examined the relationship between antioxidants and inflammation in breast tissue. In that study, the concentrations of alpha-tocopherol, retinol and beta-carotene were assessed in the adipose breast tissue adjacent to the tumor from the case group consisting of 25 patients with non-invasive breast cancers [25]. Although a positive correlation between retinol concentration and IL-10 gene expression was observed, the small sample size limits generalization of results.

In this study, our working hypothesis was that antioxidant intakes influence the inflammatory profile of the normal breast tissue, which may contribute to breast cancer development. So, we took advantage of our tissue collection generated for the purposes of a study aiming to characterize breast density and expression
of molecular markers [26] in order to evaluate the relation of general dietary intakes of vitamin A/retinol, vitamin C, vitamin E, beta-carotene, alpha-carotene, lycopene, lutein/zeaxanthin, beta-cryptoxanthin, selenium, and zinc with the protein expression of markers known as pro-inflammatory (IL-6, tumor necrosis factor alpha [TNF-alpha], CRP, COX-2, leptin, and serum amyloid A1 [SAA1], signal transducer and activator of transcription 3 markers [STAT3], and IL-8), and anti-inflammatory (IL-10, lactoferrin, TGF-beta) in the normal breast tissue of breast cancer patients.

4.3. Methods

4.3.1. Study population
This study was reviewed and approved by the Research ethics committee of the Centre de recherche du CHU de Quebec - Université Laval.

Selection of the study population was described elsewhere [26]. Briefly, the study subjects were women who underwent surgery for breast cancer at the Centre des maladies du sein Deschênes-Fabia between January 2011 and May 2012. Women were eligible if they were less than 70 years, were not currently pregnant, had a diagnosis of breast cancer and underwent partial or total mastectomy, received a digital mammogram within the six months prior to their surgery, never had a diagnosis of cancer at any site excluding the actual breast cancer, never had any breast surgery including breast reduction or implants, never taken selective estrogen receptor modulators such as Tamoxifen or Raloxifene, and had not received radiotherapy or chemotherapy prior to breast surgery. All study participants provided written informed consent.

Of the 226 women that met the eligibility criteria, 168 accepted to participate in the study. Of these, 8 were subsequently excluded from the analyses: 4 had a history of prior breast surgery, and 4 did not return the food frequency questionnaire (FFQ). Finally, data for 160 women (81 premenopausal and 79 postmenopausal) were available for this study.

4.3.2. Data collection
Anthropometric data were collected by a trained research nurse. Women were weighed (kg) wearing light clothing without shoes and their height was assessed. Waist circumference was measured using a soft tape midway between the lowest rib margin and the iliac crest in a standing position and hip circumference was measured over the widest area of the gluteal region. These anthropometric measures were used to estimate the body mass index (BMI, weight [kg]/height [m²]) and the waist-to-hip ratio (WHR, waist circumference [cm]/hip circumference [cm]).
A phone interview was conducted by a trained research assistant during the month following the breast surgery. Information collected included age at surgery (years), duration of oral contraceptive use (years), age at menarche (years), age at first pregnancy (years), parity (yes vs. no), number of live births, breast feeding duration (months), first-degree family history of breast cancer (yes vs. no), current use of non-steroidal anti-inflammatory drugs (yes vs. no), duration of hormone replacement therapy (HRT) use (years), educational level (elementary-secondary, college or university degree completed), smoking status (former or current smoker vs. never smoked), alcohol consumption (drinks/week), and some health problems associated with inflammation or metabolic syndrome (rheumatoid arthritis, osteoarthritis, Crohn's disease, asthma, chronic bronchitis, emphysema, high blood cholesterol, stroke, hypertension, angina, heart attack or diabetes) (yes vs. no). Menopausal status (premenopausal vs. postmenopausal) was determined as previously described [26]. Level of physical activity performed within the year preceding the diagnosis, expressed as metabolic equivalent (MET)-h/week [27], was collected using the validated Past Year Total Physical Activity Questionnaire (PYTPAQ). The PYTPAQ has demonstrated a relatively high reliability and validity when compared to accelerometer data [28].

4.3.3. Assessment of dietary intakes

Participants received a self-administered semi-quantitative FFQ and were asked to return it upon completion. Missing data were collected during the phone interview. This questionnaire is a modified version of the National Cancer Institute Diet History Questionnaire (DHQ), which has been validated in American populations in previous studies [29-31], then adapted and validated for the Canadian population (C-DHQ) [32]. The C-DHQ is a 124-item food frequency instrument that collects information on diet and supplement use over the past year, including alcohol intake. A subset of questions ascertains seasonal food intake, food type and addition of fat. Data from the C-DHQ questionnaire were translated to nutrient intake at the Alberta Health Services - Cancer Care [32], providing the daily total energy intake (kcal/day), intakes of vitamin A (international unit [IU]), retinol (µg retinol equivalents [RE] from vitamin A and from carotenes), alpha-carotene (µg), beta-carotene (µg), vitamin C (mg), vitamin E (mg alpha-tocopherol equivalents [ATE]), alpha-tocopherol (mg), beta-tocopherol (mg), delta-tocopherol (mg), gamma-tocopherol (mg), lutein/zeaxanthin (µg), lycopene (µg), and selenium (mg) from diet sources. The total daily intakes for vitamin A, retinol, vitamin C, vitamin E and zinc were estimated by summing the contribution of all food items in the questionnaire and those of supplements used. To evaluate response consistency between the C-DHQ and the questionnaire filled during the phone interview, responses regarding alcohol intake were compared using Spearman rank correlation for reliability. The correlation coefficient was 0.89.
4.3.4. Inflammatory marker evaluation

Removed tissue from surgery was sent to the pathology department at Hôpital Saint-Sacrement du CHU de Québec-Université Laval where it was treated following standard operating procedures under strict quality control and quality assurance guidelines. Hematoxylin and eosin (H&E) stained histological sections were prepared from mastectomy blocks. Two pathologists scrolled slides of each woman to identify tissue having histological characteristics of normal tissue located at more than 1 cm from the tumor [33]. H&E stained slides were used as template to target 6 cylindrical 1-mm-diameter epithelial tissue cores on the corresponding formalin-fixed paraffin-embedded block. We assumed that six cores/woman would be highly representative of the expression in the whole tissue section [34]. Cores were then extracted and randomly arrayed on recipient paraffin blocks using the semi-automated Tissue Puncher (Beecher Instruments® Tissue Microarray Technology, Estigen, Sun Prairie, WI, USA). On each tissue microarray (TMA) block, each participant was represented twice and three breast cancer cell lines (MCF-7, MDA-231, and SKBR-3) were placed in duplicate to serve as internal controls.

To evaluate inflammation in the breast tissue, 11 markers were selected based on: 1) their known involvement in the inflammatory process, 2) their potential involvement in breast tissue inflammation or breast cancer risk, based on the literature, and 3) the commercial availability of validated antibodies. Serial 4-μm thick sections were cut from each TMA block, and the first and last sections of each block were H&E stained for histological evaluation. Immunoperoxidase staining was performed following conventional immunohistochemistry protocols. Briefly, TMA cut sections were deparaffinized in toluene and rehydrated in serial ethanol solutions. For COX-2, SAA1, STAT3, IL-8, TGF-beta, IL-10, and lactoferrin staining, heat induced epitope retrieval was performed using prewarmed citrate buffer (pH 6.0) for 12 min. Slides were incubated in 3% hydrogen peroxide. Sections were then labeled with the following primary antibodies: mouse monoclonal antibody (mAb) raised against IL-6 (Santa Cruz Biotechnology, sc-130326), TNF-alpha (clone 52B83, Santa Cruz Biotechnology, sc-130326), CRP (clone Y284, Epitomics, 1568-1), COX-2 (clone COX229, Invitrogen, 358200), SAA1 (clone 3C11-2C1, Abgent, AT375a), STAT3 (clone EP2147Y, Epitomics, 2236-1), IL-8 (Proteintech Group, 60141-1-Ig), TGF-beta (clone TB21, AbDserotec, MCA797), IL-10 (clone JES3-12G8, AbDserotec, MCA2250), lactoferrin (clone EPR4338, Epitomics, 3271-1), and rabbit polyclonal raised against leptin (Ob (A-20), Santa Cruz Biotechnology, sc-842). Immunoreactivity was detected by 3,3′-diaminobenzidine (DAB) solution. Slides were counterstained with hematoxylin. Finally, TMA stained slides were scanned using the Nanozoomer 2.0 RS (Hamamatsu Photonics, Japan) to generate high resolution images. To ensure quality control, sections were obtained from specifically prepared control TMA blocks, which included normal (tonsils, breast, thymus, colon, and liver), inflammatory (colon) and malignant (breast, colon, liver, lung, ovary, prostate, and kidney) human tissues. Thus, for each
staining run and each antibody, appropriate positive and negative control sections, in which primary antibody was substituted by antibody diluent, were included.

