Évaluation objective de la séquence de récupération des fibres sensitives de la troisième division du nerf trijumeau suite à une ostéotomie sagittale mandibulaire bilatérale (OSMB)

Mémoire

Alain Guimont

Maîtrise en sciences dentaires
Maître ès sciences (M.Sc.)

Québec, Canada

© Alain Guimont, 2016
Évaluation objective de la séquence de récupération des fibres sensitives de la troisième division du nerf trijumeau suite à une ostéotomie sagittale mandibulaire bilatérale (OSMB)

Mémoire

Alain Guimont

Sous la direction de :

François Berthod, directeur de recherche
Pierre-Éric Landry, codirecteur de recherche
Le projet de recherche est une étude prospective consistant à déterminer la séquence de récupération des fibres sensitives de la troisième division du nerf trijumeau (V3) suite à une ostéotomie sagittale mandibulaire bilatérale (OSMB). Dix-neuf sujets ont été recrutés entre les mois de mars et septembre 2008. Tous ont eu une chirurgie orthognathique d'OSMB afin de corriger une malocclusion. La sensibilité dans le territoire cutané innervé par V3 de chacun des sujets a été évaluée en pré-opératoire de même qu’à cinq autres reprises en post-opératoire (2, 4, 20, 36 et 52 semaines). Deux méthodes d’évaluation objectives de la récupération nerveuse sensitive ont été utilisées. La première consistait à utiliser un appareil nommé Neurometer afin de déterminer l’intensité minimale de courant électrique (Current Perception Threshold [CPT]) pouvant être ressentie spécifiquement par chacun des trois types de fibres nerveuses sensitives (A-Béta, A-Delta et C) dans le territoire cutané de V3. La deuxième méthode consistait à utiliser les monofilaments de Semmes-Weinstein afin de déterminer le seuil minimal de pression (Von Frey) pouvant être ressenti dans le même territoire cutané. De plus, lors de chacun des rendez-vous post-opératoires, il a été demandé à chaque sujet de quantifier subjectivement sa sensibilité à l’aide d’une échelle visuelle analogue. Cela a permis de corrélérer les valeurs de CPT, les seuils de perception de la pression et l’évaluation subjective que le patient a de sa propre sensibilité. Il a été démontré que la séquence de récupération des fibres sensitives de V3 suite à une OSMB est la suivante : les fibres A-Delta récupèrent en premier, suivies des fibres C puis des fibres A-Béta.
Prospective study determining the sequence of recuperation of the sensory nerve fibers in the third division of the trigeminal nerve (V3) after a bilateral sagittal split osteotomy (BSSO). Nineteen subjects were recruited from March to September 2008. Each of them had an orthognathic surgery of BSSO to correct their malocclusion. Sensitivity in the cutaneous territory innervated by the labiomental nerve of each subject was evaluated in the preoperative period and at five times in the postoperative period (2, 4, 20, 36, and 52 weeks). Two methods were used to evaluate the sensory nerve recuperation. The first method, done with an appliance named Neurometer, was used to determine the current perception threshold (CPT) that can be felt specifically by each of the three sensory nerve fibers types (A Beta, A Delta and C) in the labiomental nerve of patients who had a BSSO. The second method, done with the Semmes-Weinstein monofilaments, was used to determine the minimal pressure threshold that can be felt over the same cutaneous territory. As an addition, at each and every post-operative appointment, all subjects were asked to quantify subjectively their sensitivity over the same cutaneous territory with a visual analogue scale. The following sequence of recuperation of the sensory nerve fibers in the third division of the trigeminal nerve was demonstrated: the A-Delta fibers did recuperate first, followed by the C fibers and finally by the A-Beta fibers.
TABLE DES MATIÈRES

Résumé .. iii

Abstract ... iv

Table des matières ... v

Liste des tableaux .. vii

Liste des figures .. viii

Liste des abréviations ... x

Remerciements .. xi

Introduction .. 1

1.1 Histologie nerveuse .. 2
1.2 Types de fibres nerveuses .. 5
1.3 Physiologie de la conduction nerveuse ... 6
1.4 Voies afférentes et récepteurs sensitifs .. 13
1.5 Anatomie du nerf trijumeau .. 15
1.6 Sensibilité de la face .. 27
1.7 Classification des dommages aux nerfs périphériques ... 28
1.8 Classification symptomatique des dommages nerveux ... 32
1.9 Classification anatomique des traumatismes nerveux ... 33
1.10 Classification physiopathologique des traumatismes nerveux .. 34
1.11 Réponse à un traumatisme nerveux ... 38
1.12 Perspective historique de la récupération nerveuse .. 44
1.13 Régénération nerveuse ... 45
1.14 Récupération d’un traumatisme par écrasement ... 47
1.15 Évaluation d’un traumatisme nerveux .. 47
1.16 Évaluation clinique des traumatismes du nerf trijumeau ... 48
1.17 Ostéotomie sagittale mandibulaire bilatérale ... 59
1.18 Sommaire de la problématique et pertinence du projet ... 70
1.19 Objectifs du projet de recherche .. 72
1.20 Hypothèses de recherche .. 72

Matériel et méthodes .. 74

2.1 Matériel et méthodes ... 74
2.2 Moments des rendez-vous .. 76
2.3 Test de détermination des CPT .. 76
LISTE DES TABLEAUX

<table>
<thead>
<tr>
<th>Tableau</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableau 1</td>
<td>Classification de Sunderland</td>
<td>30</td>
</tr>
<tr>
<td>Tableau 2</td>
<td>Classification de Millesi de la fibrose</td>
<td>42</td>
</tr>
<tr>
<td>Tableau 3</td>
<td>Questions pour préciser l'altération sensitive</td>
<td>49</td>
</tr>
<tr>
<td>Tableau 4</td>
<td>Termes aidant le patient à exprimer précisément ce qu'il ressent</td>
<td>50</td>
</tr>
<tr>
<td>Tableau 5</td>
<td>Questions permettant de préciser s'il y a un déficit associé à l'altération sensitive ou non</td>
<td>51</td>
</tr>
<tr>
<td>Tableau 6</td>
<td>Différents types de dysesthésies</td>
<td>52</td>
</tr>
<tr>
<td>Tableau 7</td>
<td>Valeurs normales pour les résultats à différents tests sensitifs tactiles</td>
<td>56</td>
</tr>
<tr>
<td>Tableau 8</td>
<td>Explications de l'algorithme pour l'évaluation d'une diminution de la sensibilité</td>
<td>58</td>
</tr>
<tr>
<td>Tableau 9</td>
<td>Monofilaments de Semmes-Weinstein. Logarithme de la force nécessaire en mg pour les fléchir et force délivrée sur la peau par chacun d’eux en g/mm²</td>
<td>81</td>
</tr>
<tr>
<td>Tableau 10</td>
<td>Moyenne, écart-type, minimum et maximum des valeurs de CPT mesurées au fil des rendez-vous pour le côté droit et gauche.</td>
<td>90</td>
</tr>
<tr>
<td>Tableau 11</td>
<td>Moyenne, écart-type, minimum et maximum des valeurs de seuils de perception de la pression mesurés au fil des rendez-vous pour le côté droit et gauche.</td>
<td>91</td>
</tr>
<tr>
<td>Tableau 12</td>
<td>Taux d’hypoesthésies détectés au test de Von Frey au fil des rendez-vous post-opératoires</td>
<td>92</td>
</tr>
<tr>
<td>Tableau 13</td>
<td>Taux d’hypoesthésies détectés au test de Von Frey au fil des rendez-vous post-opératoires</td>
<td>92</td>
</tr>
<tr>
<td>Tableau 14</td>
<td>Moyenne, écart-type, minimum et maximum des valeurs obtenues sur l’échelle visuelle analogue au fil des rendez-vous pour le côté droit et gauche</td>
<td>93</td>
</tr>
<tr>
<td>Tableau 15</td>
<td>Taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires</td>
<td>94</td>
</tr>
<tr>
<td>Tableau 16</td>
<td>Taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires</td>
<td>94</td>
</tr>
<tr>
<td>Tableau 17</td>
<td>Comparaison des taux d’hypoesthésies détectés au test de Von Frey versus les taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires</td>
<td>95</td>
</tr>
<tr>
<td>Tableau 18</td>
<td>Comparaison des taux d’hypoesthésies détectés au test de Von Frey versus les taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires</td>
<td>95</td>
</tr>
<tr>
<td>Tableau 19</td>
<td>Fréquence des groupes d’hypoesthésies rapportées par les sujets au fil des rendez-vous post-opératoires</td>
<td>96</td>
</tr>
<tr>
<td>Tableau 20</td>
<td>Corrélations entre les trois différentes méthodes utilisées afin d’évaluer la sensibilité des sujets suite à une OSMB et seuils statistiques observés</td>
<td>98</td>
</tr>
</tbody>
</table>
LISTE DES FIGURES

Figure 1. Classification orthodontique de Angle .. 1
Figure 2. Composition histologique d'un nerf ... 3
Figure 3. Homonculus de Wilder Penfield .. 4
Figure 4. Illustration de certains types de fibres nerveuses .. 6
Figure 5. Représentation de la membrane cellulaire semi-perméable et des canaux sodiques ... 7
Figure 6. Représentation d'un potentiel d'action .. 9
Figure 7. Représentation de la dépolarisation .. 9
Figure 8. Représentation du début de la repolarisation .. 10
Figure 9. Représentation de la repolarisation complétée ... 10
Figure 10. Conduction saltatoire de l'influx nerveux au sein d'une fibre nerveuse myélinisée ... 11
Figure 11. Conduction continue de l'influx nerveux au sein d'une fibre nerveuse non-myélinisée .. 12
Figure 12. Types de terminaisons nerveuses ... 14
Figure 13. Représentation des 12 paires de nerfs crâniens .. 16
Figure 14. Noyaux moteur et sensitif du nerf trijumeau dans le tronc cérébral en vue postérieure .. 18
Figure 15. Noyaux moteur et sensitif du nerf trijumeau dans le tronc cérébral en vue latérale ... 19
Figure 16. Distribution des 3 divisions du nerf trijumeau .. 21
Figure 17. Foramen ovale situé à la base interne du crâne .. 22
Figure 18. Divisions du nerf mandibulaire en vue latérale .. 23
Figure 19. Divisions du nerf mandibulaire en vue médiane .. 23
Figure 20. Nerf alvéolaire inférieur pénétrant dans le canal dentaire 24
Figure 21. Nerf alvéolaire inférieur se divisant en plusieurs collatérales 25
Figure 22. Représentation du nerf mentonnier .. 26
Figure 23. Représentation du nerf incisif .. 26
Figure 24. Innervation sensitive de la face par le nerf trijumeau 27
Figure 25. Différents types de névromes ... 44
Figure 26. Algorithme de l'évaluation d'une altération sensitive 49
Figure 27. Algorithme pour l'évaluation d'une diminution de la sensibilité 54
Figure 28. Algorithme pour l'évaluation des dysesthésies ... 54
Figure 29. Ostéotomie de la branche montante décrite par Blair 59
Figure 30. Ostéotomie oblique de la branche montante décrite par Limberg 60
Figure 31. Trois différentes façons d’effectuer une ostéotomie passant à travers la branche montante mandibulaire ... 60
Figure 32. Ostéotomie en L inversé de la branche montante mandibulaire ... 61
Figure 33. Ostéotomie en C de la branche montante mandibulaire ... 62
Figure 34. Ostéotomie par approche intra- orale décrite par Lane ... 62
Figure 35. Ostéotomie sagittale décrite par Obwegeser et Trauner ... 63
Figure 36. Modification de l’OSMB proposée par Obwegeser ... 63
Figure 37. Modification de l’OSMB décrite par DalPont ... 64
Figure 38. Technique de fixation à l’aide d’une vis compressive .. 66
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN</td>
<td>Acide ribonucléique</td>
</tr>
<tr>
<td>BSSO</td>
<td>Bilateral sagittal split osteotomy</td>
</tr>
<tr>
<td>CHA</td>
<td>Centre hospitalier affilié</td>
</tr>
<tr>
<td>CPT</td>
<td>Current perception threshold</td>
</tr>
<tr>
<td>FRSQ</td>
<td>Fonds de Recherche en Santé du Québec</td>
</tr>
<tr>
<td>HEJ</td>
<td>Hôpital de l'Enfant-Jésus de Québec</td>
</tr>
<tr>
<td>HSS</td>
<td>Hôpital St-Sacrement de Québec</td>
</tr>
<tr>
<td>OSMB</td>
<td>Ostéotomie sagittale mandibulaire bilatérale</td>
</tr>
<tr>
<td>RV</td>
<td>Rendez-vous</td>
</tr>
<tr>
<td>sNCT</td>
<td>Sensory nerve conduction threshold</td>
</tr>
<tr>
<td>V3</td>
<td>Troisième division du nerf trijumeau</td>
</tr>
</tbody>
</table>
REMERCIEMENTS

Je tiens à remercier sincèrement les gens et les organismes ci-dessous.

Les Drs Pierre-Éric Landry et François Berthod de m’avoir aidé dans la réalisation de ce projet de recherche.

Tous les chirurgiens du Département de chirurgie buccale et maxillo-faciale de l’Hôpital de l’Enfant-Jésus de Québec (HEJ) d’avoir accepté et d’avoir collaboré au recrutement des sujets parmi leurs patients. Sans leurs efforts et sans leur collaboration, la réalisation de ce projet n’aurait pas pu être possible.

Tous les résidents du Département de chirurgie buccale et maxillo-faciale de l’HEJ ayant fréquenté le programme pendant les années 2008 et 2009 pour avoir collaboré à la collecte de données lors des chirurgies.

Le Dr Luc Giasson qui m’a offert un sérieux coup de main pour l’obtention de nombreuses bourses qui m’ont été octroyées pour la réalisation de ce projet de recherche.