The expression level of each inflammatory marker was visually assessed by one reader blinded to all women information using the semi-quantitative quick score method validated for the estrogen receptor in breast carcinomas [35]. Briefly, tissue sections were classified as positive according to staining intensity (0 = none, 1 = mild, 2 = medium, 3 = high) and the percentage of labeled cells (0: 0%, 1: 1-9%, 2: 10-50%, 3: > 50%). The quick score was obtained by multiplying the two scores. For some women, the quick score could not be determined for all inflammatory markers because the tissue was either damaged, absent, or impossible to interpret in all cores arrayed on the TMA blocks. Each marker was evaluated only in the epithelial component, except for COX-2, which was also evaluated in the stromal component [36]. The reproducibility of the analysis was assessed on 5 randomly selected TMA slides that were re-evaluated by two readers. The intra-observer kappa was 0.75 (95% confidence interval [CI]=0.64-0.86) and the inter-observer kappa was 0.74 (95% CI=0.63-0.84). Furthermore, concordance between the expression of inflammatory markers in TMA cores and a section of the corresponding whole tissue were assessed on ten randomly selected women. We observed a concordance of 81.5% (70-100%) with a kappa of 0.62 (95% CI=0.45-0.78).

4.3.5. Statistical analysis

Antioxidant intakes were natural log transformed and adjusted for total energy using the residual method [37]. Associations were studied in separate models for antioxidant intakes from food only or in combination with supplements (total). For the analysis of dietary antioxidants only, models were adjusted for any antioxidant (vitamin A, retinol, vitamin C, vitamin E, and/or zinc) supplement use (yes/no). Since similar results were obtained using antioxidant-specific supplement use (yes vs. no) or any antioxidant supplement use (yes vs. no), models were adjusted for any antioxidant supplement use.

Given the skewed distribution of quick scores, relationships between inflammatory marker expression and antioxidant intakes were explored using the Spearman rank-based correlation. Partial correlation coefficients were obtained after adjusting for covariates potentially associated with at least one inflammatory marker in univariate analyses (p-value<0.10). Given the strong correlations between waist circumference, BMI and WHR, only waist circumference was included in the models since its correlations with quick scores were stronger in univariate analyses. Considering that menopausal status is a factor affecting the pattern of cytokines [4, 38-42], the correlations were tested in all women combined as well as in pre- and postmenopausal women separately.
All tests were 2-sided and a p-value < 0.05 was considered statistically significant. Since 12 markers (COX-2 was evaluated in both the epithelial and stromal components) were assessed, we further evaluated statistical significance using the conservative Bonferroni p-value (0.05/12=0.004) to control the family wise error rate. All analyses were performed using SAS software (version 9.3, SAS Institute, Inc., Cary, NC).

### 4.4. Results

Characteristics of the 160 women combined and stratified by menopausal status are provided in Table 4-1. Briefly, the overall mean age was 52.5 years (standard deviation [SD]±7.8). Mean ages for premenopausal and postmenopausal women were 46.9 years (SD±5.7) and 58.3 years (SD±4.9), respectively. Compared to postmenopausal women, premenopausal women had lower mean anthropometric measurements and were more physically active. In addition, they were more likely to have breastfed (39.5% vs. 36.7%), have post-secondary education (67.9% vs. 53.2%) and take supplemental antioxidants (33.3% vs. 29.1%). Conversely, postmenopausal women reported greater mean daily dietary intakes of several antioxidants. They were also more likely to have used HRT (57.0% vs. 9.9%), have a first-degree relative with breast cancer (25.3% vs. 16.1%), be a former or current smoker (64.6% vs. 51.9%), use non-steroidal anti-inflammatory drugs (8.7% vs. 3.7%), and have a health inflammatory or metabolic condition (73.4% vs. 33.3%). Total energy intake for all women ranged between 641 and 3686 kcal per day.

### Table 4-1 Characteristics of the study population

<table>
<thead>
<tr>
<th></th>
<th>All (n=160)</th>
<th>Premenopausal (n=81)</th>
<th>Postmenopausal (n=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age at surgery (years)</strong></td>
<td>52.5±7.8</td>
<td>46.9±5.7</td>
<td>58.3±4.9</td>
</tr>
<tr>
<td><strong>Age at first pregnancy (years)</strong></td>
<td>25.8±4.1</td>
<td>26.1±4.4</td>
<td>25.6±3.8</td>
</tr>
<tr>
<td><strong>Age at menarche (years)</strong></td>
<td>12.6±1.5</td>
<td>12.4±1.3</td>
<td>12.8±1.7</td>
</tr>
<tr>
<td><strong>Body mass index (kg/m²)</strong></td>
<td>27.1±5.7</td>
<td>26.4±5.8</td>
<td>27.7±5.6</td>
</tr>
<tr>
<td><strong>Waist circumference (cm)</strong></td>
<td>86.9±12.8</td>
<td>83.8±12.3</td>
<td>90.1±12.6</td>
</tr>
<tr>
<td><strong>Waist-to-hip ratio</strong></td>
<td>0.81±0.06</td>
<td>0.80±0.06</td>
<td>0.83±0.05</td>
</tr>
<tr>
<td><strong>Alcohol intake (drinks/week)</strong></td>
<td>4.4±4.6</td>
<td>4.6±4.3</td>
<td>4.1±5.0</td>
</tr>
<tr>
<td><strong>Physical activity (METs/h/week)</strong></td>
<td>117±50</td>
<td>136±47</td>
<td>98±45</td>
</tr>
<tr>
<td><strong>Total daily energy intake (kcal)</strong></td>
<td>1696±594</td>
<td>1701±588</td>
<td>1691±604</td>
</tr>
<tr>
<td><strong>Vitamin daily intakes from food</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vitamin A (IU)</strong></td>
<td>12611±9208</td>
<td>11492±8108</td>
<td>13758±10138</td>
</tr>
<tr>
<td><strong>Total retinol (µg RE)</strong></td>
<td>2648±1860</td>
<td>2440±1659</td>
<td>2861±2034</td>
</tr>
<tr>
<td><strong>Vitamin C (mg)</strong></td>
<td>147±92</td>
<td>137±84</td>
<td>158±98</td>
</tr>
<tr>
<td><strong>Vitamin E (mg ATE)</strong></td>
<td>9.0±4.0</td>
<td>9.0±4.1</td>
<td>9.0±3.9</td>
</tr>
<tr>
<td><strong>Alpha-tocopherol (mg)</strong></td>
<td>8.4±3.7</td>
<td>8.4±3.9</td>
<td>8.3±3.6</td>
</tr>
<tr>
<td><strong>Beta-tocopherol (mg)</strong></td>
<td>0.26±0.13</td>
<td>0.26±0.14</td>
<td>0.27±0.14</td>
</tr>
<tr>
<td><strong>Delta-tocopherol (mg)</strong></td>
<td>1.8±1.0</td>
<td>1.7±0.9</td>
<td>2.0±1.1</td>
</tr>
<tr>
<td><strong>Gamma-tocopherol (mg)</strong></td>
<td>11.3±5.2</td>
<td>11.3±5.4</td>
<td>11.2±4.9</td>
</tr>
<tr>
<td><strong>Alpha-carotene (µg)</strong></td>
<td>1020±901</td>
<td>895±774</td>
<td>1148±1003</td>
</tr>
<tr>
<td><strong>Beta-carotene (µg)</strong></td>
<td>5606±4782</td>
<td>5065±4036</td>
<td>6161±5411</td>
</tr>
<tr>
<td><strong>Beta-cryptoxanthin (µg)</strong></td>
<td>196±157</td>
<td>180±140</td>
<td>212±173</td>
</tr>
<tr>
<td><strong>Lutein + Zeaxanthin (µg)</strong></td>
<td>4592±5275</td>
<td>4474±4254</td>
<td>4712±6175</td>
</tr>
</tbody>
</table>
Associations between antioxidant intakes and inflammatory markers in the whole population are shown in Table 4-2. Dietary intakes of beta-tocopherol as well as total zinc intakes from food and supplements negatively correlated with IL-10 expression. These results remained significant after adjusting for multiple comparisons ($r=-0.26$, $p=0.003$ and $r=-0.26$, $p=0.002$, respectively). A few borderline correlations were found with a 0.05 significance level. Positive correlations were observed between intakes of vitamin A or retinol derived from food or from food plus supplement sources, and the stromal expression of COX-2 (all $r\geq0.17$, $p<0.05$). Dietary delta-tocopherol intakes negatively correlated with the stromal expression of COX-2 ($r=-0.18$, $p=0.03$), while dietary zinc intakes positively correlated with the epithelial expression of COX-2.
Lastly, total vitamin E (food and supplements) negatively correlated with IL-10 expression (r=-0.23, p=0.01).

Table 4-3 shows the associations between antioxidant intakes and inflammatory markers among premenopausal women. Some significant correlations (p<0.05) were found but none remained significant after Bonferroni correction (p<0.004). Notably, total intakes of retinol inversely correlated with IL-10 expression (r=-0.26, p=0.04). Also, higher intakes of dietary lycopene correlated with higher expression of TGF-beta (r=0.27, p=0.03). Vitamin C from food and total vitamin C from food plus supplements, and dietary zinc positively correlated with TNF-alpha expression (p=0.04, for all). Zinc intakes from food only were positively correlated with CRP (r=0.25, p=0.05), while total zinc positively correlated with CRP (r=0.29, p=0.02), and negatively correlated with STAT3 (r=-0.29, p=0.02) and IL-10 (r=-0.33, p=0.01). Finally, we observed that higher amounts of dietary selenium were correlated with lower expression of SAA1 (r=-0.27, p=0.03).

Associations between antioxidant intakes and inflammatory markers among postmenopausal women are shown in Table 4-4. Compared to premenopausal women, two correlations were significant at the Bonferroni significance level (p<0.004) among postmenopausal women. Dietary intakes of beta-tocopherol negatively correlated with IL-10 expression (r=-0.39, p=0.003) and higher amounts of dietary selenium correlated with lower expression of lactoferrin (r=-0.39, p=0.003).

Positive correlations with a 0.05 significance level included: total vitamin A, retinol from food, or total retinol intakes and COX-2 in stroma, lycopene intake and TNF-alpha, and total vitamin C and lactoferrin. Negative correlations significant at p<0.05 were also observed for total retinol and TNA-alpha, dietary zinc and CRP, delta-tocopherol and COX-2 in stroma, and beta-tocopherol intakes and TGF-beta.

Among all women combined or women stratified by menopausal status, no association was observed between dietary alpha-carotene, dietary beta-carotene, dietary vitamin E, dietary alpha-tocopherol, dietary gamma-tocopherol, dietary beta-cryptoxanthin, dietary lutein/zeaxanthin intakes and any of the assessed inflammatory markers. Similarly, no antioxidants correlated with expression of IL-6, IL-8 or leptin within the breast tissue (data not shown).
Table 4-2 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast tissue among all the study population

<table>
<thead>
<tr>
<th></th>
<th>TNF-alpha</th>
<th>CRP</th>
<th>COX-2e</th>
<th>COX-2s</th>
<th>SAA1</th>
<th>STAT3</th>
<th>IL-10</th>
<th>Lactoferrin</th>
<th>TGF-beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=156</td>
<td>n=157</td>
<td>n=156</td>
<td>n=157</td>
<td>n=152</td>
<td>n=156</td>
<td>n=149</td>
<td>n=153</td>
<td>n=157</td>
</tr>
<tr>
<td>Dietary vitamin A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.06(0.45)</td>
<td>-0.05(0.54)</td>
<td>0.01(0.94)</td>
<td>0.17(0.04)</td>
<td>0.01(0.88)</td>
<td>-0.06(0.46)</td>
<td>-0.08(0.35)</td>
<td>-0.07(0.43)</td>
<td>-0.10(0.23)</td>
</tr>
<tr>
<td>Total vitamin A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.06 (0.46)</td>
<td>-0.02(0.83)</td>
<td>0.004(0.96)</td>
<td>0.18(0.04)</td>
<td>0.01(0.92)</td>
<td>-0.07(0.40)</td>
<td>-0.14(0.10)</td>
<td>-0.08(0.33)</td>
<td>-0.10(0.22)</td>
</tr>
<tr>
<td>Dietary retinol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.07(0.43)</td>
<td>-0.05(0.53)</td>
<td>0.005(0.95)</td>
<td>0.18(0.03)</td>
<td>-0.005(0.96)</td>
<td>-0.06(0.46)</td>
<td>-0.08(0.35)</td>
<td>-0.069(0.46)</td>
<td>-0.09(0.29)</td>
</tr>
<tr>
<td>Total retinol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.07(0.44)</td>
<td>-0.01(0.87)</td>
<td>0.002(0.98)</td>
<td>0.17(0.04)</td>
<td>-0.01(0.94)</td>
<td>-0.07(0.40)</td>
<td>-0.17(0.05)</td>
<td>-0.07(0.39)</td>
<td>-0.09(0.27)</td>
</tr>
<tr>
<td>Dietary lycopene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05(0.55)</td>
<td>0.0003(1.00)</td>
<td>0.08(0.36)</td>
<td>0.12(0.17)</td>
<td>0.03(0.69)</td>
<td>-0.05(0.54)</td>
<td>-0.01(0.92)</td>
<td>0.02(0.83)</td>
<td>0.08(0.38)</td>
</tr>
<tr>
<td>Dietary vitamin C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09(0.30)</td>
<td>-0.02(0.84)</td>
<td>0.09(0.31)</td>
<td>0.09(0.29)</td>
<td>0.02(0.80)</td>
<td>0.03(0.71)</td>
<td>-0.003(0.98)</td>
<td>-0.02(0.78)</td>
<td>0.02(0.82)</td>
</tr>
<tr>
<td>Total vitamin C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06(0.47)</td>
<td>0.04(0.65)</td>
<td>0.15(0.08)</td>
<td>0.03(0.68)</td>
<td>0.03(0.69)</td>
<td>0.06(0.47)</td>
<td>-0.03(0.77)</td>
<td>0.11(0.21)</td>
<td>0.10(0.23)</td>
</tr>
<tr>
<td>Dietary zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.08(0.34)</td>
<td>0.05(0.52)</td>
<td>-0.03(0.71)</td>
<td>-0.05(0.56)</td>
<td>-0.01(0.93)</td>
<td>-0.02(0.98)</td>
<td>-0.23(0.01)</td>
<td>-0.004(0.96)</td>
<td>-0.01(0.90)</td>
</tr>
<tr>
<td>Dietary beta-tocopherol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02(0.80)</td>
<td>-0.10(0.22)</td>
<td>0.05(0.53)</td>
<td>0.01(0.88)</td>
<td>0.10(0.27)</td>
<td>0.06(0.47)</td>
<td>-0.26(0.003)</td>
<td>0.03(0.69)</td>
<td>-0.12(0.15)</td>
</tr>
<tr>
<td>Dietary delta-tocopherol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.06(0.46)</td>
<td>-0.09(0.29)</td>
<td>-0.11(0.18)</td>
<td>-0.18(0.03)</td>
<td>-0.01(0.87)</td>
<td>-0.04(0.64)</td>
<td>-0.03(0.74)</td>
<td>0.01(0.87)</td>
<td>-0.07(0.39)</td>
</tr>
<tr>
<td>Dietary zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05(0.57)</td>
<td>-0.03(0.71)</td>
<td>0.19(0.02)</td>
<td>-0.06(0.50)</td>
<td>-0.06(0.46)</td>
<td>0.01(0.89)</td>
<td>-0.10(0.26)</td>
<td>0.005(0.95)</td>
<td>-0.07(0.40)</td>
</tr>
<tr>
<td>Total zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03(0.75)</td>
<td>0.05(0.53)</td>
<td>0.08(0.33)</td>
<td>-0.10(0.24)</td>
<td>-0.06(0.50)</td>
<td>-0.09(0.27)</td>
<td>-0.26(0.002)</td>
<td>-0.11(0.21)</td>
<td>0.11(0.19)</td>
</tr>
<tr>
<td>Dietary selenium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.01(0.93)</td>
<td>-0.12(0.16)</td>
<td>0.08(0.34)</td>
<td>-0.01(0.95)</td>
<td>-0.05(0.59)</td>
<td>-0.11(0.19)</td>
<td>-0.001(0.99)</td>
<td>-0.12(0.18)</td>
<td>-0.11(0.21)</td>
</tr>
</tbody>
</table>

1Correlations adjusted for: total daily energy intake (kcal), age (years), menopausal status (premenopausal/postmenopausal), waist circumference (cm), duration of oral contraceptive use (years), duration of breastfeeding (months), duration of hormone replacement therapy use (years), smoking status (former or current/never), health problem associated with inflammation or metabolic syndrome (yes/no), alcohol intake (drinks/week), physical activity (metabolic equivalents of task per week), age at menarche (years), parity, age at first pregnancy (years)

2Correlation was further adjusted for antioxidant supplement use (yes/no)

3International unit of vitamin A

4From food plus supplements

5Retinol equivalent from vitamin A and beta-carotene

6Alpha-tocopherol equivalent

R, Spearman’s coefficient; TNF-alpha, tumor necrosis factor-alpha; CRP, C-reactive protein; COX-2e, cyclooxygenase 2 in epithelium; COX-2s, cyclooxygenase 2 in stroma; SAA1, serum amyloid A1; STAT3, signal transducer and activator of transcription 3; IL-10, interleukin 10; TGF-beta, transforming growth factor-beta
### Table 4-3 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast tissue among premenopausal women