Le Fonds de Recherche en Santé du Québec (FRSQ) qui m’a octroyé une généreuse bourse pour la réalisation de ce projet de recherche.

Le Fonds Émile-Beaulieu, dont la mission est de promouvoir la recherche dans le domaine de la science dentaire, d’avoir subventionné la réalisation du projet de recherche.
CHAPITRE 1
INTRODUCTION

L'ostéotomie sagittale mandibulaire bilatérale (OSMB) est un type de chirurgie orthognathique pratiqué afin de corriger certaines malocclusions dento-squelettiques. Cette intervention chirurgicale est indiquée afin de procéder à un avancement mandibulaire chez les patients rétrognathes, c'est-à-dire dont la mandibule est en position reculée dans le plan horizontal par rapport au maxillaire (classe II squelettique selon la classification orthodontique de Angle). L'OSMB peut, dans de rares cas, être pratiquée afin de procéder à un recul mandibulaire chez les patients prognathes (classe III squelettique selon la classification orthodontique de Angle) (voir Figure 1).

Figure 1. Classification orthodontique de Angle. (Adaptée du site internet orthodontisteenligne.com)

Lors de cette chirurgie, il y a de bonnes possibilités qu'un traumatisme à la 3e division du nerf trigumeau (V3) survienne. Celui-ci peut être léger, modéré ou sévère et résulte en une diminution de la fonction sensitive (hypoesthésie) dans le territoire cutané innervé par le nerf. Dans la littérature scientifique sur le sujet, il est décrit que de 22 à 78 % des patients éprouvent une hypoesthésie dans le territoire cutané de V3 immédiatement après avoir subi une OSMB [1–9]. Dans le cas d’une hypoesthésie temporaire suite à une OSMB, celle-ci récupère peu à peu au fil des semaines sur une période variant généralement de six mois à un an [10]. Puisque l’hypoesthésie temporaire dans le territoire cutané innervé par V3 est la complication la plus fréquente suite à une chirurgie d’OSMB, nous avons décidé de l’étudier davantage.

Il existe près d’une quinzaine de méthodes d’évaluation de la fonction nerveuse sensitive. Certaines sont plutôt grossières et simples tandis que d’autres sont plus perfectionnées. Les méthodes plus pointues nécessitent souvent un appareillage sophistiqué et prennent beaucoup temps à être complétées. Plusieurs méthodes d’évaluation comportent une grande part de
subjectivité et sont peu précises. De plus, le protocole d’exécution de plusieurs d’entre elles n’est souvent pas standardisé ce qui mène à des écarts d’exécution d’un clinicien à l’autre et donc également à des écarts d’interprétation des résultats obtenus chez les divers patients. Il a déjà été démontré par Caissie et coll. [11] en 2007 que le Neurometer, un appareil mesurant le seuil minimal de courant électrique (CPT) qu’une personne est capable de percevoir à un site cutané donné, s’avère un moyen objectif et efficace d’évaluer les fonctions sensitives de V3 chez des sujets sains. Nous proposons donc d’utiliser cet appareil afin d’évaluer objectivement la récupération des altérations sensitives de V3 suite à une OSMB.

1.1 Histologie nerveuse

Les nerfs sont des faisceaux de fibres nerveuses retenues entre elles par du tissu conjonctif (voir Figure 2). Un nerf périphérique est composé d’axones. Il s’agit de collections organisées de projections cellulaires de neurones. Les corps cellulaires des neurones, eux, sont localisés au sein d’un ganglion. Certains types de fibres nerveuses sont myélinisées et d’autres ne le sont pas. Ce sont les cellules de Schwann, cellules de support d’origine ectodermique, qui enveloppent les axones d’une façon spécifique et qui leur confèrent ainsi une myélinisation via une couche de myéline. La myéline est une substance lipoïde complexe qui isole l’axone et qui favorise donc la conduction de l’influx nerveux le long de l’axone. Dans le système nerveux périphérique, chaque cellule de Schwann n’enveloppe qu’un seul axone. C’est ce qui donne à l’axone sa gaine de myéline. Chaque axone, qu’il soit myélinisé ou non, est individuellement entouré par des fibres de collagène organisées. Ce tissu conjonctif qui entoure l’axone s’appelle l’endonèvre. Le périnèvre est une seconde organisation de fibres de collagène qui entoure un ensemble d’axones. Le périnèvre consiste en couches de cellules mésothéliales et de collagène dense. Le regroupement de plusieurs axones en faisceaux grâce au périnèvre forme des fascicules.
Il existe trois patrons d’organisation fasciculaire. Il y a tout d’abord le patron monofasciculaire où un nerf est composé d’un seul fascicule. Le terme oligofasciculaire est employé pour désigner le patron où très peu de fascicules composent le nerf (de deux à dix fascicules). Finalement, un nerf polyfasciculaire est composé de plusieurs fascicules (de 11 à 25 fascicules). Le patron fasciculaire des nerfs péri-oraux est caractérisé par une très grande variation dans le nombre et dans la direction des fascicules en partant du proximal du nerf pour aller jusqu’au distal de celui-ci [12,13]. Par exemple, au niveau de la troisième molaire, le nombre moyen de fascicules dans le nerf alvéolaire inférieur est de 21,14 (écart-type = 7,05) [13] tandis que le patron fasciculaire dans le nerf lingual, toujours au niveau de la troisième molaire, est divisé également entre le patron oligofasciculaire (de deux à dix fascicules) et le patron polyfasciculaire (de 11 à 25 fascicules) [12]. Un nerf est aussi composé d’autres structures de soutien. L’épinèvre interne ou inter-fasciculaire est la couche de tissu conjonctif qui entoure individuellement chaque fascicule. La couche de tissu conjonctif qui entoure tout le nerf s’appelle l’épinèvre externe ou épifasciculaire. Finalement, le mésonèvre est une couche de tissu conjonctif lâche située en périphérie du nerf qui contient les vaisseaux sanguins nourriciers du nerf. Au sein du nerf se retrouvent des capillaires, des artérioles, des veinules et occasionnellement des mastocytes.

Le système nerveux est organisé de façon somatotopique. Cela veut dire que les neurones sont localisés au sein du ganglion du trijumeau dans le même ordre que celui de la région innervée par chacune des trois divisions du nerf trijumeau. Les corps cellulaires des neurones du nerf
Ophtalmique (1ère division du nerf trigéme) sont regroupés médiatement dans le ganglion tandis que les corps cellulaires des neurones du nerf mandibulaire (3e division du nerf trigéme) sont regroupés latéralement. Entre ces deux groupes de corps cellulaires se retrouvent les corps cellulaires des neurones du nerf maxillaire (2e division du nerf trigéme). Lorsqu’un récepteur situé à la périphérie du corps humain est stimulé, un influx nerveux est généré. L’influx est acheminé au tronc cérébral à un endroit très spécifique dépendamment de la région de la face où était situé le récepteur activé (maxillaire ou mandibulaire). L’information est finalement transmise au système nerveux central à un endroit précis sur le cortex cérébral afin que celle-ci soit interprétée. Le concept de somatotopie sensitive implique qu’il existe sur le gyrus post-central du cerveau une topographie qui correspond à la forme distordue du corps humain. Une surface spécifique du corps correspond à une surface spécifique du cortex cérébral. Il est intéressant de noter que plus la sensibilité de la zone corporelle est fine, complexe et riche, plus celle-ci est représentée de façon étendue au niveau du cortex cérébral. On peut voir sur la figure 3 que la surface du visage et des lèvres couvre une grande partie du cortex cérébral puisque ces parties du corps comportent une grande densité de récepteurs sensitifs.

Figure 3. Homunculus de Wilder Penfield. On y retrouve la représentation somatotopique du corps humain à la surface du cortex cérébral. (Adaptée de LaBanc et Gregg[15])
1.2 Types de fibres nerveuses

Il existe trois types de fibres nerveuses ; les fibres A, les fibres B et les fibres C. Les fibres nerveuses de type A sont subdivisées en quatre types ; les A-Alpha, les A-Bêta, les A-Gamma et les A-Delta. Chaque type de fibre nerveuse a un diamètre spécifique et est myélinisée ou non. Tel que mentionné précédemment, le fait que l’axone d’une fibre nerveuse soit myélinisé ou non détermine la vitesse de conduction de l’influx nerveux au sein de ce type de fibre. Chaque type de fibre nerveuse transmet une ou plusieurs modalités spécifiques qui peuvent être afférentes (toucher, pression, douleur, température, vibration) ou efférentes (influx moteur). De plus, chaque type de fibre nerveuse possède un potentiel de récupération différent suite à un traumatisme.

Les fibres A-Alpha sont des fibres à la fois afférentes et efférentes. Elles sont grosses (diamètre de 13 à 20 μm) et myélinisées. Leur vitesse de conduction est rapide (de 80 à 120 m/s) et elles transmettent de façon afférente la proprioception et de façon efférente les influx moteurs vers les muscles.

Les fibres A-Bêta sont des fibres sensitives exclusivement afférentes. Elles sont également grosses (diamètre de 6 à 12 μm) et myélinisées. Leur vitesse de conduction est de 35 à 75 m/s et elles transmettent le toucher, la pression et la vibration.

Les fibres A-Gamma sont des fibres motrices exclusivement efférentes. Elles sont de grosseur moyenne (diamètre de 3 à 8 μm) et myélinisées. Leur vitesse de conduction est de 15 à 40 m/s et elles transmettent les influx nerveux moteurs vers les muscles. Certains auteurs prétendent qu’elles seraient également afférentes en transmettant la proprioception.

Les fibres A-Delta sont de petites fibres (diamètre de 1 à 5 μm) exclusivement afférentes et myélinisées. Leur vitesse de conduction est de 5 à 35 m/s et elles transmettent la douleur (rapidement) et le froid.

Les fibres B sont des fibres exclusivement afférentes. Elles sont petites (diamètre de 1 à 3 μm) et myélinisées. Leur vitesse de conduction est lente (autour de 1,2 m/s) et ce sont les fibres nerveuses pré-ganglionnaires du système nerveux sympathique.

Les fibres C sont des fibres exclusivement afférentes. Elles constituent environ 80 % des fibres nerveuses présentes dans un nerf sensitif. Elles sont petites (diamètre de 0,2 à 1,5 μm) et non-myélinisées. Leur vitesse de conduction est lente (0,5 à 2 m/s) et elles transmettent la douleur (lentement), le chaud, les influx provenant des récepteurs mécaniques et les arcs réflexes. Ce sont également les fibres nerveuses post-ganglionnaires du système nerveux sympathique.
Puisque c’est exclusivement de la sensibilité dont il est question dans cet ouvrage, nous ne parlerons dorénavant que des fibres afférentes sensitives, donc des fibres A-Bêta, A-Delta et C (voir Figure 4).

FIGURE 4. ILLUSTRATION DE CERTAINS TYPES DE FIBRES NERVEUSES. (Adaptée de Baart et Brand [14])

1.3 Physiologie de la conduction nerveuse

Cela permet la formation d’un gradient de concentration de sodium et de potassium de part et d’autre de la membrane neuronale. Le cytoplasme du neurone contient une forte concentration de protéines chargées négativement. Cela procure une charge négative au neurone comparativement à son environnement extérieur. Dans le milieu extra-cellulaire se retrouvent des ions chargés négativement. Il s’agit majoritairement d’ions chlore. Des deux côtés de la membrane cellulaire, la charge électrique est balancée par des ions chargés positivement (sodium, potassium, calcium). Puisque la concentration des ions négatifs (anions) à l’intérieur du neurone est légèrement plus grande qu’à l’extérieur de celui-ci, le nombre d’ions positifs (cations) à l’intérieur du neurone sera donc plus grand qu’à l’extérieur. Cela crée alors une différence de potentiel électrique transmembranaire de -60 mV. Ce potentiel de -60 mV est appelé le potentiel électrique de repos. La membrane du neurone contient des canaux ioniques pouvant être ouverts ou fermés (voir Figure 5). Ces canaux peuvent être activés soit par un stimulus électrique (canaux voltage-dépendant) ou par un stimulus chimique comme un neurotransmetteur (canaux ligand-dépendant).

Figure 5. Représentation de la membrane cellulaire semi-perméable et des canaux sodiques. (Adaptée de Baart et Brand [14])
Les canaux ioniques sont d’une grande importance pour la génération et la conduction des influx nerveux. Une fois activés, les canaux ioniques s’ouvrent et permettent le passage d’ions spécifiques. Cela cause ainsi une dépolarisation de la membrane du neurone. Les canaux ioniques voltage-dépendant sont entre autres les canaux ioniques sodium et potassium. Ils permettent la conduction d’influx le long des fibres nerveuses. Lorsque les canaux ioniques sont ouverts, les ions spécifiques aux canaux se déplacent à travers ceux-ci selon leur gradient de concentration. Au repos, les canaux potassiques sont ouverts donc les ions potassium tentent de quitter la cellule pour aller dans le milieu extérieur. Par contre, la concentration relativement grande d’anions à l’intérieur de la cellule (protéines) contrecarre cet efflux de cations potassium vers l’extérieur. Lorsque les canaux sodiques sont ouverts, les ions sodium pénètrent alors à l’intérieur de la cellule. L’entrée d’ions sodium à l’intérieur de la cellule perturbe l’équilibre électrique qu’il y régnait et cela crée une dépolarisation locale. Les ions potassiques peuvent alors quitter la cellule. L’efflux d’ions potassium restaure l’équilibre entre les anions et les cations. Il s’agit de la repolarisation. Durant la dépolarisation et le début de la repolarisation, aucune nouvelle dépolarisation ne peut survenir; il s’agit de la période réfractaire.