<table>
<thead>
<tr>
<th></th>
<th>TNF-alpha</th>
<th>CRP</th>
<th>COX-2e</th>
<th>COX-2s</th>
<th>SAA1</th>
<th>STAT3</th>
<th>IL-10</th>
<th>Lactoferrin</th>
<th>TGF-beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
<td>n=79</td>
</tr>
<tr>
<td>Dietary vitamin A$^{2,3}$</td>
<td>0.18(0.14)</td>
<td>0.12(0.34)</td>
<td>-0.04(0.75)</td>
<td>0.11(0.37)</td>
<td>0.05(0.70)</td>
<td>0.03(0.83)</td>
<td>-0.17(0.19)</td>
<td>-0.08(0.51)</td>
<td>-0.20(0.11)</td>
</tr>
<tr>
<td>Total vitamin A$^3$</td>
<td>0.20(0.10)</td>
<td>0.14(0.26)</td>
<td>-0.03(0.79)</td>
<td>0.12(0.34)</td>
<td>0.04(0.73)</td>
<td>0.03(0.79)</td>
<td>-0.23(0.07)</td>
<td>-0.09(0.48)</td>
<td>-0.24(0.06)</td>
</tr>
<tr>
<td>Dietary retinol$^{2,5}$</td>
<td>0.17(0.17)</td>
<td>0.13(0.32)</td>
<td>-0.04(0.77)</td>
<td>0.11(0.38)</td>
<td>0.02(0.85)</td>
<td>0.02(0.85)</td>
<td>-0.17(0.17)</td>
<td>-0.08(0.52)</td>
<td>-0.19(0.14)</td>
</tr>
<tr>
<td>Total retinol$^5$</td>
<td>0.20(0.10)</td>
<td>0.15(0.22)</td>
<td>-0.04(0.73)</td>
<td>0.12(0.34)</td>
<td>0.02(0.87)</td>
<td>0.02(0.89)</td>
<td>-0.26(0.04)</td>
<td>-0.09(0.48)</td>
<td>-0.22(0.07)</td>
</tr>
<tr>
<td>Dietary lycopene$^2$</td>
<td>-0.05(0.70)</td>
<td>-0.14(0.26)</td>
<td>0.11(0.36)</td>
<td>0.22(0.08)</td>
<td>-0.01(0.92)</td>
<td>0.02(0.90)</td>
<td>-0.05(0.69)</td>
<td>-0.20(0.12)</td>
<td>0.27(0.03)</td>
</tr>
<tr>
<td>Dietary vitamin C$^2$</td>
<td>0.26(0.04)</td>
<td>0.06(0.66)</td>
<td>0.16(0.21)</td>
<td>-0.03(0.83)</td>
<td>-0.01(0.91)</td>
<td>-0.02(0.87)</td>
<td>-0.04(0.74)</td>
<td>-0.19(0.13)</td>
<td>-0.05(0.70)</td>
</tr>
<tr>
<td>Total vitamin C$^4$</td>
<td>0.25(0.04)</td>
<td>0.15(0.22)</td>
<td>0.14(0.27)</td>
<td>0.14(0.27)</td>
<td>-0.03(0.79)</td>
<td>-0.05(0.67)</td>
<td>-0.09(0.46)</td>
<td>-0.20(0.12)</td>
<td>0.08(0.52)</td>
</tr>
<tr>
<td>Total vitamin E$^6$</td>
<td>-0.05(0.71)</td>
<td>0.12(0.34)</td>
<td>-0.08(0.52)</td>
<td>-0.13(0.31)</td>
<td>-0.04(0.78)</td>
<td>0.11(0.40)</td>
<td>-0.20(0.11)</td>
<td>-0.10(0.42)</td>
<td>0.07(0.59)</td>
</tr>
<tr>
<td>Dietary beta-tocopherol$^2$</td>
<td>0.10(0.43)</td>
<td>-0.17(0.16)</td>
<td>0.07(0.56)</td>
<td>0.07(0.60)</td>
<td>0.05(0.67)</td>
<td>0.10(0.43)</td>
<td>-0.16(0.21)</td>
<td>-0.03(0.80)</td>
<td>-0.05(0.69)</td>
</tr>
<tr>
<td>Dietary delta-tocopherol$^2$</td>
<td>-0.02(0.90)</td>
<td>-0.03(0.79)</td>
<td>-0.17(0.18)</td>
<td>-0.09(0.50)</td>
<td>-0.14(0.28)</td>
<td>0.14(0.27)</td>
<td>0.08(0.55)</td>
<td>0.002(1.00)</td>
<td>-0.05(0.69)</td>
</tr>
<tr>
<td>Dietary zinc$^2$</td>
<td>0.25(0.04)</td>
<td>0.25(0.05)</td>
<td>0.16(0.21)</td>
<td>0.14(0.27)</td>
<td>-0.18(0.14)</td>
<td>-0.13(0.31)</td>
<td>-0.07(0.58)</td>
<td>0.02(0.88)</td>
<td>-0.09(0.45)</td>
</tr>
<tr>
<td>Total zinc$^2$</td>
<td>0.19(0.13)</td>
<td>0.29(0.02)</td>
<td>-0.06(0.61)</td>
<td>0.06(0.65)</td>
<td>-0.07(0.56)</td>
<td>-0.29(0.02)</td>
<td>-0.33(0.01)</td>
<td>-0.18(0.15)</td>
<td>0.09(0.47)</td>
</tr>
<tr>
<td>Dietary selenium$^2$</td>
<td>0.07(0.57)</td>
<td>0.03(0.84)</td>
<td>0.02(0.86)</td>
<td>0.14(0.25)</td>
<td>-0.27(0.03)</td>
<td>-0.16(0.20)</td>
<td>0.03(0.81)</td>
<td>-0.14(0.26)</td>
<td>-0.18(0.14)</td>
</tr>
</tbody>
</table>

Notes:

1. Correlations adjusted for: Total daily energy intake (kcal), age (years), waist circumference (cm), duration of oral contraceptive use (years), duration of breastfeeding (months), duration of HRT, smoking status (former or current), health problem associated with inflammation or metabolic syndrome (yes/no), alcohol consumption (drinks/week), physical activity (metabolic equivalents of task per week), age at menarche (years), parity, age at first pregnancy (years, among parous women).

2. Correlation was further adjusted for antioxidant supplement use (yes/no).

3. International unit of vitamin A.

4. From food plus supplements.

5. Retinol equivalent from vitamin A and beta-carotene.

6. Alpha-tocopherol equivalent.

R, Spearman’s R; TNF-alpha, tumor necrosis factor-alpha; CRP, C-reactive protein; COX-2e, cyclooxygenase 2 in epithelium; COX-2s, cyclooxygenase 2 in stroma; SAA1, serum amyloid A1; STAT3, signal transducer and activator of transcription 3; IL-8, interleukin 8, IL-10, interleukin 10; TGF-beta, transforming growth factor-beta.
Table 4-4 Correlations between antioxidant intakes and expression of inflammatory markers in normal breast tissue among postmenopausal women