Lorsque la dépolarisation locale est légère, l’équilibre est rapidement retrouvé. C’est seulement lorsque la dépolarisation locale atteint la valeur seuil d’environ -50 mV qu’un potentiel d’action est déclenché; c’est la loi du tout ou rien (voir Figure 6). La valeur seuil qui doit être atteinte pour qu’il y ait déclenchement d’un potentiel d’action est déterminée par plusieurs facteurs dont entre autres la durée et la force du stimulus dépolarisant de même que l’état du récepteur sensitif stimulé. Lors du déclenchement d’un potentiel d’action, les canaux sodiques voltage-dépendant s’ouvrent de sorte qu’un influx de sodium entre à l’intérieur du neurone et que la polarité de la membrane du neurone s’inverse (voir Figure 7). Les canaux sodiques demeurent ouverts pendant environ 0,1 ms puis ils se referment. Les canaux potassiques sont alors toujours ouverts et l’efflux d’ions potassium restaure l’équilibre électrique; c’est la repolarisation (voir Figure 8). Il y a même une petite hyperpolarisation qui survient (voir Figure 9). Par la suite, les canaux potassiques se referment et les pompes sodium-potassium restaurent la situation de départ. La quantité d’ions sodium et d’ions potassium qui doivent traverser la membrane du neurone pour déclencher un potentiel d’action est très petite.
FIGURE 6. REPRÉSENTATION D’UN POTENTIEL D’ACTION. (Adaptée de Baart et Brand [14])

FIGURE 7. REPRÉSENTATION DE LA DÉPOLARISATION. Les canaux sodiques s’ouvrent et les ions Na⁺ entrent dans la cellule. Les canaux potassiques commencent à s’ouvrir. (Adaptée de Baart et Brand [14])
Figure 8. Représentation du début de la repolarisation. Les canaux sodiques se ferment et les canaux potassiques s’ouvrent pleinement. Les ions K⁺ quittent la cellule. (Adaptée de Baart et Brand [14])

Figure 9. Représentation de la repolarisation complétée. Les canaux sodiques sont fermés et les canaux potassiques commencent à se fermer. (Adaptée de Baart et Brand [14])
1.3.1 Conduction de l’influx nerveux

Une fois qu’un stimulus est converti en potentiel d’action, celui-ci doit être propagé le long du nerf. Cela est possible grâce à une dépolarisation séquentielle de la membrane neuronale. La dépolarisation séquentielle est initiée par l’activation des canaux sodiques. Dans les nerfs myélinisés, les canaux sodiques sont seulement présents aux interstices entre les gaines de myéline. Ces endroits s’appellent les nœuds de Ranvier. Le potentiel d’action est conduit le long de l’axone en sautant d’un nœud de Ranvier à l’autre. Il s’agit d’une conduction saltatoire de l’influx nerveux (voir Figure 10). Par contre, au sein des fibres nerveuses non myélinisées, la conduction est un processus continu et non saltatoire (voir Figure 11).

Figure 10. Conduction saltatoire de l’influx nerveux au sein d’une fibre nerveuse myélinisée. (Adaptée de Baart et Brand [14])

1.3.2 Modulation de l’influx nerveux

Aux sites où l’influx nerveux est transféré d’un nerf à l’autre, le stimulus peut être, soit augmenté ou soit diminué. C’est ce qu’on appelle la neuromodulation. Ce phénomène se produit à la fois au sein du système nerveux périphérique et au sein du système nerveux central. Une des plus fréquentes formes de neuromodulation est celle qui affecte les canaux sodiques voltage-dépendant impliqués dans la formation et la conduction des potentiels d’action. Il existe des neurotransmetteurs excitatoires qui rendent le potentiel de repos de la membrane neuronale moins négatif.

1.4 Voies afférentes et récepteurs sensitifs

Il est important de connaître les voies afférentes qui innervent le visage et les tissus intra-oraux. Les terminaisons nerveuses afférentes primaires se terminent dans les tissus en périphérie. Deux types existent, soit les terminaisons nerveuses complexes reliées à des récepteurs [16,17] et les terminaisons nerveuses libres.

1.4.1 Les récepteurs

Les nerfs sensitifs recueillent des informations sur le monde extérieur de même qu’à la surface du corps humain. Il se peut que les extrémités des fibres nerveuses soient connectées à des récepteurs spéciaux (récepteurs du goût ou récepteurs sur les fuseaux musculaires) afin de recueillir l’information provenant de la périphérie. Il existe plusieurs types de récepteurs :

- mécanorécepteurs réagissant au toucher et à la pression légère;
- thermorécepteurs réagissant à la température;
- nocicepteurs réagissant aux dommages tissulaires;
- propriocepteurs réagissant à la position d’une partie du corps ainsi qu’à la vitesse et à la direction du mouvement.

Les terminaisons nerveuses reliées à des récepteurs sont généralement associées aux voies afférentes primaires conduites par des fibres nerveuses d’un plus grand diamètre et conduisant l’influx nerveux plus rapidement.
1.4.2 Mécanorécepteurs

Il existe plusieurs types distincts de récepteurs situés dans la peau, dans la muqueuse orale et dans le tissu parodontal entourant les dents. Ce sont les corpuscules de Pacini, de Meissner et de Ruffini. Plusieurs des terminaisons nerveuses libres et certains récepteurs fonctionnent en tant que mécanorécepteurs. Ces récepteurs détectent la déformation mécanique du tissu dans lequel ils sont présents. Chaque fibre primaire afférente peut être associée à plusieurs mécanorécepteurs situés à un endroit très localisé sur la peau ou les muqueuses (1 à 2 mm²). Il existe deux types de mécanorécepteurs : les premiers, appelés adaptateurs lents ou détecteurs positifs (corpuscules de Ruffini et cellule de Merkel) ne cessent d’envoyer des signaux en continu lorsqu’un stimulus mécanique est maintenu en place sur la peau ou la muqueuse (voir Figure 12). Les autres mécanorécepteurs, appelés adaptateurs rapides ou détecteurs de vitesse (corpuscules de Pacini et de Meissner), envoient des signaux lorsqu’un changement dans la déformation mécanique survient. Ces deux différents types de mécanorécepteurs permettent d’envoyer au cerveau une information précise sur la localisation, la modalité, l’intensité, la durée et les variations d’un stimulus mécanique appliqué au visage. Quelques-uns des mécanorécepteurs sont aussi sensibles au refroidissement de la peau ou de la muqueuse orale et pourraient avoir un rôle à jouer dans la perception du froid.

FIGURE 12. TYPES DE TERMINAISONS NERVEUSES. (A) Terminaison nerveuse composée d’un récepteur. (B) Terminaison nerveuse libre. (Adaptée de Baart et Brand [14])
1.4.3 Thermorécepteurs

La sensation du chaud et du froid est ressentie grâce à des thermorécepteurs. Une fois stimulés, ceux-ci acheminent l’information vers le cerveau via des fibres nerveuses de petit diamètre. Il s’agit des fibres nerveuses A-Delta et des fibres C.

1.4.4 Récepteurs nociceptifs

Il se peut également que les extrémités des fibres nerveuses puissent elles-mêmes recueillir l’information sensitive à partir de la périphérie et fonctionner un peu comme le font les récepteurs. Il s’agit alors de terminaisons nerveuses dites libres (voir Figure 12).

Ces terminaisons nerveuses libres sont associées aux voies afférentes primaires conduites par les fibres nerveuses A-delta (myélinisées) et les fibres nerveuses C (non myélinisées).

1.5 Anatomie du nerf trijumeau

La tête et le cou sont innervés par plusieurs nerfs. On y retrouve les nerfs crâniens (12 paires) (voir Figure 13), deux plexus nerveux (plexus cervical et plexus brachial), les branches postérieures des nerfs cervicaux et finalement le système nerveux autonome (sympathique et parasympathique). Les douze paires de nerfs crâniens qui innervent la tête et le cou sont numérotées de I à XII selon leur ordre d’émergence à la surface de l’encéphale et leur ordre de sortie de la boîte crânienne.
Du point de vue physiologique, les nerfs crâniens se répartissent en trois catégories :

1. les nerfs sensoriels (nerf olfactif, optique et vestibulo-cochléaire);
2. les nerfs moteurs (nerf oculomoteur, trochéiaire, abducens, accessoire et hypoglosse);
3. les nerfs mixtes, donc sensitivo-moteurs (nerf trijumeau, facial, glosso-pharyngien et vague).
Puisque c’est de la sensibilité dont il est question dans l’étude, nous porterons notre attention uniquement sur le nerf sensitivo-moteur qui nous intéresse. Il s’agit du nerf trijumeau, soit la cinquième paire de nerfs crâniens.

1.5.1 Noyau central du trijumeau

Le nerf trijumeau comporte un noyau sensitif et un noyau moteur au sein du tronc cérébral. Le noyau sensitif est positionné latéralement dans le tronc cérébral et la majorité des neurones sensitifs du nerf trijumeau font synapse avec d’autres neurones dans ce noyau. Il se subdivise de crânialement à caudalement en noyau trijumeau mésencéphalique, en noyau trijumeau principal puis finalement en noyau trijumeau spinal. Les informations proprioceptives provenant des muscles de la mastication, des articulations temporo-mandibulaires et du parodonte sont traitées dans le noyau trijumeau mésencéphalique. Le noyau trijumeau principal reçoit majoritairement les informations du toucher et de la pression tandis que le noyau trijumeau spinal reçoit les informations sur la douleur, la température et la pression. Toutes les informations reçues aux trois noyaux sont acheminées au thalamus via des voies ascendantes et elles y sont intégrées. Par la suite, les informations sont acheminées à différents endroits du cortex cérébral où a lieu la perception des stimuli.

Les neurones moteurs du nerf trijumeau sont regroupés dans un noyau moteur situé médialement au noyau sensitif dans le centre du pont. Les axones de ces neurones moteurs cheminent vers les muscles masticateurs. Ils traversent le ganglion trijumeau sans y faire synapse (racine motrice). Similairement aux neurones moteurs de la moelle épinière, les neurones moteurs du noyau trijumeau moteur sont stimulés à partir du cortex cérébral contralatéral. Au sein du noyau moteur se retrouve de la somatotopie : les neurones moteurs qui innervent les différents muscles sont donc regroupés ensemble.

Le nerf trijumeau fait partie des nerfs mixtes puisqu’il comporte une racine motrice et une racine sensitive. Le nerf contient un grand nombre de neurones sensitifs acheminant les influx nerveux de la périphérie vers le système nerveux central (voie afférente) et un grand nombre de neurones moteurs (voie efférente). La portion motrice du nerf trijumeau participe à la contraction des muscles de la mastication tandis que sa portion sensitive donne la sensibilité à la peau de la face, à l’orbite, aux sinus, aux cavités nasales, à la cavité buccale de même qu’à la dentition.

1.5.1.1 Origine

La racine motrice et la racine sensitive émergent du pont à la surface latérale du tronc cérébral (voir Figures 14 et 15). La racine motrice du nerf trijumeau est beaucoup plus petite que la racine sensitive.
FIGURE 14. NOYAUX MOTEUR ET SENSITIF DU NERF TRIJUMEAU DANS LE TRONC CÉRÉBRAL EN VUE POSTÉRIEURE. (Adaptée de Netter [23])
FIGURE 15. NOYAUX MOTEUR ET SENSITIF DU NERF TRIJUMEAU DANS LE TRONC CÉRÉBRAL EN VUE LATÉRALE. (Adaptée de Netter [23])
1.5.1.2 Origine sensitive

Les fibres sensitives du nerf trigumeau prennent naissance dans le ganglion trigumeau, aussi appelé ganglion semi-lunaire ou ganglion de Gasser. Ce ganglion est contenu dans une cavité nommée le cavum trigéminale qui est située sur la partie antérieure de la partie pétreuse de l'os temporal. Le ganglion trigumeau est formé par l’agrégation des corps cellulaires des neurones sensitifs. La majorité des neurones du ganglion trigumeau sont des neurones unipolaires; c'est-à-dire que chaque neurone au sein du ganglion possède un prolongement qui va vers la périphérie et un autre prolongement qui va vers le système nerveux central. Le prolongement axonal périphérique est relativement long et transporte les influx nerveux provenant des récepteurs sensitifs situés en périphérie (face et cavité buccale). Le prolongement axonal central (dendrite) est court et pénètre dans le pont. Le prolongement axonal central fait synapse avec le noyau trigumeau sensitif qui est situé dans le tronc cérébral. C'est le ganglion trigumeau qui donne naissance aux trois divisions ou branches du nerf trigumeau (voir Figure 16). Il s'agit du nerf ophtalmique, du nerf maxillaire et du nerf mandibulaire. Ceux-ci se dirigent vers l'avant afin d’animer les muscles masticateurs et de donner la sensibilité à la face, à l’orbite et aux cavités nasales et buccales. Dans ce mémoire, nous porterons notre attention uniquement sur la troisième division du nerf trigumeau. Il s'agit du nerf mandibulaire.
FIGURE 16. DISTRIBUTION DES 3 DIVISIONS DU NERF TRIJUMEAU. (Adaptée de Netter [23])
1.5.2 Nerf mandibulaire

Le nerf mandibulaire est un nerf sensitivo-moteur. Il résulte de l’union de deux racines : une grosse racine sensitive et une petite racine motrice. Le nerf sort du crâne par le foramen ovale (voir Figure 17). Tout juste sous le foramen ovale, le nerf mandibulaire se divise en deux troncs terminaux, l’un antérieur et l’autre postérieur (voir Figures 18 et 19). Le nerf descend ensuite au sein de la fosse infra-temporale dans ce court trajet extra-crânien.

Figure 17. Foramen ovale situé à la base interne du crâne. (Adaptée de Netter [23])
Figure 18. Divisions du nerf mandibulaire en vue latérale. (Adaptée de Netter [23])

Figure 19. Divisions du nerf mandibulaire en vue médiane. (Adaptée de Netter [23])
Branches du tronc terminal antérieur

Le tronc terminal antérieur donne naissance à trois branches : le nerf buccal, le nerf temporal profond moyen et le nerf massétérique. Puisque la description de ces branches est jugée non-essentielle pour la compréhension du projet, elle ne sera pas effectuée.

Branches du tronc terminal postérieur

Le tronc terminal postérieur donne naissance à quatre branches :

1. le tronc commun des muscles ptérygoïdiens interne, tenseur du voile du palais et tenseur du tympan;
2. le nerf auriculo-temporal;
3. le nerf alvéolaire inférieur;
4. le nerf lingual.

Parmi ces quatre nerfs, seul le nerf alvéolaire inférieur sera décrit.

1.5.2.1 Nerf alvéolaire inférieur

Le nerf alvéolaire inférieur est la plus volumineuse des branches du nerf mandibulaire. Après avoir traversé le foramen ovale, ce nerf chemine entre le muscle ptérygoïdien interne se trouvant en médial et le muscle ptérygoïdien externe ainsi que la branche montante de la mandibule se trouvant en latéral. Le nerf alvéolaire inférieur, accompagné de l’artère dentaire inférieure, pénètre ensuite dans le canal dentaire (voir Figure 20).

![Figure 20. Nerf alvéolaire inférieur pénétrant dans le canal dentaire. (Adaptée de Netter [23])](image-url)
Avant de pénétrer dans le canal dentaire, le nerf alvéolaire inférieur donne des collatérales : un rameau anastomotique inconstant pour le nerf lingual et le nerf mylo-hyoïdien (voir Figure 21). Dans le canal dentaire, le nerf alvéolaire inférieur donne aussi des rameaux dentaires. Ceux-ci sont destinés aux racines des molaires et des prémolaires de la mandibule de même qu’à la gencive.

Figure 21. Nerf alvéolaire inférieur se divisant en plusieurs collatérales. (Adaptée de Baart et Brand [14])

Une fois que le nerf alvéolaire inférieur est sur le point de pénétrer dans le canal dentaire, deux dispositions différentes sont possibles. Dans environ le deux tiers des cas, le nerf alvéolaire inférieur chemine dans le canal dentaire avec les vaisseaux dentaires inférieurs jusqu’au foramen mentonnier. À ce point, il se divise en deux branches terminales : le nerf mentonnier et le nerf incisif. Le nerf mentonnier traverse le foramen mentonnier et se divise en de nombreux rameaux terminaux qui innervent la muqueuse de la lèvre inférieure, la gencive buccale du procès alvéolaire inférieur au niveau de la canine et des incisives de même que la peau de la lèvre inférieure et du menton (voir Figure 22). Le nerf incisif, quant à lui, poursuit son trajet à l’intérieur de la mandibule afin de donner des rameaux sensitifs à la canine, aux incisives ainsi qu’à la gencive (voir Figure 23). Dans environ le tiers des cas, le nerf alvéolaire inférieur se divise en deux branches terminales (nerf mentonnier et nerf dentaire) dès son entrée dans le canal dentaire. Dans ce cas, le nerf mentonnier gagne le foramen mentonnier sans donner aucun rameau dentaire. Le nerf dentaire, fréquemment anastomosé avec le nerf mentonnier, donne alors tous les nerfs dentaires.
1.5.2.2 Nerf linguale

Le nerf linguale se détache du nerf mandibulaire avant que celui-ci ne pénètre dans le canal dentaire. Le nerf linguale reçoit une petite branche du nerf facial, nommée corde du tympan, qui contient des fibres nerveuses parasympathiques. Cette innervation régule l’activité sécrétoire des glandes salivaires submandibulaires et sublinguales et permet aussi la perception du goût sur les deux tiers antérieurs de la langue. Le nerf linguale se dirige ensuite vers la langue pour innerver la muqueuse de celle-ci. Le nerf linguale donne au cours de son trajet quelques filets nerveux destinés à la muqueuse amygdalienne et à celle du pilier antérieur du voile du palais.
1.5.3 Fonctions du nerf mandibulaire

1.5.3.1 Fonction sensitive du nerf mandibulaire

Le nerf mandibulaire achemine les influx sensitifs perçus au niveau de la peau de la région temporale (nerf auriculo-temporal), de la peau de la joue (nerf buccal) et de la peau de la lèvre inférieure et du menton (nerf mentonnier). Les branches profondes du nerf mandibulaire assurent la sensibilité de la muqueuse de la joue et des gencives (nerf buccal et nerf incisif), de la muqueuse de la lèvre inférieure (nerf mentonnier) et de la muqueuse de la portion antérieure de la langue (nerf lingual). De plus, le nerf mandibulaire assure la sensibilité des dents et de la mandibule (nerf alvéolaire inférieur, nerf dentaire et nerf incisif).

1.6 Sensibilité de la face

Les territoires cutanés de la face sont presque entièrement innervés par l'une des trois branches sensitives du nerf trijumeau (voir Figure 24). Seul le territoire sensitif cutané de la troisième division du nerf trijumeau sera décrit ici. Celui-ci se superpose grossièrement à la mandibule sous-jacente, sauf au niveau de la région de l’angle de la mâchoire qui reçoit son innervation à partir du plexus cervical (3e nerf cervical). L’innervation sensitive du nerf mandibulaire s’étend à la région temporale, au tragus et au lobe de l’oreille, à la joue, à la lèvre inférieure et au menton. Le nerf mandibulaire innerve aussi en profondeur la muqueuse de la joue, celle du plancher buccal et de la lèvre inférieure, les gencives, les dents de la mandibule de même qu’une partie de la langue.

Figure 24. Innervation sensitive de la face par le nerf trijumeau. (Adaptée du site internet votrechiro.com)
1.7 Classification des dommages aux nerfs périphériques

La classification des dommages aux nerfs périphériques aide à se prononcer sur le pronostic de récupération du nerf. De plus, la classification aide également à déterminer la prise en charge la plus adéquate. Plusieurs classifications ont été proposées mais les plus populaires sont celles décrites par Seddon et Sunderland.

1.7.1 Classification de Seddon

En 1943, Seddon a décrit trois types de dommages pour les nerfs périphériques : la neurapraxie, l’axonotmèse et la neurotmèse. Les trois types de dommages nerveux sont basés sur la sévérité des dommages tissulaires, sur le pronostic de récupération et sur le temps nécessaire à la récupération [24,26].

1.7.1.1 Classe I (Neurapraxie)

Le premier degré de dommage nerveux de la classification de Seddon s'appelle la neurapraxie. La neurapraxie consiste en une interruption de la conduction nerveuse sans toutefois qu'il y ait une perte de continuité axonale. L'intégrité du nerf demeure intacte mais la conduction nerveuse est altérée. Il y a un bloc physiologique de la conduction nerveuse au sein des axones affectés. Il s'agit de la forme la plus mineure de dommage nerveux. Elle survient suite à une insulte mineure au nerf. Le déficit moteur ou sensitif se situe au distal du site de blessure. L'endonèvre, le périnèvre et l'épinèvre sont intacts. Il n'y a pas de dégénérescence wallérienne (ce phénomène sera défini plus loin). La conduction nerveuse demeure intacte dans le segment distal et dans le segment proximal du nerf, mais il n'y a pas de conduction au sein de la zone endommagée. La récupération de la conduction nerveuse est complète et elle se produit en terme d'heures et de jours. L'importance du déficit sensitif est habituellement mineure et elle consiste en une paresthésie (voir la définition p.32) avec un certain niveau de détection du stimulus mais une discrimination faible et une interprétation du stimulus qui est perturbée.

1.7.1.2 Classe II (Axonotmèse)

Le second degré de dommage nerveux de la classification de Seddon s’appelle l’axonotmèse. L’axonotmèse est une blessure nerveuse plus sévère que la neurapraxie et elle implique une certaine perte de continuité des axones et de la couche de myéline entourant les axones. Par contre, l’architecture du tissu conjonctif du nerf est préservée (épinèvre et périnèvre). De la dégénérescence wallérienne survient au distal du site lésé. Il y a des déficits sensitifs et moteurs
situés distalement au site lésionnel. Il n’y a aucune conduction nerveuse au distal du site lésé pendant trois à quatre jours suivant le traumatisme. Une certaine régénération axonale survient. La récupération sensitive est bonne mais incomplète. Une récupération partielle du nerf est possible sans réanastomose chirurgicale. Il se peut par contre qu’une intervention chirurgicale soit nécessaire afin d’exciser le tissu cicatriciel. La récupération nerveuse prend plusieurs mois et dépend de la vitesse de régénération axonale. Le déficit sensitif résultant de ce type de dommage nerveux est une paresthésie sévère.

1.7.1.3 Classe III (Neurotmèse)

Le troisième et dernier degré de dommage nerveux de la classification de Seddon s’appelle la neurotmèse. Il s’agit de la blessure nerveuse la plus sévère. Dans ce type de dommage nerveux, à la fois les axones et le tissu conjonctif entourant les axones sont endommagés. La neurotmèse est une destruction de la fibre nerveuse dans son entièreté. Il y a donc destruction des axones, destruction de la gaine de myéline formée par les cellules de Schwann si elle est présente et destruction de l’endonèvre. La neurotmèse peut être partielle ou complète. Une dégénérescence wallérienne survient au distal du site de la lésion. La lésion du tissu conjonctif peut également être partielle ou complète. La dysfonction sensitive, motrice ou autonome est sévère. Il n’y a aucune conduction nerveuse distalement au site lésé pendant trois à quatre jours suivant le traumatisme. Une récupération nerveuse spontanée ne doit pas être espérée si le nerf chemine au sein des tissus mous. Par contre, si le nerf chemine à travers un canal osseux, il se peut qu’il y ait un certain degré de récupération puisque les axones seront guidés afin de redonner une forme de continuité au nerf. Lorsqu’une neurotmèse survient, une intervention chirurgicale est nécessaire. Les déficits sensitifs résultants d’une neurotmèse sont de l’anesthésie et de la dysesthésie (voir la définition p.33).

1.7.2 Classification de Sunderland

En 1951, Sunderland a étendu la classification de Seddon à cinq degrés possibles de dommages nerveux périphériques. Par opposition à la classification de Seddon qui est basée sur la sévérité des dommages tissulaires, sur le pronostic de récupération et sur le temps nécessaire à la récupération, la classification de Sunderland, quant à elle, est basée uniquement sur l’importance des dommages tissulaires [25–28]. Dans la classification de Sunderland, il y a un chevauchement considérable avec celle de Seddon (voir Tableau 1).
1.7.2.1 Premier degré

Le premier degré de dommages nerveux de la classification de Sunderland correspond à la classe I (neurapraxie) de la classification de Seddon. La conduction axonale est bloquée de façon temporaire et tous les composants tissulaires du nerf sont intacts. Le blocage de la conduction axonale peut être le résultat d’une ischémie ou d’une démyélinisation mécanique. Il y a trois types de dommages nerveux du premier degré dans la classification de Sunderland. Ceux-ci sont basés d’après le mécanisme de blocage de la conduction nerveuse [27,29–31].

1.7.2.1.1 Premier degré de type I

Un dommage du premier degré de type I résulte d’une manipulation du nerf, d’une légère traction ou d’une légère compression de celui-ci. Cela peut survenir lors d’une OSMB [15]. Le bloc de conduction nerveuse serait dû à l’anoxie. L’anoxie est causée par l’interruption de la circulation sanguine provenant des vaisseaux sanguins situés en périphérie du nerf. Il n’y a aucune dégénérescence axonale ni démyélinisation qui survient. La sensation normale revient en quelques heures (moins de 24 heures) suite à un rétablissement de la circulation sanguine au nerf.

1.7.2.1.2 Premier degré de type II

Un dommage du premier degré de type II résulte d’une manipulation, d’une traction ou d’une compression modérée du nerf. Le bloc de conduction nerveuse serait dû à l’œdème intra-fasciculaire qui altère la circulation sanguine des capillaires situés à l’intérieur du nerf. La sensation normale revient un ou deux jours après la résolution de l’œdème intra-fasciculaire, généralement en moins d’une semaine suite au traumatisme nerveux.

TABLEAU 1. CLASSIFICATION DE SUNDERLAND. (ADAPTÉ DE LABANC ET GREGG [15])

<table>
<thead>
<tr>
<th>Seddon</th>
<th>Sunderland (degree)</th>
<th>Histologic Observation</th>
<th>Functional Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurapraxia</td>
<td>I</td>
<td>Axon is continuous, no wallerian degradation, demyelination</td>
<td>Loss of sensation, local nerve block, rapid recovery (days–weeks)</td>
</tr>
<tr>
<td>Axonotmesis</td>
<td>II</td>
<td>Wallerian degeneration, progressively more damage to axon, axon not in continuity</td>
<td>Loss of sensation, slow recovery, complete or incomplete recovery (2–6 months)</td>
</tr>
<tr>
<td>Neurotmesis</td>
<td>III</td>
<td>Complete or nearly complete transection, neuroma-in-continuity</td>
<td>Loss of sensation, epineurial discontinuity, neuroma formation, recovery unlikely</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.7.2.1.3 Premier degré de type III

Un dommage du premier degré de type III résulte d’une manipulation, d’une traction ou d’une compression sévère du nerf. La pression sur le nerf cause une démyélinisation segmentaire ou une destruction mécanique de la gaine de myéline entourant les axones. La sensation revient complètement en un à deux mois, soit bien avant que si la récupération nerveuse s’expliquait uniquement par une régénération axonale.

Le résultat d’un traumatisme nerveux de premier degré, qu’il soit de type I, II ou III est une paresthésie. Une intervention chirurgicale sur le nerf n’est pas indiquée à moins qu’il y ait présence d’un irritant chronique sur le nerf qu’il faut retirer.