<table>
<thead>
<tr>
<th></th>
<th>TNF-alpha</th>
<th>CRP</th>
<th>COX-2e</th>
<th>COX-2s</th>
<th>SAA1</th>
<th>STAT3</th>
<th>IL-10</th>
<th>Lactoferrin</th>
<th>TGF-beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=77</td>
<td>n=78</td>
<td>n=77</td>
<td>n=78</td>
<td>n=73</td>
<td>n=77</td>
<td>n=72</td>
<td>n=74</td>
<td>n=78</td>
</tr>
<tr>
<td>Dietary vitamin A$^{2,3}$</td>
<td>-0.23(0.07)</td>
<td>-0.14(0.26)</td>
<td>0.01(0.96)</td>
<td>0.23(0.07)</td>
<td>-0.004(0.97)</td>
<td>-0.10(0.42)</td>
<td>-0.10(0.48)</td>
<td>-0.09(0.52)</td>
<td>0.05(0.69)</td>
</tr>
<tr>
<td>Total$^4$ vitamin A$^3$</td>
<td>-0.24(0.06)</td>
<td>-0.11(0.39)</td>
<td>-0.001(0.99)</td>
<td>0.27(0.03)</td>
<td>0.02(0.90)</td>
<td>-0.11(0.40)</td>
<td>-0.12(0.39)</td>
<td>-0.11(0.39)</td>
<td>0.04(0.78)</td>
</tr>
<tr>
<td>Dietary retinol$^{2,5}$</td>
<td>-0.23(0.07)</td>
<td>-0.15(0.25)</td>
<td>-0.001(1.00)</td>
<td>0.25(0.05)</td>
<td>-0.01(0.92)</td>
<td>-0.10(0.44)</td>
<td>-0.09(0.49)</td>
<td>-0.07(0.58)</td>
<td>0.06(0.62)</td>
</tr>
<tr>
<td>Total$^4$ retinol$^6$</td>
<td>-0.26(0.04)</td>
<td>-0.11(0.38)</td>
<td>-0.01(0.95)</td>
<td>0.28(0.02)</td>
<td>0.01(0.95)</td>
<td>-0.10(0.45)</td>
<td>-0.14(0.30)</td>
<td>-0.09(0.48)</td>
<td>0.04(0.74)</td>
</tr>
<tr>
<td>Dietary lycopene$^2$</td>
<td>0.26(0.04)</td>
<td>0.18(0.17)</td>
<td>0.08(0.55)</td>
<td>0.05(0.68)</td>
<td>0.06(0.66)</td>
<td>-0.12(0.37)</td>
<td>0.05(0.72)</td>
<td>0.22(0.09)</td>
<td>-0.06(0.63)</td>
</tr>
<tr>
<td>Dietary vitamin C$^3$</td>
<td>-0.04(0.75)</td>
<td>-0.02(0.89)</td>
<td>0.05(0.68)</td>
<td>0.13(0.31)</td>
<td>-0.04(0.77)</td>
<td>-0.0005(1.00)</td>
<td>0.06(0.63)</td>
<td>0.10(0.47)</td>
<td>0.17(0.19)</td>
</tr>
<tr>
<td>Total$^4$ vitamin C</td>
<td>-0.12(0.34)</td>
<td>-0.04(0.77)</td>
<td>0.15(0.25)</td>
<td>0.10(0.45)</td>
<td>0.01(0.91)</td>
<td>0.10(0.43)</td>
<td>-0.01(0.93)</td>
<td>0.29(0.03)</td>
<td>0.15(0.24)</td>
</tr>
<tr>
<td>Total$^4$ vitamin E$^6$</td>
<td>-0.11(0.40)</td>
<td>0.03(0.82)</td>
<td>0.03(0.79)</td>
<td>0.06(0.65)</td>
<td>-0.03(0.84)</td>
<td>-0.10(0.42)</td>
<td>-0.24(0.07)</td>
<td>0.01(0.97)</td>
<td>-0.09(0.50)</td>
</tr>
<tr>
<td>Dietary beta-tocopherol$^2$</td>
<td>-0.04(0.76)</td>
<td>-0.10(0.43)</td>
<td>0.05(0.68)</td>
<td>-0.002(0.99)</td>
<td>0.12(0.39)</td>
<td>0.01(0.94)</td>
<td>-0.39(0.003)</td>
<td>-0.10(0.47)</td>
<td>-0.27(0.04)</td>
</tr>
<tr>
<td>Dietary delta-tocopherol$^2$</td>
<td>-0.04(0.76)</td>
<td>-0.13(0.32)</td>
<td>0.07(0.57)</td>
<td>-0.26(0.04)</td>
<td>0.09(0.52)</td>
<td>-0.17(0.18)</td>
<td>-0.19(0.16)</td>
<td>-0.08(0.57)</td>
<td>-0.13(0.32)</td>
</tr>
<tr>
<td>Dietary zinc$^2$</td>
<td>-0.04(0.75)</td>
<td>-0.30(0.02)</td>
<td>0.24(0.07)</td>
<td>-0.12(0.37)</td>
<td>0.03(0.84)</td>
<td>0.14(0.28)</td>
<td>-0.15(0.28)</td>
<td>-0.21(0.11)</td>
<td>0.02(0.91)</td>
</tr>
<tr>
<td>Total$^4$ zinc</td>
<td>-0.15(0.26)</td>
<td>-0.22(0.08)</td>
<td>0.19(0.14)</td>
<td>-0.18(0.16)</td>
<td>-0.09(0.52)</td>
<td>0.04(0.77)</td>
<td>-0.19(0.15)</td>
<td>-0.18(0.17)</td>
<td>0.16(0.22)</td>
</tr>
<tr>
<td>Dietary selenium$^2$</td>
<td>0.02(0.85)</td>
<td>-0.23(0.07)</td>
<td>0.20(0.13)</td>
<td>-0.18(0.17)</td>
<td>0.12(0.36)</td>
<td>-0.12(0.37)</td>
<td>-0.10(0.48)</td>
<td>-0.39(0.003)</td>
<td>-0.06(0.66)</td>
</tr>
</tbody>
</table>

1Correlations adjusted for: Total daily energy intake (kcal), age (years), waist circumference (cm), duration of oral contraceptive use (years), duration of breastfeeding (months), duration of HRT, smoking status (former or current), health problem associated with inflammation or metabolic syndrome (yes/no), alcohol consumption (drinks/week), physical activity (metabolic equivalents of task per week), age at menarche (years), parity, age at first pregnancy (years, among parous women)

2Correlation was further adjusted for antioxidant supplement use (yes/no)

3International unit of vitamin A

4From food plus supplements

5Retinol equivalent from vitamin A and beta-carotene

6Alpha-tocopherol equivalent

R, Spearman’s R; TNF-alpha, tumor necrosis factor-alpha; CRP, C-reactive protein; COX-2e, cyclooxygenase 2 in epithelium; COX-2s, cyclooxygenase 2 in stroma; SAA1, serum amyloid A1; STAT3, signal transducer and activator of transcription 3; IL-8, interleukin 8, IL-10, interleukin 10; TGF-beta, transforming growth factor-beta
4.5. Discussion

In this study, we found that dietary beta-tocopherol intakes negatively correlated with the expression of IL-10 in the whole study population and among postmenopausal women. Furthermore, total zinc derived from food and supplements also negatively correlated with this marker in the whole population. These results remained significant even after applying a much more conservative significance level to account for multiple comparisons. Our findings support the idea that some antioxidant intakes whether derived from the diet alone or in combination with supplements are associated with the expression of certain inflammatory markers. Furthermore, results suggest that these relationships may be limited to postmenopausal women. To our knowledge, this is the first study to evaluate the intake of various antioxidants in relation to the protein expression of numerous inflammatory markers within the normal breast tissue of women with breast cancer.

No study has reported negative correlations with intakes of beta-tocopherol or total zinc and IL-10 expression in blood or tissues. Here, we observed that higher intakes of beta-tocopherol and total zinc were associated with lower IL-10 expression levels in the breast tissue. This observation is quite surprising because IL-10 is known primarily as an anti-inflammatory cytokine that inhibits pro-inflammatory cytokine production [43]. Like several other cytokines, IL-10 can exert both dual proliferative and inhibitory effects on breast tumor cells [43]. These paradoxical effects suggest a much more intricate role for IL-10 in breast cancer initiation and progression [43]. The dual role proposed here, however, is specific to cancer tissue, which is not evaluated in this study. Regarding normal breast tissue, a case-control study showed that expression of cytokine IL-10, in the adipose tissue adjacent to the breast tumor, was higher in breast cancer cases compared to controls [25]. Therefore, the low IL-10 expression that we observed in the normal mammary tissue of women with high intakes of beta-tocopherol and zinc is compatible with this lower breast cancer risk. In our study population, we observed that globally, the expression level of IL-10 in breast tissue was higher in postmenopausal than in premenopausal which agrees with studies reporting an increase in IL-10 levels in the blood after menopause indicating that hormonal status could influence IL-10 expression [44, 45]. The biology underpinning a possible association between higher intakes of the specific beta-tocopherol isoform and lower IL-10 expression in histologically normal breast tissue is unclear and controlled experiments must be conducted to confirm a causal relationship. Regarding zinc, ex vivo studies have shown that zinc treatment decreases the generation of IL-10 in mononuclear cells [46, 47]. Further studies are required to confirm a similar effect in mammary epithelial cells.

We also observed that higher amounts of selenium were correlated with lower expression of lactoferrin but only among postmenopausal women. Selenium is commonly referred to as an antioxidant because it is required for the activity of selenoproteins, such as glutathione peroxidase, that play an important role in
biological processes such as adaptive and innate immune responses, and antioxidant defense [48, 49]. Lactoferrin is a natural forming iron-binding glycoprotein with antibacterial, antioxidant and anti-carcinogenic effects [50-53]. It is possible that if oxidative stress is well controlled by fully active selenoproteins, the contribution of lactoferrin in the regulation of oxidative stress is not required. In line with this idea, it is known that measures of iron stores increase from premenopause to postmenopause [54] and it has been reported that high level of iron may have negative effects on selenium level in breast-fed infants [55]. Therefore, high intakes of selenium in postmenopausal women could help maintain high levels of glutathione peroxidase activity, which in turn could help keep a balance between the oxidant/antioxidant systems within the breast tissue. However, this hypothesis must be further explored. For example, the correlation between selenium intakes and the level of oxidative stress in the breast tissue could be measured or carried out in a controlled experiment in animals.

The fact that higher vitamin A and retinol intakes tended to correlate with COX-2 expression in mammary stromal cells in postmenopausal women is interesting. Indeed, cis-retinoid acid was found to activate transcription of the COX-2 gene in a cell culture model [56] suggesting that retinoids could exert their effects in breast tissue through the activation of retinoic acid receptors (RAR). However, other regulatory mechanisms likely interact to modulate the expression of COX-2 in mammary stromal cells and could explain the different correlations observed for premenopausal and postmenopausal women.

Our study has several strengths. The measurement of vitamin A, vitamin C, vitamin E, zinc and selenium mean daily intakes from dietary sources were consistent with the global daily mean intake calculated by Shivappa and colleagues from a world composite database [57]. Furthermore, studying the protein expression of several inflammatory markers in situ has the advantage of indicating local mechanisms by which the antioxidant is more likely to act on in the breast tissue. Unlike previous studies that have measured these markers in the blood [17-22], our assessments may better reflect the local breast microenvironment since measures are directly obtained from the breast source. However, with these types of analyses, the risk of statistical multiplicity increases, which increases the likelihood of rare events. Given that our key findings remained statistically significant following Bonferroni correction suggests that our results are less likely due to chance.