1.7.2.2 Deuxième degré

Les deuxième, troisième et quatrième degrés de dommages nerveux de la classification de Sunderland correspondent à la classe II (axonotmèse) de la classification de Seddon.

Dans le deuxième degré de la classification de Sunderland, les fibres axonales sont endommagées. Il y a d’abord un processus de dégénérescence qui survient, suivi d’un processus de régénération. Les composants tissulaires du tronc nerveux (endonèvre, périmèvre et épinèvre) demeurent intacts. Une exploration chirurgicale et une décompression nerveuse peuvent occasionnellement être indiquées mais une reconstruction chirurgicale du nerf ne l’est pas.

1.7.2.3 Troisième degré

Dans le troisième degré de la classification de Sunderland, les composants tissulaires intra-fasciculaires (axones et endonèvre) sont endommagés. Le périmèvre de même que l’épinèvre demeurent intacts. Il y a un certain degré de fibrose intra-fasciculaire qui bloque le trajet de régénération des axones. Il en résulte une récupération sensitive qualifiée de médiocre à acceptable se traduisant par une paresthésie, une synesthésie et une discrimination entre deux points qui est augmentée. Un certain degré de récupération nerveuse est possible, mais une intervention chirurgicale peut être indiquée s’il y a beaucoup de fibrose intra-fasciculaire et que la récupération nerveuse fonctionnelle est décevante.

1.7.2.4 Quatrième degré

Dans le quatrième degré de la classification de Sunderland, il y a une destruction fasciculaire; l’endonèvre, le périmèvre et les axones sont endommagés et seulement l’épinèvre demeure intact. Le pronostic de récupération nerveuse est mauvais. Les séquelles d’un quatrième degré de dommage nerveux selon la classification de Sunderland sont de la dysesthésie, de la synesthésie,
une paresthésie sévère ou une anesthésie. Une reconstruction chirurgicale du nerf est habituellement indiquée.

1.7.2.5 Cinquième degré

Dans le cinquième degré de la classification de Sunderland, il y a une transsection complète du nerf. Il en résulte une perte de la conduction nerveuse à l’endroit du traumatisme ainsi qu’au niveau du segment distal du nerf. Si un traumatisme du cinquième degré survient sur un nerf ayant un trajet intra-osseux, le nerf peut récupérer partiellement de façon spontanée si le trajet osseux dans lequel chemine le nerf est demeuré intact. Si un traumatisme du cinquième degré survient sur un nerf cheminant au sein des tissus mous, le pronostic de récupération est alors extrêmement mauvais.

Mackinnon et Dellon ont additionné un sixième degré à la classification de Sunderland [26]. Il s’agit d’une combinaison mixte des cinq degrés de la classification de Sunderland mais survenant tous sur un même nerf. Au sein d’un même tronc nerveux, certains fascicules démontrent une fonction normale et d’autres fascicules présentent divers degrés de dommage (degré un à cinq). Ce type de traumatisme est un réel défi pour un chirurgien puisque les trois premiers degrés de dommages au sein du nerf ont une récupération spontanée meilleure que si une neurorrhaphie ou qu’une greffe nerveuse est effectuée. Par contre, les dommages du quatrième et cinquième degré nécessitent, quant à eux, une reconstruction chirurgicale.

1.8 Classification symptomatique des dommages nerveux

Les patients aux prises avec des altérations de la sensibilité suite à un traumatisme nerveux se plaignent d’engourdissements subjectifs. Ces engourdissements sont grossièrement classés en anesthésie, paresthésie ou dysesthésie. Le Subcommittee on Taxonomy of the International Association for the Study of Pain a défini ces termes de la façon suivante :

Paresthésie : Altération de la sensibilité dans laquelle la détection et la perception anormales du stimulus peuvent être ressenties comme étant déplaisantes sans toutefois être douloureuses. La détection du stimulus peut être augmentée ou diminuée et elle peut affecter la mécanoréception (touche, pression ou vibration) ou la nociception (douleur).

| Hypoesthésie : Diminution de la détection du toucher et de la pression |
| Hyperésthésie : Augmentation de la perception du toucher et de la pression |
| Hyperalgésie : Perception augmentée d’un stimulus nociceptif |
| Hypoalgie : Diminution de la détection d’un stimulus nociceptif |
| Hyperalgésie : Perception augmentée d’un stimulus nociceptif |
Les patients peuvent aussi décrire des perceptions anormales et constantes en arrière-plan qu’ils qualifient d’engourdissements, de chatouillements, de picotements, de sensation de gonflement, de serrement ou de lourdeur. Ces anomalies de la détection et de la perception des stimuli peuvent s’expliquer par plusieurs phénomènes. Elles peuvent être le résultat d’une perturbation de la conduction nerveuse, d’une ischémie ou d’une altération dans le transport de protéines le long de l’axone jusqu’aux récepteurs périphériques sans qu’il y ait nécessairement une destruction de l’axone.

Synesthésie : Difficulté à localiser rapidement et précisément le point d’application d’un stimulus. La synesthésie est probablement le résultat du mauvais alignement des axones lors du processus de régénération nerveuse et elle est fréquemment observée suite à une neurorrhaphie.

Anesthésie : Absence complète de la détection et de la perception d’un stimulus. Cela inclut les stimuli mécanoréceptifs et les stimuli nociceptifs. L’anesthésie est habituellement associée à un traumatisme nerveux sévère qui interrompt l’intégrité des axones. La récupération sensitive suite à une anesthésie est lente et imprévisible.

Dysesthésie : Il s’agit d’une altération de la sensibilité dans laquelle la détection et la perception anormales d’un stimulus peuvent être perçues comme étant déplaisantes et douloureuses. La dysesthésie présente les mêmes caractéristiques que la paresthésie mais il y a de la douleur surajoutée qui peut être spontanée ou déclenchée.

Allodynie : C’est un type spécifique de dysesthésie qui est caractérisé par la sensation d’une douleur vive et aigüe suite à un stimulus de toucher léger.

Hyperpathie : Il s’agit d’un autre type de dysesthésie caractérisé par la sensation d’une douleur sourde et quelque peu retardée suite à un stimulus de pression. La douleur de l’hyperpathie persiste même après le retrait du stimulus de pression.

1.9 Classification anatomique des traumatismes nerveux

Les traumatismes nerveux peuvent être classés d’après la situation anatomique du nerf lésé. Les traumatismes peuvent être infligés à un nerf qui a un trajet intra-osseux ou à un nerf qui chemine au sein des tissus mous. La distinction est importante puisque le pronostic et la prise en charge différent selon le cas.

1.9.1 Traumatismes nerveux intra osseux

L’environnement dans lequel circule le nerf a une influence sur sa susceptibilité au traumatisme. De plus, cela a également une influence sur le pronostic de récupération et sur le moment où doit être
exécutée une neurorraphie si celle-ci est nécessaire. Le fait qu’un nerf chemine dans un canal osseux lui procure une certaine protection contre les traumatismes à moins que l’intégrité du canal osseux ne soit violée. Par contre, la présence d’un canal osseux peut prédisposer à un syndrome du compartiment puisqu’il s’agit d’un espace clos. Une cascade d’événements se produit en phase aigüe lors d’un syndrome du compartiment. Tout d’abord, il y a compression nerveuse. Il y a ensuite augmentation de la perméabilité vasculaire du tissu, puis l’œdème se crée. Le fluide situé à l’intérieur du nerf cause une augmentation de la pression. Cette augmentation de pression crée de l’ischémie, puis une dysfonction des fibres nerveuses survient. Une compression nerveuse produit des effets chroniques. Il s’agit d’une invasion du nerf par les fibroblastes, d’une cicatrisation, d’une déformation ou d’une dégénérescence des fibres nerveuses. Une dysfonction des fibres nerveuses survient. Aucune intervention chirurgicale n’est indiquée pour les traumatismes mécaniques si le canal osseux demeure intact et si le nerf n’est pas comprimé par un corps étranger ou de l’œdème au sein du canal. Le pronostic de récupération sensitive sans intervention chirurgicale est alors très bon. Par contre, les corps étrangers tels que les implants dentaires, les racines dentaires ou les fragments osseux déplacés se doivent d’être retirés rapidement afin de diminuer la pression sur le nerf et de prévenir la cascade d’événements indésirables.

1.9.2 Traumatismes d’un nerf cheminant au sein des tissus mous
Les nerfs ayant leur parcours au sein des tissus mous ne sont pas protégés des traumatismes mécaniques comme peuvent l’être les nerfs ayant un trajet dans un canal osseux. Le canal osseux offre un guide pour la récupération nerveuse, ce qui est favorable. Les lacérations et transsections des nerfs cheminant au sein des tissus mous ont davantage tendance à former des névromes et leur régénération spontanée est moins bonne, dû à la formation de tissu cicatriciel entre les extrémités du nerf.

1.10 Classification physiopathologique des traumatismes nerveux
Les traumatismes nerveux peuvent survenir de différentes façons. Un nerf peut être comprimé, étiré, lacéré, transséqué ou avulsé. Il peut également subir un traumatisme chimique ou un traumatisme dû à une pique ou à une injection par une aiguille.

1.10.1 Compression
La compression d’un nerf périphérique peut produire un syndrome de douleur neuropathique ou un déficit sensitif. La répercussion aigüe d’une compression nerveuse est le développement d’inflammation et d’œdème. La première étape de la pathogenèse d’une compression nerveuse est l’observation de changements dans la vascularisation du nerf. Il en résulte de l’œdème sous le périsurére ainsi que sous l’endonèvre. Cela mène à des changements au niveau du tissu conjonctif
qui inclut un épaississement du périnèvre et de l'épinèvre. L'étape suivante est le développement d'autres changements, mais cette fois-ci localisés aux fibres nerveuses elles-mêmes. Certaines fibres nerveuses du nerf continuent de fonctionner normalement alors que d'autres fibres démontrent une démyélinisation segmentaire. Plus la compression est sévère ou plus elle est prolongée, plus la dégénérescence wallérienne devient apparente. Les fascicules nerveux localisés en périphérie du nerf sont affectés en premier mais les fascicules localisés plus au centre du nerf peuvent être épargnés. Les mécanismes d'un traumatisme nerveux par compression comprennent à la fois les forces mécaniques déformantes exercées sur le nerf et des facteurs ischémiques [27,29,32–36]. Il y a plusieurs observations histologiques importantes associées à la compression aiguë d'un nerf : les fibres nerveuses de petit diamètre sont épargnées mais les fibres nerveuses de gros calibre qui sont myélinisées sont davantage affectées par le processus pathologique de compression. Le dommage aux fibres nerveuses est localisé tout juste sous l'endroit de la compression. Au site de la compression, les fibres nerveuses et les fascicules nerveux situés plus au centre du nerf sont épargnés. La démyélinisation locale des fibres nerveuses est le changement pathologique le plus important. L'espacement normal aux nœuds de Ranvier disparaît suite à l'intussusception de la myéline aux sites des vrais nœuds. Un pseudo-nœud est donc formé par l'indentation du prolongement des cellules de Schwann dans une direction opposée du site de compression. Des études cliniques et neurophysiologiques de traumatismes nerveux par compression ont rapporté que les larges fibres nerveuses A-Alpha et A-Bêta sont les plus sensibles aux changements ischémiques. Une perception anormale de la vibration et du toucher léger serait donc le signe clinique le plus précoce d'une compression nerveuse. Par contre, la sévérité des symptômes cliniques ne correspond pas à l'histopathologie [26]. Les patients se plaignant de douleur sévère et de sensations de brûlement peuvent avoir seulement un léger épaississement de l'épinèvre et du périnèvre et présenter des fibres nerveuses tout à fait normales. Les symptômes cliniques d'une compression nerveuse s'étendent sur tout un spectre. Ils vont de la sensation normale ressentie lors des différents tests neurosensoriels jusqu'à la paresthésie ou à la dysesthésie. D'après la physiopathologie et la pathogénèse des traumatismes nerveux par compression, la prise en charge d'une compression nerveuse consiste à retirer cette compression dès que possible. Une paresthésie chronique (d'une durée de plus de neuf mois) résultant d'un bloc de la conduction nerveuse suite à une compression ou à une interruption de la circulation sanguine a un bon pronostic de récupération suite au retrait du facteur prédisposant. Dans ce cas, les axones demeurent intacts et il n'y a pas d'atrophie du tube endoneural. Cela ne requiert habituellement pas de reconstruction nerveuse chirurgicale à moins que la fibrose du tissu conjonctif nerveux ou que la dégénérescence du nerf soit si sévère qu'une récupération nerveuse spontanée ne puisse être espérée.
1.10.2 Syndrome du compartiment

Le traumatisme nerveux associé au syndrome du compartiment est similaire à celui d'une compression nerveuse [26]. Lorsque la pression augmente au sein d'un compartiment et qu'elle devient supérieure à la pression intravasculaire, il y a diminution du flux sanguin à l'intérieur du compartiment. Il en résulte alors une ischémie du nerf et un dysfonctionnement de celui-ci. La réversibilité des perturbations de la fonction nerveuse est déterminée par l'intensité de la pression et la durée de celle-ci. Tout comme dans un traumatisme nerveux par compression, ce sont les larges fibres nerveuses A-β qui sont les plus susceptibles à ces changements ischémiques. Les premiers signes cliniques nerveux d'un syndrome du compartiment sont une perception anormale de la vibration et du toucher léger [33,36]. La prise en charge d'un syndrome du compartiment est une décompression immédiate du compartiment et l'utilisation de médicaments anti-inflammatoires afin de réduire l'inflammation et l'œdème à la fois au sein du nerf et au sein du compartiment.

1.10.3 Étirement

Un traumatisme nerveux par étirement du nerf démontre un patron de dommages nerveux tridimensionnel. Le degré du traumatisme varie non seulement d'un fascicule nerveux à l'autre selon qu'il est situé plus ou moins en périphérie du centre du nerf mais également de manière longitudinale le long du nerf. C'est pourquoi l'exploration chirurgicale d'un nerf étiré nécessite une exposition chirurgicale d'une longueur considérable. Il ne faut pas manquer une zone lésionnelle. La séquence des changements associés à un traumatisme nerveux par étirement progressif n'est pas totalement comprise. Sunderland croit que la séquence de la rupture des tissus nerveux serait la suivante : en premier, il y aurait rupture des axones (traumatisme de second degré dans la classification de Sunderland) et par la suite, il y aurait rupture des tubes endoneuraux (traumatisme de troisième degré). Le péronèvre se déchirerait ensuite (traumatisme de quatrième degré) et il y aurait finalement rupture de l'endonèvre (traumatisme de cinquième degré) [25,27,28]. Haftek a rapporté une séquence de rupture des structures intra-nerveuses exposées à une force de traction qui est différente de celle proposée par Sunderland [37]. Il a conclu que l'épinèvre est le premier tissu à se rompre, suivi par le péronèvre, les axones, puis finalement l'endonèvre. Le degré de dommages suite à l'étirement d'un nerf est hautement variable et peut affecter le nerf sur une longueur considérable. L'exploration chirurgicale précoce d'un nerf étiré est recommandée afin d'établir un diagnostic et d'éliminer une possible avulsion. Par contre, une reconstruction chirurgicale du nerf devrait être reportée à plus tard pour deux raisons : pour ne pas exciser inutilement un segment de nerf endommagé qui serait en fait fonctionnel et pour ne pas oublier d'exciser un segment de nerf endommagé qui n'aurait pas pu être visible à court terme après le traumatisme.
1.10.4 Lacération, transsection et avulsion

Une lacération, une transsection ou une avulsion d’un nerf constitue un traumatisme nerveux de cinquième degré dans la classification de Sunderland. La récupération nerveuse dépend de l’approximation des deux extrémités du nerf suite au traumatisme. Le pronostic de récupération dépend de la nature du traumatisme et de facteurs locaux. La transsection et la lacération sont généralement associées à une destruction tissulaire moindre que l’avulsion et c’est pourquoi elles ont un meilleur pronostic de récupération. Le tissu cicatriciel qui se forme à l’intérieur et entre les deux extrémités du nerf interfère avec l’avancement du cône de croissance axonal lors du processus de régénération nerveuse.

Les facteurs qui minimisent la formation de tissu cicatriciel améliorent le pronostic de récupération nerveuse. Tel qu’expliqué précédemment, le pronostic de récupération nerveuse est meilleur pour un traumatisme nerveux du cinquième degré de la classification de Sunderland si le nerf chemine dans un canal osseux que si le nerf chemine au sein des tissus mous. La décision de reconstruire ou non le nerf de façon chirurgicale devrait être basée sur la récupération fonctionnelle du nerf en question. La récupération nerveuse fonctionnelle est évaluée par les résultats obtenus lors de la répétition de tests de sensibilité effectués au fil du temps.

1.10.5 Traumatisme nerveux chimique

Les traumatismes nerveux chimiques sont le plus souvent occasionnés par un traitement endodontique, par le paquetage d’une alvéole dentaire à l’aide d’un produit afin de traiter une alvéolite ou par une neurolyse chimique. Très peu d’information est disponible concernant la physiopathologie de ces traumatismes chimiques [38,39]. Les agents chimiques en cause sont souvent l’eugénol, l’alcool, le phénol et le paraformaldéhyde. L’importance du traumatisme est directement proportionnelle à la profondeur de pénétration du produit chimique dans le nerf. La réponse nerveuse initiale suite à l’exposition à l’une de ces substances est de l’inflammation. Dans le cas d’un nerf cheminant à l’intérieur d’un canal osseux, l’exposition du nerf au produit chimique peut initier un syndrome du compartiment. La sévérité de la fibrose qui se développe au sein du nerf de même que l’importance de la dysfonction nerveuse associée dépendent de la durée d’exposition, de la profondeur de la pénétration de la substance dans le nerf ainsi que de la toxicité de l’agent chimique causal. La prise en charge d’un traumatisme nerveux chimique débute par l’identification de la substance chimique en cause et la détermination de la neurotoxicité de celle-ci. Un traumatisme chimique à un nerf cheminant dans un canal osseux devrait être traité comme un syndrome du compartiment. La reconstruction chirurgicale d’un nerf endommagé par une substance chimique ne doit pas être envisagée à court terme étant donné la variabilité et l’imprédictibilité des dommages causés.
1.10.6 Traumatisme nerveux dû à une piqure ou à une infection par une aiguille

Des perturbations de la sensibilité inexplicées peuvent être causées par l’injection d’anesthésique local intra-oral. Des études histologiques sur animaux ont clairement démontré que lorsqu’une aiguille pénètre un nerf, cela cause un dommage minime au nerf et il n’en résulte aucune altération histologique ou physiologique à long terme \([40–42]\). Par contre, l’injection intra-nerveuse de médicaments ou de substances chimiques peut produire, quant à elle, des changements marqués et irréversibles des propriétés histologiques et physiologiques du nerf. L’architecture des fascicules nerveux est perturbée par la fibrose et il y a développement de tissu cicatriciel. La présence de fibrose et de tissu cicatriciel prévient la régénération axonale au-delà du point où a eu lieu le dommage au nerf. Il y a conséquemment un bloc de conduction nerveuse qui est réversible uniquement à l’aide d’une réparation chirurgicale. L’injection intra-nerveuse d’une solution saline n’est pas dommageable pour le nerf mais l’effet d’une injection intra-nerveuse d’un agent anesthésique n’a pas été clairement démontré. Par contre, il a été démontré que l’hydrolyse enzymatique d’un agent anesthésique en alcool et en métabolites peut causer un déficit neurosensoriel persistant \([40]\). Pour qu’un dommage significatif et permanent au nerf survienne, l’agent anesthésique doit être injecté directement dans le fascicule nerveux. L’injection d’agent anesthésique extra-fasciculaire ne cause pas de dommages nerveux. C’est à l’histoire que se fait le diagnostic d’un traumatisme nerveux dû à une injection : le patient se plaint spontanément d’une douleur sévère qui irradie dans le territoire innervé par le nerf lors de l’injection. Une exploration chirurgicale précoce n’est pas indiquée. La seule indication de procéder à une exploration chirurgicale du nerf serait une absence de récupération nerveuse fonctionnelle après trois ou quatre mois d’attente. Tout symptôme de paresthésie lors de l’injection d’anesthésique local sur un patient éveillé suggère que l’aiguille a pénétré le nerf. L’aiguille doit alors immédiatement être retirée jusqu’à ce que la paresthésie cesse.

1.11 Réponse à un traumatisme nerveux

1.11.1 Réponse normale à un traumatisme nerveux

Lorsqu’un traumatisme nerveux survient, l’importance de la dégénérescence axonale dépend en partie du degré du traumatisme, de l’âge du patient et de la localisation du traumatisme \([43]\). Plus le traumatisme est situé sur une portion proximale du nerf, plus il y aura de morts cellulaires mais plus la récupération nerveuse sera rapide. Plus un sujet est jeune, plus la dégénérescence sera grande mais plus la récupération nerveuse sera rapide et plus elle sera complète. Donc, pour un certain groupe d’âge de sujets donnés et pour un certain site de traumatisme nerveux donné, seul le type de traumatisme aura une influence sur le résultat. Il est clair que la transsection d’un nerf (axotomie) occasionnera une dégénérescence plus marquée. La compression ou l’écrasement d’un
nerf produira une dégénérescence mimant celle rencontrée suite à une axotomie mais elle sera moindre et souvent réversible. Seddon et Sunderland ont décrit des classifications des traumatismes nerveux \[24,25\]. Il faut garder à l'esprit que ces classifications sont basées sur des trouvailles histologiques qu'il est impossible d'objectiver cliniquement sur un sujet. De plus, elles tentent d'estimer le résultat histologique du traumatisme nerveux sans toutefois en être certaines. Elles sont par contre un outil fort utile afin de prédir le résultat d'un traumatisme nerveux et de mesurer la répercussion de celui-ci. La répercussion de traumatismes nerveux sur les récepteurs, les axones, les cellules, les structures de support de même que leur relation avec la capacité de discrimination sensitive sera traitée au cours des pages qui suivent.

1.11.2 Réaction au niveau de l'axone

Une caractéristique constante de la réaction d'un axone suite à une axotomie est la survenue de dégénérescence axonale. Ce phénomène s'appelle aussi la dégénérescence wallérienne. Elle se produit dans les deux directions à partir du site traumatisé. Les axones s'œdématisent et la gaine de myéline se brise en petites gouttelettes. La myéline est phagocytée par les cellules de Schwann ainsi que par les macrophages sur une certaine période de temps. La dégénérescence wallérienne survient en terme d'heures et est complétée au bout d'une semaine. Même si cela peut prendre jusqu'à plusieurs mois avant que tous les débris de myéline soient retirés du site lésé, peu de macrophages sont retrouvés au site de l'axotomie au bout de 100 jours. Au niveau du segment proximal, la dégénérescence wallérienne survient sur une certaine distance laissant ainsi des tubes endoneuraux vides. Dans un traumatisme autre qu'une transsection du nerf, la dégénérescence axonale proximale est minime. Par contre, lors d'une axotomie, les changements observés au niveau des axones situés distalement au site transséqué sont très grands puisqu'il y a déconnexion complète de ceux-ci d'avec le corps cellulaire. Presque immédiatement après le traumatisme (jour 1), les cellules de Schwann se mettent à faire des mitoses (division cellulaire pour se multiplier) et prolifèrent pour former des colonnes. Cela favorise la régénération axonale subséquente.

1.11.3 Démyélinisation segmentaire

L'altération de la physiologie nerveuse suite à un traumatisme est due en partie à la démyélinisation progressive survenant au site ayant subi le dommage. La démyélinisation segmentaire est la perte d'une portion de la gaine de myéline des axones. Elle peut être observée cliniquement ou expérimentalement au sein des régions du nerf qui sont comprimées de façon chronique ou qui ont subi un dommage moins important \[44–46\]. Les causes de démyélinisation segmentaire peuvent être un dommage sub-léthale au nerf, de l'irritation, une infection bactérienne ou virale \[47\]. Il a été suggéré que des influx nerveux ectopiques, générés de façon anormale,
peuvent être produits de l’endroit où survient la démyélinisation [48]. La production d’influx nerveux aberrants et non-évoqués par des fibres nerveuses démyélinisées est bien corrélée avec la présence de paresthésie chez l’humain. Des influx nerveux désordonnés provenant de larges fibres nerveuses myélinisées ont été enregistrés chez des patients éprouvant des paresthésies et des dysesthésies [49–51]. Des expériences effectuées sur des nerfs comprimés, démyélinisés ou traumatisés suggèrent que les influx nerveux normaux provenant de la périphérie peuvent se transformer en décharges d’influx atypiques lorsqu’ils traversent le segment du nerf qui est démyélinisé [52,53]. La production d’influx nerveux ectopiques se produit puisque la physiologie membranaire axonale est devenue anormale dans le segment du nerf où les axones sont exposés.

1.11.4 Traumatisme nerveux et mécanismes sous-jacents à la paresthésie et à la dysesthésie

Normalement, les axones servent à conduire le potentiel d’action qui origine d’un récepteur spécialisé situé au niveau de la peau, d’un muscle, d’une articulation ou d’un viscère jusqu’à la terminaison nerveuse synaptique. Dans les fibres nerveuses myélinisées (A-Bêta et A-Delta), la conduction des potentiels d’action se fait au sein de l’axone, entre les cellules de Schwann adjacentes. Les endroits de la fibre nerveuse qui ne sont pas recouverts par une cellule de Schwann sont nommés nœuds de Ranvier. Les canaux sodium, qui initient le potentiel d’action, sont regroupés aux nœuds de Ranvier [54]. Les canaux potassiques sont regroupés dans les zones recouvertes d’une gaine de cellules de Schwann situées entre les nœuds de Ranvier. La fonction des canaux potassiques est de permettre à la membrane neuronale de retourner à son potentiel électrique de repos. En présence de fibres nerveuses qui ont été démyélinisées suite à un traumatisme quelconque, les endroits où sont normalement regroupés les canaux potassiques (zones inter-nodales) sont alors exposés. Les canaux sodiques y prolifèrent et s’y réorganisent [55,56]. Il semblerait que la génération d’influx nerveux ectopiques soit causée par cette réorganisation et cette prolifération des canaux sodiques à des endroits où ils ne sont habituellement pas retrouvés. Par contre, le mécanisme exact n’est pas entièrement connu. Des influx ectopiques peuvent être générés puisque la membrane cellulaire de l’axone est exposée et qu’elle ne récupère pas de façon adéquate suite à la production de l’influx nerveux précédent. Cela est possiblement dû au fait que la membrane cellulaire neuronale n’arrive pas à maintenir une période réfractaire suite au déclenchement d’un potentiel d’action [54,57]. Dans la physiologie du processus de conduction d’un influx nerveux, la période réfractaire de la membrane neuronale est essentielle afin de prévenir que la membrane s’auto-active et que le flot du potentiel d’action voyage dans la bonne direction (de la périphérie vers le système nerveux central pour les neurones sensitifs) [54]. Si la membrane perd sa capacité réfractaire, elle a alors la possibilité de s’exciter par ses propres décharges électriques. Cela crée ainsi des influx nerveux ectopiques. Les influx qui sont produits à partir de sites de décharge ectopiques voyagent dans les deux directions le long du
nerf. Les potentiels d’action qui voyagent dans le sens inverse de la normalité (du système nerveux central vers la périphérie pour les neurones sensitifs) s’appellent des influx antidromiques. Ils proviennent des segments de nerf qui ont été démyélinisés par un traumatisme. Ils ont été observés à la fois chez les animaux et chez les humains souffrant de paresthésies [49,58,59]. Lorsque les influx qui voyagent en sens inverse rencontrent les sites démyélinisés, ils peuvent à ce moment déclencher d’autres décharges. Dans certaines circonstances, un influx voyageant en sens inverse peut même être réfléchi lorsqu’il atteint les récepteurs périphériques, rebondir, et revenir sur ses pas [48]. La présence de plusieurs sites de génération des influx et la réflexion de ceux-ci ajoute à la complexité, à la sévérité et à la durée des phénomènes de sensibilité anormale.