This study has some limitations that must be considered when interpreting the results. The cross-sectional design used in the study and the use of correlation coefficients precludes making causal inferences. However, reverse causation is unlikely because inflammation in the breast tissue should not influence dietary habits. Seventy-four percent of the approached women accepted to participate in this study. This is a good participation rate considering that patients were recently diagnosed. We believe that selection bias is unlikely
because there is no a priori knowledge explaining that refusal to participate could be linked to dietary habits or breast tissue inflammation. Nonetheless, the prevalence of breast cancer risk factors in the study population may have been higher than the general population, thus limiting generalization of results. However, many characteristics of our sample, such as age, smoking status, BMI, total daily energy intake, were similar to those reported in a previous study on a group of healthy women of the Quebec region [58], which reduces concerns about external validity.

Furthermore, although the analyses were performed on morphologically normal breast tissue, as determined by two experienced pathologists, the fact that normal tissue specimens were located near a breast cancer can raise concerns about field effects occurring in the tumor microenvironment. However, histological characteristics, gene expression profile and expression of estrogen and progesterone receptors in biopsies taken near a breast tumor have been found to be similar to normal breast tissue (e.g., tissue from breast reduction) [33, 59]. Moreover, to address this issue, we assessed the expression of four inflammatory markers (CRP, COX-2, leptin and SAA1) across both breasts of seven women having had bilateral mastectomy for breast cancer in one breast and prophylactic mastectomy or benign breast lesion in the other breast. We observed an excellent concordance of 82% (71%-100%) for the bilateral expression of inflammatory markers. Immunohistochemical analysis performed on tissue microarrays could also potentially introduce information bias since the expression levels of inflammatory markers are not always homogeneously expressed within a tissue. However, since a high concordance was observed between quick scores obtained from TMA cores and those of the corresponding whole tissue section, the risk of misclassification is minimal.

Misclassification may also have occurred with respect to the accuracy of determining antioxidant intakes from supplement sources. To ascertain antioxidant intakes from multivitamins, the Canadian diet history questionnaire (C-DHQ) was translated based on the formulation of most common multivitamin brands, such as regular Centrum and One-A-Day, but it does not discriminate between different formulations of multivitamins that target most specific populations. Notably, no selenium supplement intake was measured despite the fact that selenium is included in many formulations of multivitamins. This information bias may have mitigated our correlations between total antioxidant intakes and expression of inflammatory markers in the breast tissue. Another important limitation inherent to the C-DHQ is the fact that it assesses dietary habits over the past year. This type of instrument is subject to recall bias because it appeals to the memory. However, in our sample, all women who completed the C-DHQ were in a comparable situation, and recovering from breast surgery for a recently diagnosed breast cancer. Therefore, their concerns about their diet should have been similar. Filling out a food frequency questionnaire also has the disadvantage of requiring the ability to properly conceptualize food. The accuracy of the measure depends on the list of items included in the questionnaire and some answers can be influenced by social desirability. Although the C-DHQ used in this study was validated for the
Canadian population [32], all these aforementioned factors could have potentially contributed to reducing the precision of antioxidant measurements and may have reduced the strength of the correlations found.

It is important to note that our sample size was small which restricted the number of variables included in the models to those potentially associated with at least one inflammatory marker in univariate analyses when the p-value was below 0.10. Although several variables associated with breast cancer risk and inflammation were included in the final models, residual confounding may still have occurred. Moreover, if variables were related to others not included in the analyses observed correlations could be misleading. Study size may also have contributed to insignificant results. For instance, we observed that correlations between antioxidant intakes and inflammatory marker expression in breast tissue differed according to menopausal status. However, stratified analyses may have been underpowered to detect significant associations.

4.6. Conclusions

In conclusion, this study presents an overall view of possible relations that could bind general antioxidant intake habits and the expression of various inflammatory markers within the breast tissue. Thus, potential links could exist between beta-tocopherol or zinc intakes and expression of IL-10 and between selenium intakes and lactoferrin expression, particularly among postmenopausal women. These results suggest that antioxidant compounds may exert biological effects on breast tissue by mechanisms affecting the expression of inflammatory markers. The development of experimental studies where antioxidant intakes will be controlled is proposed to further elucidate the mechanisms involved in the relation between antioxidants and their impacts on breast tissue inflammation.

4.7. Acknowledgements

We are grateful to all members of the Diorio laboratory. Special thanks to Caty Blanchette, Isabelle Dumas and Michèle Orain who contributed their expertise.

4.8. Funding statement

This work was supported by a grant from the Canadian Breast Cancer Research Alliance (grant number 20462) and the “Banque de tissus et données de le Réseau de recherche sur le cancer” of the Fondation du cancer du sein du Québec and the “Fonds de recherche du Québec – Santé (FRQ-S)” associated with the Canadian Tumor Repository Network (CTRNet). D.L. received a fellowship from the FRQ-S. C.D. is a recipient of The Canadian Breast Cancer Foundation-Canadian Cancer Society Capacity Development award (award number 703003) and the FRQ-S Research Scholar.
4.9. Conflict of interest

The authors declare no personal or financial conflict of interests.

4.10. References


Chapitre 5. Discussion et conclusion générale

Le processus tumoral est complexe et beaucoup d’efforts restent à investir pour mieux comprendre comment différents facteurs environnementaux interagissent et se répercutent à l’échelle tissulaire et cellulaire. En considérant l’ensemble des études passées en revue dans l’introduction de ce mémoire, il semble bien y avoir une association entre la prise d’antioxydants ou l’inflammation chronique et le risque du cancer du sein. Toutefois, on peut facilement imaginer que la chaîne causale reliant l’exposition à un facteur environnemental jusqu’à la signalisation intracellulaire menant à la traduction de gènes est constituée de centaines de variables intermédiaires et d’interactions. Dans l’étude présentée au Chapitre 4, nous avons voulu évaluer si les habitudes de consommation en antioxydants pouvaient être liées à un état inflammatoire du tissu mammaire. Plus spécifiquement, nous avons mesuré la corrélation entre la consommation de la vitamine A, du rétinol, du bêta-carotène, de l’alpha-carotène, de la bêta-cryptoxanthine, de la lutéine, de la zéaxanthine, du lycopène, de la vitamine C, de la vitamine E, du sélénium ou du zinc et l’expression dans le tissu mammaire de l’IL-6, du TNF-alpha, de la CRP, de COX-2, de la leptine, de SAA1, de STAT3, de l’IL-8, de l’IL-10, de la lactoferrine et du TGF-bêta. Nos données soutiennent l’idée que la prise de certains antioxydants au niveau des apports alimentaires ou sous forme de supplément est associée à l’expression de marqueurs inflammatoires dans le tissu mammaire. De plus, nous avons vu que les associations variaient avec le statut ménopausique. Notre étude présente un devis original étant, aux meilleures de nos connaissances, la première étude à mesurer de telles associations et à analyser autant de marqueurs inflammatoires tout en contrôlant pour de nombreuses variables de confusion.

Autant le fait d’étudier plusieurs marqueurs inflammatoires peut être une force, car le type de marqueur exprimé peut donner une piste d’explication sur le mécanisme par lequel l’antioxydant est le plus susceptible d’agir dans le tissu mammaire, autant c’est une faiblesse à cause du problème de comparaisons multiples. Cependant, suivant l’application de la correction de Bonferroni, des corrélations significatives ont été obtenues. Nous avons trouvé que les apports élevés en bêta-tocophérol au niveau des apports alimentaires corrélaient avec une expression diminuée de l’IL-10 dans les cellules épithéliales mammaires dans tout l’échantillon étudié. Toutefois, la corrélation ne demeurait significative que chez les femmes post-ménopausées après stratification. Nous avons également détecté que les apports totaux en zinc, c’est-à-dire ceux provenant des apports alimentaires et sous forme de supplément, corrélaient négativement avec l’IL-10. Finalement, nous avons observé que les hauts apports en sélénium corrélaient avec une diminution de l’expression de la lactoferrine chez les femmes post-ménopausées.

Basées sur la littérature scientifique, ces associations significatives sont inattendues. L’IL-10 est une cytokine qui dans certains contextes, inhibe la production de cytokines pro-inflammatoires [197]. Nous nous attendions
donc à ce que l’exposition à un facteur comme le bêta-tocophérol ou le zinc, qui selon l’hypothèse de recherche, serait a priori à effet anti-inflammatoire, mène à une augmentation de l’expression de l’IL-10 et non à sa diminution. Toutefois, comme plusieurs autres cytokines, l’IL-10 n’agit pas seulement sur la régulation d’autres cytokines. En effet, l’IL-10 peut avoir un effet prolifératif ou antiprolifératif sur les cellules tumorales en fonction du contexte. Pour ce qui est du tissu mammaire normal, une étude cas-témoins effectuée sur le tissu adipeux adjacent à des tumeurs a révélé une expression accrue de l’IL-10 chez les cas par rapport aux témoins [3]. Ainsi, la diminution de son expression dans le tissu mammaire pourrait être de bon présage et soulève un questionnement par rapport à l’implication biologique de son expression. Notre étude suggère également que le statut ménopausique influence les niveaux d’expression de l’IL-10, car dans l’ensemble, les niveaux d’IL-10 étaient plus importants chez les femmes post-ménopausées. Ceci corrobore de précédentes études qui ont montré que le statut hormonal des femmes influençait les niveaux circulants de l’IL-10 [287, 288].