Les zones de démyélinisation sont des endroits où les fibres nerveuses ont perdu leur isolation protectrice, laquelle les empêche d’être influencées par l’activité électrique des autres fibres nerveuses adjacentes. Les zones de démyélinisation permettent donc la communication croisée entre des axones adjacents là où il n’y en aurait pas normalement [59–63]. La transmission d’un potentiel d’action d’une fibre nerveuse à l’autre de façon transversale s’appelle de la transmission ephaptique. L’ephapsis qui se produit aux endroits de démyélinisation serait la cause de l’étallement des sensations anormales à partir d’un site générant des influx nerveux ectopiques [64–66]. Même s’il a été démontré de façon expérimentale que la génération d’influx ectopiques et l’ephapsis sont observés sur des nerfs qui ont été démyélinisés par un traumatisme quelconque et que la génération d’influx aberrants corrèle parfois avec la symptomatologie clinique, il n’en demeure pas moins que le rôle étiologique de ces mécanismes dans la paresthésie et la dysesthésie reste spéculatif.

1.11.5 Réaction au niveau cellulaire

Chez l’adulte, la vulnérabilité du corps cellulaire d’un axone suite à une axotomie demeure encore controversée. Il semble que l’axotomie produirait un signal qui stimulerait une réponse du corps cellulaire du neurone. Cette réponse se traduirait par des changements dans la synthèse protéique, par une altération des organelles et par des changements de volume du corps cellulaire qui peuvent mener jusqu’à la mort cellulaire rétrograde [67]. Des études ont estimé que de 30 à 40 % des cellules situées dans un ganglion sensitif adulte meurent au bout de 160 jours après la section d’un nerf ([55,68]. Plusieurs études ont rapporté que les neurones sensitifs plus gros meurent davantage que les neurones sensitifs plus petits [69,70]. Par opposition à cela, presque toutes les études plus récentes ont démontré que les neurones sensoriels de toutes les tailles peuvent survivre à une transsection nerveuse [71,72].
1.11.6 Réaction au niveau des récepteurs

Peu d’études ont examiné le devenir des récepteurs sensitifs suite à un traumatisme nerveux. Il semble que les récepteurs tactiles permettant la sensation du toucher subissent une dégénérescence wallérienne synchrone à celle du segment nerveux distal [73]. Six mois après la transsection nerveuse, aucun récepteur tactile n’était histologiquement normal et ceux-ci présentaient une modification structurale due à une variation du tissu conjonctif les composant. Les récepteurs associés à la perception vibrotactile sont les plus vulnérables. Suite à la transsection d’un nerf gustatif, les récepteurs gustatifs (bourgeons gustatifs) dégénèrent et ne sont observés à nouveau que lorsque les fibres nerveuses gustatives régénèrent.

1.11.7 Réaction au niveau du ganglion

Suite au traumatisme d’un nerf périphérique, il est reconnu qu’il y a des modifications qui surviennent au niveau des champs terminaux au sein du système nerveux central [74]. Des études récentes ont démontré qu’il y a des modifications au niveau des neurotransmetteurs [75] et des modifications dans les propriétés des champs réceptifs [76]. Une désorganisation somatotopique [76] de même qu’une variété de changements surviennent dans la morphologie des microstructures du cerveau au niveau du tronc cérébral [77]. Il semblerait que les modifications mentionnées précédemment sont réversibles puisque presque toutes les altérations au niveau des neurotransmetteurs et les altérations anatomiques redeviennent normales en dedans de 60 jours suite au traumatisme [78]. Davantage d’études sont nécessaires sur le sujet.

1.11.8 Fibrose

Suite à un traumatisme nerveux, le processus de guérison génère un certain degré de fibrose qui peut être plus ou moins marqué. Millesi a proposé une classification des degrés variables de fibrose [79] (voir Tableau 2).

Tableau 2. Classification de Millesi de la fibrose. (Adapté de LaBanc et Gregg [15])

<table>
<thead>
<tr>
<th>Designation</th>
<th>Location</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>Epifascicular epineurium</td>
<td>Generally good</td>
</tr>
<tr>
<td>B*</td>
<td>Interfascicular epineurium</td>
<td>Depends on original damage</td>
</tr>
<tr>
<td>C*</td>
<td>Endoneurium In a Sunderland Class IV injury, the epineural connective tissue that maintains continuity can be infiltrated by a neuroma (IVN)</td>
<td>Poor</td>
</tr>
<tr>
<td>N</td>
<td>Continuity in Class IV injury maintained only by scar tissue</td>
<td>Poor</td>
</tr>
</tbody>
</table>

42
Classification des types de fibrose par Millesi

Millesi a décrit 5 types de fibrose résultant de la guérison d’un nerf suite à un traumatisme nerveux. Il les a nommés type A, B, C, N et S.

1.11.8.1 Fibrose de type A
La fibrose de type A touche l’épinèvre épifasciculaire et elle est associée à un bon pronostic de récupération.

1.11.8.2 Fibrose de type B
La fibrose de type B touche l’épinèvre interfasciculaire. Le pronostic de récupération est plus réservé et dépend des dommages initiaux infligés au nerf.

1.11.8.3 Fibrose de type C
La fibrose de type C s’étend à l’endonèvre et possède un pronostic de récupération plutôt mauvais.

Les types A, B et C peuvent être ajoutés comme indice modificateur dans la classification des traumatismes nerveux de Sunderland. On se souvient que la classification des traumatismes nerveux de Sunderland est basée uniquement sur l’importance des dommages tissulaires. On peut alors parler d’un traumatisme :

IA ou IB
IIA ou IIB
IIIA, IIIB ou IIIC

La fibrose de type N de Millesi (N pour neuroma qui est la traduction anglaise du mot nécrose) correspond à un traumatisme nerveux de quatrième degré de la classification de Sunderland dans lequel le tissu conjonctif de l’épinèvre demeure en continuité mais celui-ci est infiltré par un nécrome.

La fibrose de type S de Millesi (S pour scar tissu qui est la traduction anglaise de tissu cicatriciel) correspond à un traumatisme nerveux de quatrième degré de la classification de Sunderland dans lequel seul du tissu cicatriciel est retrouvé.

1.11.9 Névrome
Un névrome peut se développer suite à un traumatisme nerveux. Il est caractérisé par la présence désorganisée de micro-bourgeonnements de fibres nerveuses, par la présence d’une masse
désorganisée de collagène et par la formation de petits fascicules neuronaux orientés de façon aléatoire. Les névromes périphériques peuvent être classés en névrome d’amputation (moignon), en névrome central ou en névrome excentrique [80–83] (voir Figure 25). Nous ne développerons pas davantage sur les névromes puisque ce n’est pas le sujet de ce projet de recherche.

Figure 25. Différents types de névromes. (Adaptée de LaBanc et Gregg [15])

1.12 Perspective historique de la récupération nerveuse

Dans les années 60, Ralph Merrill a étudié la récupération nerveuse sensitive du nerf alvéolaire inférieur chez des chiens adultes suite à une compression et une décompression [84,85]. Ses études ont démontré une meilleure régénération axonale suite à la décompression rapide du nerf. Choukas et coll. ont rapporté une régénération axonale du nerf alvéolaire inférieur chez le chien adulte suite à une transsection [86]. Ces études histologiques semblent démontrer que le nerf trijumeau peut récupérer avec succès. Lors de la troisième Conférence Internationale sur la Chirurgie Buccale qui s’est tenue à New York en octobre 1968, Ralph Merrill a présenté des résultats encourageants et optimistes sur la réparation du nerf trijumeau effectuée sur 13 patients. Dans les années 70, les docteurs allemands; Hausamen, Reuther, Samii, Schmidseder et Haschemi ont été parmi les premiers chirurgiens maxillo-faciaux à rapporter un retour complet de la sensibilité suite à une microchirurgie reconstructrice du nerf trijumeau chez l’humain. Dans les années 80, il y a eu plusieurs rapports de cas et plusieurs descriptions de techniques chirurgicales pour la réparation du nerf trijumeau. Par contre, le suivi effectué pour documenter la récupération sensitive était
médiocre. En 1985, Peter Mozsary et coll. ont présenté des résultats intéressants sur la réparation du nerf alvéolaire inférieur [88].

1.13 Régénération nerveuse

1.13.1 Récupération axonale

La guérison des traumatismes nerveux est unique puisque le processus est davantage dépendant d’une réparation cellulaire que d’une réparation tissulaire. Quelques heures après une axotomie, de petites excroissances axoplasmiques commencent à faire protrusion aux extrémités des fibres nerveuses coupées [89]. Cette première réponse est limitée mais une seconde croissance de bourgeons axonaux survient dans les 2-3 jours qui suivent et semble exagérée. La seconde croissance de bourgeons axonaux génère 50 excroissances et plus par axone [90,91]. Ces excroissances terminales avancent distalement le long des tubes de cellules de Schwann. Les premières étapes de la régénération sont caractérisées par un nombre élevé d’excroissances axonales entrant dans une colonne de cellules de Schwann [91]. Quatre semaines après une reconnexion nerveuse chez l’animal, le nombre d’excroissances axonales diminue de 75 %. Après plusieurs mois, de nouveaux fascicules sont observés et ceux-ci sont entourés par un périnèvre et un épinèvre visibles [92]. Tout en progressant vers la périphérie, les excroissances neuronales sont en compétition afin d’aller rejoindre les récepteurs périphériques cutanés ou muqueux. Il existe des facteurs trophiques externes qui guident la régénération axonale. La régénération nerveuse peut être facilitée par un processus de tubulisation. Ce processus consiste à mettre en place un tube de silicone ou de silastic entre les extrémités du nerf lésé afin de guider la régénération axonale. Cela permet d’isoler la régénération nerveuse de l’environnement externe. Le phénomène de collatéralisation a été décrit plus récemment et est observé au sein des nerfs péri-oraux [93]. La collatéralisation est le phénomène par lequel la dégénérescence de fibres nerveuses est capable d’induire un bourgeonnement axonal collatéral auprès des fibres nerveuses adjacentes non lésées [94]. La régulation de la collatéralisation serait modulée par des facteurs locaux du tissu environnant. Il est intéressant de savoir que si le nerf lésé est capable de se régénérer, les fibres collatérales occuperont les récepteurs périphériques cutanés seulement de façon temporaire. Un nerf normal possède des propriétés d’inhibition pour la collatéralisation. Cela empêche les fibres nerveuses adjacentes d’aller innerver les récepteurs cutanés voisins. Cette propriété d’inhibition cesse suite à un traumatisme nerveux afin de permettre une compensation partielle de la diminution de sensibilité. La structure histologique clé dans la régénération axonale est la cellule de Schwann. Les cellules de Schwann se multiplient dans le segment nerveux distal et lorsqu’une excroissance axonale entre en contact avec l’une de ces cellules, celle-ci subit une cascade de changements qui déclenche la production de myéline [95]. Ce sont des signaux cellulaires qui dictent si l’axone qui régénère sera myélinisé ou non. Il a été prouvé que puisque la rémyélinisation est un
processus lent, les axones non-myélinisés régénèrent avant les axones myélinisés [34]. Suite à un traumatisme nerveux, les patients décrivent que la sensation de la douleur et de la température sont les premières sensations à récupérer. Cela s’explique par le fait que la perception de la douleur et la perception de la température voyagent via les fibres A-Delta et C qui sont petites et par le fait que les fibres C ne sont pas myélinisées. Par opposition au modèle animal, la repousse de l’axone chez l’humain ne serait pas linéaire et aurait un taux de croissance antérieur diminué dans les régions distales. Seddon et coll. ainsi que Buchthal et Khul ont noté que le taux de croissance moyen d’un axone chez l’humain est de 1 à 2 mm par jour [96,97]. Il n’y a pas vraiment de corrélation entre la durée théorique de la récupération nerveuse sur une certaine distance prédéterminée et la durée de la récupération nerveuse qu’il est possible d’observer cliniquement. La durée de la récupération nerveuse clinique est toujours plus longue que celle théorique.

1.13.2 Récupération cellulaire

Suite à un traumatisme nerveux, il est observé que les cellules deviennent hyperchromatiques pendant des semaines à des mois et que les corps de Nissl sont la structure intracellulaire prédominante à ce moment. Les corps de Nissl sont en fait du réticulum endoplasmique compact auquel sont attachés des ribosomes. Cela indique que, suite au traumatisme, la cellule est en important processus anabolique. Environ deux à trois semaines après un traumatisme, il y a beaucoup de synthèse d’acide ribonucléique (ARN) et la synthèse protéique est aussi augmentée. Il a été démontré que suite à une axotomie puis à une réanastomose immédiate du nerf mentonnier chez le rat :

- les cellules sensorielles correspondant au menton dans le ganglion trijumeau régénèrent et maintiennent une organisation somatotopique;
- la régénération axonale est un processus pouvant être amélioré grâce à une neurorraphie immédiate;
- même si la neurorraphie améliore la récupération nerveuse, ce ne sont pas toutes les cellules transséquées qui ont récupéré [98]. Dans une étude similaire, il a été démontré qu’un plus grand nombre de cellules récupèrent si la réparation nerveuse est immédiate plutôt que tardive [99].