La diminution de l’expression de la lactoferrine dans le tissu mammaire des femmes post-ménopausées consommant plus de sélénium est également surprenante par rapport à notre hypothèse de recherche. En effet, on reconnaît à la lactoferrine des effets antioxydants et anticancérigènes [289-292] et il a été montré que l’expression de la lactoferrine dans le tissu mammaire était plus importante dans le tissu normal et les lésions bénignes que dans les lésions tumorales [208]. Cela pourrait être un problème lié à la mesure des apports en sélénium. En effet, la teneur en sélénium des aliments est très variable d’une région géographique à l’autre, principalement à cause du contenu de ce minéral dans le sol [16, 293]. Cette variation est d’ailleurs une difficulté pour sa quantification dans les apports alimentaires par les FFQ, c’est pourquoi la mesure des apports en sélénium est souvent mesurée dans le sang, les retailles d’ongles ou les cheveux. La mesure dans les retailles d’ongles est représentative de l’exposition sur une période d’environ un an, tandis que les niveaux sanguins sont plus appropriés pour la mesure de l’exposition à court terme [294, 295]. Enfin, pour mesurer le sélénium provenant des suppléments, le logiciel de conversion des réponses au FFQ utilisé dans notre étude se basait sur la table de composition de deux marques communes de multivitamines, soit Centrum régulier et One-A-Day. Ces deux formules ne contiennent pas de sélénium. Les apports totaux en sélénium chez les femmes de notre échantillon ont donc pu être sous-évalués de façon non différentielle ayant pour conséquence de diminuer la force des associations mesurées. Même si les données suggèrent un biais d’information pour la mesure du sélénium, c’est moins le cas pour la mesure du zinc qui est inclus dans la plupart des marques de multivitamines. Une association négative entre les apports totaux en zinc et l’expression de l’IL-10 a été détectée dans la population totale alors que l’association n’était pas significative lorsque seuls les apports alimentaires en zinc ont été considérés. La dispersion des données pour les apports en zinc totaux étant plus étendue, ceci explique probablement pourquoi l’association a pu être détectée. Afin
de valider nos résultats, il serait nécessaire de mieux contrôler la mesure des apports en sélénium, par exemple en conduisant des expériences chez l’animal.

En plus des résultats significatifs après la correction de Bonferonni, nous avons mesuré beaucoup de corrélations significatives à une valeur $p$ inférieure à 0,05. Notamment, les hauts apports en vitamine A ou rétinol tendaient à corrélérer avec de hauts niveaux d’expression de COX-2 dans les cellules stromales du tissu mammaire, et ce, surtout chez les femmes post-ménopausées. D’autres études ont mesuré une augmentation de l’expression de COX-2 dans du tissu tumoral du sein comparé au tissu normal [202, 203]. Il a aussi été vu dans des modèles de culture cellulaire que les rétinoïdes pouvaient activer la transcription du gène de COX-2 par l’activation des récepteurs RAR, ce qui pourrait être le cas dans notre étude puisque nous avons vu que l’expression de COX-2 corrélait avec les apports en rétinoïdes chez les femmes post-ménopausées. Beaucoup d’autres molécules pouvant intervenir sur l’expression de COX-2 sont sans doute en action au niveau du tissu mammaire. Par exemple, l’expression de PPAR-gamma, qui diminue la transcription du gène COX-2 dans certains contextes [19], pourrait être diminuée chez les femmes post-ménopausées, car il est connu que les hormones sexuelles peuvent modifier l’expression de PPAR-gamma [296]. Ainsi, il serait intéressant d’évaluer l’expression de PPAR-gamma dans le tissu mammaire des femmes de notre échantillon et d’évaluer si la baisse de son expression est associée à une expression plus élevée de COX-2.

Les principales limites de notre étude sont liées à l’utilisation d’un devis transversal qui ne permet que des hypothèses étiologiques. Puisqu’il n’y a pas de chronologie entre l’exposition et l’événement, il n’est pas possible d’exclure un lien de causalité inverse. Toutefois, nous pensons qu’une inflammation du tissu mammaire ne devrait pas influencer les habitudes alimentaires, donc une causalité inverse entre l’inflammation du tissu mammaire et la prise d’antioxydants est à notre avis peu probable. Puisque les biopsies qui ont été utilisées pour mesurer les marqueurs inflammatoires ont été prélevées à proximité d’une tumeur, il est possible que l’inflammation mesurée ait été influencée par la tumeur avoisinante. Il est documenté que les caractéristiques histologiques [297, 298], le profil d’expression génique [297], ainsi que certains marqueurs (récepteurs aux œstrogènes et à la progestérone) [298] sont similaires aux tissus mammaires normaux – par exemple, le tissu provenant de réduction mammaire – ce qui diminue les craintes. De plus, pour sept femmes de la population étudiée dans le cadre de ce projet, des biopsies étaient disponibles pour les deux seins, c’est-à-dire le sein atteint et le sein non atteint. L’expression de quatre marqueurs inflammatoires (CRP, COX-2, la leptine et SAA1) dans les deux seins a donc pu être évaluée et comparée et une concordance de 82% (71 à 100%) a été observée.

Le fait que l’échantillon soit composé de femmes atteintes du cancer du sein limite la généralisation des résultats à l’ensemble de la population, car les femmes de l’échantillon ont pu être davantage exposées à des
facteurs de risques du cancer du sein par rapport à la population générale. Ainsi, la généralisation pourrait s’appliquer davantage à une population à risque de développer le cancer du sein ou qui a déjà eu un cancer du sein. Toutefois, plusieurs des caractéristiques de notre échantillon, comme l’âge, la consommation de tabac, l’IMC et l’apport énergétique total, présentaient un profil similaire à celui d’un groupe de femmes en santé de la région de Québec publié dans une étude précédente [249].

L’autre limite importante de l’étude est l’utilisation d’un FFQ pour mesurer les habitudes alimentaires sur une période d’un an. En effet, ce type d’outil est associé à un risque de mauvaise classification parce qu’il fait appel à la mémoire, qu’il est sujet au biais de rappel, qu’il demande une capacité de conceptualiser correctement sa consommation alimentaire, qu’il repose sur l’a priori que les habitudes alimentaires de l’individu sont régulières, qu’il dépend de la liste des aliments inscrits sur le questionnaire (si l’aliment n’est pas là, il ne sera pas mesuré) et qu’il est sujet au biais de désirabilité sociale [257]. De plus, les outils de mesure de l’alimentation estiment les quantités de nutriments inclus dans les aliments par l’entremise de bases de données qui ne reflètent pas les changements dans la composition des aliments selon les saisons, ou les différences liées à la provenance de l’aliment. Ceci amène une imprécision dans la mesure qui peut générer un biais d’information. Dans notre échantillon, toutes les femmes qui ont rempli le FFQ étaient dans une situation comparable, c’est-à-dire qu’elles venaient de recevoir un diagnostic de cancer du sein et de subir une intervention chirurgicale. Leur préoccupation par rapport à leur alimentation devrait donc être similaire. Néanmoins, dans tous ces cas de biais d’information, la l’erreur de classification est non-différentielle avec pour conséquence une sous-estimation de la force des associations mesurées [299].

Il est possible que l’absence d’association entre certains antioxydants et l’expression des marqueurs évalués soit un problème de puissance statistique. Compte tenu de la taille limitée de l’échantillon, la mesure des apports alimentaires en antioxydants par FFQ manquait probablement de précision. En effet, comme mentionné dans l’introduction de ce mémoire, certaines méta-analyses ont détecté l’association inverse entre la consommation de certains antioxydants et le risque du cancer du sein seulement lorsque les résultats des études mesurant les antioxydants directement dans le sang par des méthodes de laboratoire précises plutôt que par FFQ étaient combinés [183, 184]. De plus, nous avons observé que les corrélations entre les apports en antioxydants et l’expression des marqueurs inflammatoires dans le tissu mammaire différaient selon le statut ménopausique. Ce besoin de stratifier les analyses pour ce facteur a également limité la puissance statistique de notre étude.

La mesure des variables indépendantes principales, soit les apports de différents antioxydants d’intérêt dans l’alimentation ou sous forme de supplément, a été évaluée sur l’année précédant la chirurgie de résection tumorale du sein. Cette fenêtre d’exposition a été établie pour les besoins d’un projet de plus grande
envergure portant sur les facteurs influençant la densité mammaire. Puisque les changements de la densité mammaire à la suite d'une exposition à un facteur de risque ou de protection ne peuvent s'observer qu'après plusieurs mois, la mesure des habitudes de consommation alimentaires sur une période d'un an était pertinente car elle visait à dresser les habitudes régulières des participantes. Pour le présent projet, cet intervalle de temps demeurait cohérent avec l'hypothèse qu'une exposition continue à un stress oxydatif pouvait créer une inflammation chronique au niveau du tissu mammaire.

Notre étude comportait également plusieurs forces. La principale force est l'accès à des tissus traités et conservés de façon standardisés, c'est-à-dire selon des guides de pratique très stricts. Pour ce qui est de la validité des méthodes de mesure utilisées pour quantifier les variables dépendantes principales, soit les différents marqueurs inflammatoires d'intérêt, la mesure d'expression d'une protéine à l'aide d'anticorps est très spécifique et utilisée autant en recherche que dans les laboratoires de pathologie. De plus, tous les anticorps choisis ont été sélectionnés parce qu'ils avaient été soumis à un processus de validation rigoureux assurant la qualité des données. Pour ce qui est de la mesure des variables indépendantes, même s'il est difficile de mesurer les apports alimentaires par FFQ, le questionnaire utilisé dans notre étude est un questionnaire reconnu. Il s'agit de la version canadienne du Diet History Questionnaire (C-DHQ), un questionnaire élaboré par les National Institutes of Health qui a été adapté pour la population canadienne et traduit en français. La version américaine a été validée dans le cadre de trois études [253-255] et une étude a validé la version canadienne qui tient compte des différentes habitudes alimentaires entre le Canada et les États-Unis [256]. La corrélation entre l’apport énergétique estimé par le DHQ sur une période d’un an et l’apport énergétique mesuré par quatre questionnaires, administrés aux trois mois, portant sur l’apport alimentaire sur les dernières 24 heures, est de 0,48 chez les femmes [254]. Même si la corrélation est modeste pour la mesure de l’apport énergétique, le DHQ a démontré une bonne performance pour la mesure des vitamines A, E et C. Pour la mesure de la vitamine A et de la vitamine E, la corrélation obtenue par le DHQ était supérieure par rapport aux questionnaires Willett et Block, tous deux portant sur la mesure de la consommation sur un an [254]. Pour la mesure de la vitamine C, la corrélation entre la valeur obtenue par le DHQ et celle par quatre rappels sur 24 heures était de 0,68. Dans une autre étude de validation du DHQ, le niveau de biomarqueurs de l’apport protéique et énergétique dans l’urine a été comparé au niveau rapporté par le DHQ [255]. Selon cette étude, 23% des femmes sous-estimeraient leur consommation en protéine et énergie. Toutefois, il n’en serait pas de même pour les antioxydants. En effet, comparativement aux protéines, aux glucides et aux gras, où les valeurs rapportées varient de plus de 15% entre les différents outils utilisés (DHQ, Willett, Block et quatre rappels sur 24 heures/an), les valeurs rapportées pour les antioxydants varient de moins de 15% [254]. Enfin, comme autre indice de validité du FFQ utilisé dans notre étude, puisque lors de l’entrevue téléphonique des participantes certaines questions visaient à mesurer la consommation régulière
en alcool, nous avons pu évaluer la consistance des réponses entre l’entrevue téléphonique et le C-DHQ et nous avons obtenu une corrélation de 0,89.

Dans notre étude, une attention particulière a été portée au contrôle des différentes variables de confusion associées aux apports alimentaires, à l’inflammation et au cancer du sein. Au-delà des considérations des facteurs nutritionnels, l’apport énergétique est un facteur déterminant dans la survenue des maladies chroniques [300, 301]. Pour un contrôle optimal de l’apport énergétique, le modèle a été ajusté par la méthode des résidus de Willett qui est recommandée pour la mesure des nutriments [261]. Les facteurs qui ont été considérés dans les analyses ont été sélectionnés sur la base de leur association avec l’inflammation ou au risque du cancer du sein (voir section 3.2.3). Toutefois, étant donné la taille limitée de l’échantillon, nous avons voulu restreindre le nombre de covariables. Ainsi, pour chaque facteur de confusion potentiel, des analyses univariées ont été effectuées. Seuls les facteurs corrélatant avec au moins un des marqueurs inflammatoires étudiés pour une valeur p inférieure à 0,10 ont été inclus dans le modèle. Nous n’avons pas évalué si le fait d’être porteuse d’une mutation dans les gènes BRCA favorisant le cancer du sein était associé à l’inflammation dans le tissu mammaire, car nous n’avions pas cette information. Toutefois, la prévalence d’une telle mutation chez les femmes canadiennes-françaises atteintes du cancer du sein est estimée à 3,1% [302]. Une taille d’échantillon avec une bonne puissance statistique est essentielle au succès des études d’associations génétiques, et la taille restreinte de notre échantillon était une limite pour ce type d’analyse.

Le cadre théorique à l’origine de l’hypothèse de recherche se base sur l’effet des sources externes d’antioxydants sur l’inflammation du tissu mammaire. Outre les apports externes, de nombreux éléments, non considérés dans les analyses, participent au stress oxydatif ou à la défense antioxydantes. Chaque individu ne possède pas le même potentiel antioxydant selon son mode de vie, ses caractéristiques génétiques ou l’environnement dans lequel il vit. Par conséquent, de la confondance résiduelle par des facteurs affectant l’équilibre pro-oxydants/antioxydants non mesurés ou non considérés dans l’analyse a pu subsister.

Dans notre étude, chaque antioxydant a été analysé séparément. Les habitudes alimentaires sont complexes et varient entre les individus ainsi que pour un même individu. Nous reconnaissons qu’il est difficile d’isoler l’effet indépendant d’un nutriment isolé parce qu’il est conceptuellement compliqué d’ajuster les modèles statistiques pour tous les aliments qui pourraient être pro- ou anti-inflammatoires. Une mesure globale de l’alimentation englobant plusieurs facteurs déterminant la qualité de l’alimentation, et l’étude de son association avec l’expression des marqueurs inflammatoires dans le sein aurait été intéressante. L’ajustement de nos résultats à l’aide d’une covariable tenant compte de l’ensemble de l’alimentation aurait été un choix judicieux. Nous avons tenté de calculer l’indice inflammatoire de la diète développé par l’équipe de Shivappa dont le calcul est basé sur une revue de littérature portant sur 1 943 articles scientifiques qui ont étudié
l’association entre la consommation de différents nutriments (45 items) et l’expression de l’IL-1, l’IL-4, l’IL-6, l’IL-10 le TNF-alpha et la protéine C réactive entre 1950 et 2010. Toutefois, il manquait des items dans notre base de données pour calculer correctement l’indice inflammatoire [303]. Cette incapacité à évaluer l’effet de l’ensemble de l’alimentation sur les résultats fait qu’il est possible que de la confondance résiduelle soit présente.

Tout comme pour les cytokines inflammatoires (voir section 1.4), des polymorphismes associés au risque du cancer du sein existent dans certains gènes codant pour des enzymes nécessaires à la défense contre le stress oxydatif. Par exemple, des polymorphismes du gène de la superoxyde dismutase, de la catalase, de la forme endothéliale de l’oxyde nitrique synthase, de la myéloperoxydase et de la glutathion S-transférase [135, 304-309]. Ainsi, des études ont permis de mettre en évidence des associations entre la consommation d’antioxydants et le risque du cancer du sein que lorsque les populations étaient stratifiées pour un polymorphisme relié à une de ces enzymes antioxydantes [307, 310]. Il serait donc intéressant, dans la poursuite du présent projet, d’évaluer la présence de tels polymorphismes sur nos tissus. Par exemple, par Taqman, qui est une technique de PCR en temps réel. Ceci permettrait d’évaluer l’effet modifiant des polymorphismes sur les corrélations entre les apports en antioxydants et l’expression des marqueurs inflammatoires d’intérêt dans le tissu mammaire. Toutefois, nous serons toujours confrontés au problème de manque de puissance statistique qui pourrait être surmonté par une augmentation de la taille de l’échantillon. En effet, certains polymorphismes sont rares et leur étude épidémiologique demande des échantillons de très grande taille.

En conclusion, nos travaux fournissent de premières évidences chez l’humain de liens potentiels entre les habitudes de vie et l’expression de marqueurs moléculaires pouvant potentiellement influencer l’apparition et l’évolution des cancers du sein. Nos résultats suggèrent que certains antioxydants pourraient agir sur le tissu mammaire par des mécanismes affectant l’expression de certains marqueurs inflammatoires et que ceci serait influencé par le statut ménopausique. D’autres études sont nécessaires, notamment sur de bons modèles in vitro ou animaux, pour mieux définir les mécanismes physiologiques et moléculaires reliant la prise des antioxydants et leur mode d’action au niveau cellulaire. Toutefois, il faut poursuivre les efforts de recherche translationnelle, dont nos travaux sont un bon exemple, car il est, à notre avis, beaucoup plus probable que les découvertes utilisant des échantillons provenant de patients soient cliniquement intéressantes et pertinentes par rapport aux recherches effectuées à partir de modèles animaux et in vitro. Ainsi, la portée significative de ces travaux est de fournir des pistes d’exploration quant aux facteurs causant de l’inflammation au niveau du tissu mammaire et d’orienter la prévention du cancer du sein. Notamment, des conseils nutritionnels prenant en compte le statut ménopausique des femmes.
Bibliographie générale

1. [http://www.cbcf.org](http://www.cbcf.org)


amins A, C, and E and postmenopausal breast cancer. 


Krajcik RA, Massardo S, Orentreich N: No association between serum levels of tumor necrosis factor-alpha (TNF-alpha) or the soluble receptors sTNFR1 and sTNFR2 and breast cancer risk. *Cancer Epidemiol Biomarkers Prev* 2003, 12(9):945-946.