1.13.3 Récupération des récepteurs

La réponse de régénération la plus impressionnante survient histologiquement au niveau des récepteurs tactiles [100]. Si la récupération est complète six mois après le traumatisme, les récepteurs tactiles cutanés qui ont récupéré ne sont pas différenciables de ceux qui n’ont pas été soumis au traumatisme. Les récepteurs tactiles, omniprésents sur la peau ont besoin de l’association avec des fibres nerveuses le plus tôt possible pour bien récupérer.
1.14 Récupération d’un traumatisme par écrasement

Dans presque toutes les études, le taux de croissance axonal est toujours meilleur et plus rapide suite à un traumatisme par écrasement à comparer à un traumatisme par axotomie [34]. Des changements minimes dans la taille des cellules et un faible taux de mort cellulaire sont observés lors d’un traumatisme par écrasement. Lorsqu’un écrasement nerveux survient, les axones se régénèrent bien en direction des récepteurs périphériques grâce au fait que les colonnes de cellules de Schwann ne sont pas perturbées et qu’elles guident la régénération axonale de façon efficace [93]. Il est possible de constater pourquoi un écrasement nerveux est associé à une récupération plus rapide et plus complète qu’une axotomie lorsqu’on regarde des coupes histologiques. C’est pour cela que les classifications des traumatisms nerveux s’efforcent de différencier le mécanisme de traumatisme; un traumatisme nerveux par écrasement n’a pas le même potentiel de récupération clinique qu’un traumatisme nerveux par transsection.

1.15 Évaluation d’un traumatisme nerveux

Lorsqu’il est question des nerfs péri-oraux, il est souvent difficile de distinguer un traumatisme par transsection (axotomie) d’un traumatisme qui ne sectionne pas le nerf. Puisque les fibres nerveuses cessent de conduire le potentiel électrique dans les premières 72 heures suite au traumatisme, il est presque impossible de différencier une démyélinisation due à une compression nerveuse (neurapraxie) d’une dégénérescence wallérienne avec des tubes de cellules de Schwann intacts (axonotmèse) ou d’une dégénérescence wallérienne proximale et distale avec des tubes de cellules de Schwann disparates (neurotmèse). On sait par contre que plusieurs facteurs sont nécessaires pour la récupération nerveuse :

- Survie des cellules ganglionnaires;
- Bourgeonnement de l’extrémité proximale;
- Prolifération des cellules de Schwann;
- Préservation des tubes endoneuraux;
- Connexion entre les bourgeonnements et les tubes;
- Croissance des bourgeonnements en direction antérieure à travers les tubes;
- Réinnervation des récepteurs;
- Maturation et myélinisation des fibres nerveuses et des récepteurs.

Suite à un traumatisme nerveux, si aucune récupération spontanée n’est observée au bout de trois à six mois ou si on note une récupération sensitive anormale au bout de trois à six mois (temps normalement requis pour la régénération axonale d’un nerf de 20 cm chez l’humain), on peut s’attendre à ce qu’il y ait eu une perte de continuité de quelques-uns ou de tous les éléments du nerf incluant les tubes de cellules de Schwann, le périnèvre ou l’épinèvre. Une réparation chirurgicale du nerf est alors indiquée. Dans un traumatisme nerveux moins sévère, par écrasement ou par compression, on s’attend à une restauration de la myéline ou à une croissance
guidée des axones à travers les tubes de cellules de Schwann intacts. La réinnervation de la zone cutanée prend de plusieurs semaines à six mois et elle est normalement bonne. Il est normal qu’il y ait de la collatéralisation tôt dans le processus de récupération suite à un traumatisme nerveux. Le résultat clinique est une diminution du diamètre de la zone anesthésiée ou une augmentation de la perception sensitive au niveau des marges du territoire cutané innervé par le nerf lésé. La collatéralisation est un phénomène attendu et bénéfique, mais elle peut parfois jouer des tours. La collatéralisation peut parfois être interprétée de façon erronée pour de la récupération nerveuse spontanée. La conséquence de cette interprétation est que la chirurgie réparatrice du nerf lésé peut malheureusement être retardée ou peut ne pas être faite alors qu’en réalité elle serait nécessaire.

1.16 Évaluation clinique des traumatismes du nerf trijumeau

L’altération de la sensibilité intra- orale ou de la région péri-orale est une séquelle reconnue des chirurgies maxillo-faciales dont entre autres l’OSMB. Le chirurgien buccal et maxillo-facial se doit donc d’être préparé pour prendre en charge un patient se plaignant d’un déficit sensitif dans le territoire innervé par le nerf trijumeau. La responsabilité du chirurgien consiste à diagnostiquer le déficit sensitif, à documenter son évolution dans le temps et à se prononcer sur le pronostic de récupération de celui-ci. Sa responsabilité consiste également à mettre en place un plan de traitement approprié ou à le référer à un collègue au besoin. L’évaluation neurosensorielle du patient est essentielle et elle se doit de comporter des méthodes de mesure objectives. Suite à la rencontre de plusieurs cliniciens dans le domaine de la chirurgie maxillo-faciale, un algorithme d’évaluation de la sensibilité dans le territoire du nerf trijumeau a été proposé [15]. Il s’agit d’un guide de pratique pour le diagnostic des altérations sensitives suite à un traumatisme du nerf trijumeau. Les trois étapes de cet algorithme sont :

1. Entretien avec le patient en mettant l’emphase sur l’évaluation subjective que le patient a de sa sensibilité et de sa fonction;
2. Examen physique;
3. Tests sensoriels cliniques.

1.16.1 Étape 1 : Entretien avec le patient (évaluation subjective)

L’évaluation clinique d’un patient qui se plaint d’une altération sensitive dans le visage débute avec l’identification de la présence ou non de douleur ou d’inconfort. Il faut tout d’abord distinguer si le patient a une dysesthésie (sensation anormale déplaisante) ou s’il a seulement une paresthésie (sensation anormale, souvent diminuée mais sans sensation déplaisante associée) (voir Figure 26).
Les réponses aux questions du tableau 3 permettent de préciser s’il s’agit d’une dysesthésie ou d’une paresthésie et si de la douleur ou de l’inconfort y sont associés spontanément ou lors de l’application d’un stimulus (voir Tableau 3).

TABLEAU 3. QUESTIONS POUR PRÉCISER L’ALTÉRATION SENSITIVE. (Adapté de LaBanc et Gregg [15])

1. Do you have altered feeling in the chin, lips, tongue, teeth, nose, and/or cheek? On the right and/or left sides?
2. How would you describe the altered feeling? Do you notice the altered feeling constantly or only when you touch the area, or chew, or talk?
3. Is there pain? Where? Is it transient or constant? Does it start spontaneously or is it evoked by touch, chewing, or speech? How long does it last after it starts? What exacerbates the pain? What relieves the pain?
Il est important que le patient décrite bien la sensation altérée qu’il ressent. On retrouve au tableau 4 plusieurs termes pouvant aider le patient à exprimer précisément ce qu’il ressent (voir Tableau 4).

TABLEAU 4. TERMES AIDANT LE PATIENT À EXPRIMER PRÉCISÉMENT CE QU'IL RESSEN**T. (Adapté de LaBanc et Gregg [15])**

<table>
<thead>
<tr>
<th>Numb</th>
<th>Stretched</th>
<th>Itching</th>
<th>Tender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tickling</td>
<td>Swollen</td>
<td>Prickling</td>
<td>Sore</td>
</tr>
<tr>
<td>Tingling</td>
<td>Woody</td>
<td>Stinging</td>
<td>Painful</td>
</tr>
<tr>
<td>Twitching</td>
<td>Crawling</td>
<td>Electric</td>
<td>Excruciating</td>
</tr>
<tr>
<td>Wet</td>
<td>Vibrating</td>
<td>Cold</td>
<td>Shocking</td>
</tr>
<tr>
<td>Rubber</td>
<td>Drawing</td>
<td>Hot</td>
<td>Burning</td>
</tr>
<tr>
<td>Cool</td>
<td>Pulling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il est primordial de bien questionner les patients afin d’identifier ceux qui présentent une composante douloureuse ou déplaisante associée à leur altération de la sensation. Cela est important pour deux raisons. La première raison est que ces patients sont évalués et pris en charge d’une façon différente de ceux souffrant de paresthésie non douloureuse. La seconde raison est que la composante douloureuse ou déplaisante ne peut être identifiée que de façon subjective et il est donc impossible de l’objectiver à l’aide de tests sensitifs.

1.16.1.1 Sensation altérée diminuée

Si la plainte d’un patient implique seulement une perte de sensation sans douleur ni inconfort associé, il faut suivre l’algorithme de gauche de la figure 26 et déterminer si le déficit est une hypoesthésie (diminution de la sensation en réponse à un stimulus) ou une anesthésie (absence complète de toute sensation en réponse à un stimulus). De plus, il faut déterminer s’il y a un déficit fonctionnel associé à l’altération sensitive ou non et également déterminer l’importance de celui-ci (absent, minimal, modéré ou sévère) (voir Tableau 5).
La douleur est la principale plainte des patients consultants pour demander une chirurgie réparatrice suite à un traumatisme nerveux [102]. Plusieurs études mentionnent que les patients consultent également pour des considérations fonctionnelles. Ghali et Epker ont rapporté que les patients insisterent sur le fait que leur altération de la sensation interfère avec la parole et l'alimentation [103]. Zuniga a rapporté que les patients consultants pour une chirurgie de réparation du nerf alvéolaire inférieur se plaignent de déficits fonctionnels pour manger, mastiquer et parler [104]. Robinson a rapporté que les patients ayant eu un traumatisme nerveux dont le mécanisme suspecté est une compression se plaignent de déficits fonctionnels peu différents de ceux des patients ayant eu une transsection de leur nerf [105].

1.16.1.2 Sensation altérée déplaisante

L’évaluation d’un patient se plaignant d’une sensation altérée qui est déplaisante débute par la différenciation à savoir si la douleur survient de façon spontanée ou si elle est déclenchée par un stimulus (voir Figure 26). Le stimulus peut être mécanique, thermique ou chimique. Il peut aussi être un mouvement effectué par le patient. À l’opposé, une dyesthésie spontanée peut être définie comme de la douleur ou de l’inconfort qui survient sans aucune influence externe. Une dyesthésie induite par un stimulus est facilement reconnaissable à l’histoire décrite par le patient. Par exemple, un stimulus douloureux qui serait normalement perçu comme légèrement douloureux (piqûre) peut évoquer une douleur aiguë exagérée (hyperalgésie). Un patient présentant de l’hyperalgésie mentionne que sa douleur est hors de proportion en réponse à un stimulus légèrement douloureux. Une douleur peut être ressentie suite à un stimulus non douloureux; il s’agit alors d’allodynie. Un
patient présentant de l’allodynie mentionne que la région affectée est douloureuse au simple toucher. Une douleur explosive et prolongée ressentie suite à la répétition d’un stimulus, que celui-ci soit douloureux ou non, même si la peau est hypoesthésique, s’appelle de l’hyperpathie. Un patient présentant de l’hyperpathie mentionne que la douleur est déclenchée par un stimulus physique mais que celle-ci persiste dans le temps malgré le retrait du stimulus (voir Tableau 6).

TABLEAU 6. DIFFÉRENTS TYPES DE DYSESTHÉSIES. (Adapté de LaBanc et Gregg [15])

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Stimulus Mode</th>
<th>Clinical Response/ Patient Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperalgesia</td>
<td>Noxious stimuli, usually mechanical (e.g., pin prick or scratch) or thermal (e.g., hot water)</td>
<td>Mild to severe pain, short duration, “pain out of proportion”</td>
</tr>
<tr>
<td>Alloodynia</td>
<td>Innocuous stimuli, usually mechanical (e.g., light touch)</td>
<td>Severe pain, short duration, “skin tender or painful to touch”</td>
</tr>
<tr>
<td>Hyperpathia</td>
<td>Noxious or innocuous stimuli, mechanical (e.g., stroke with finger) or thermal (e.g., ice or heat)</td>
<td>Pain with delayed onset, radiating, summing, overshooting, prolonged, “pain lingers or persists”</td>
</tr>
</tbody>
</table>

1.16.2 Étape 2 : Examen physique

Il faut procéder à un examen physique du patient. Le patient se doit d’avoir un examen complet de la tête et du cou de même qu’un examen complet intra-oral. Lors d’un traumatisme aigu, la plaie devrait être inspectée méticuleusement afin d’obtenir de l’information sur le degré et l’étendue du traumatisme nerveux. Il faut rechercher une évidence de transsection nerveuse complète. La texture, la couleur et la consistance de la peau ou de la muqueuse innervée par le nerf traumatisé devraient être évaluées et documentées. Puisque des changements atrophiques sont fréquemment associés à des douleurs médiées par le système nerveux sympathique [102,106], on devrait chercher des signes d’œdème, d’érythème, d’hypohydrose, d’hyperkératose, d’ulcération de même que des signes de présence de lésions herpétiques récurrentes. On devrait aussi rechercher des signes de traumatismes répétés (cicatrices de morsures fréquentes). Des traumatismes répétés et non intentionnels à la langue, à la muqueuse jugale ou à la lèvre indiquent la présence d’une zone cutanée ou d’une zone muqueuse dépourvue de sensation. Dans cette situation, les mécanismes protecteurs et proprioceptifs normaux sont anatomiquement ou fonctionnellement absents, ce qui suggère un traumatisme nerveux de quatrième ou de cinquième degré selon la classification de Sunderland. Il faut ensuite procéder à la palpation et à la percussion de la zone où la sensation est altérée. Une fois, la phase aigüe du traumatisme passée, le tissu vis-à-vis le nerf ou le tissu tout
juste distal au site du traumatisme nerveux devrait être percuté à la recherche de l’une des quatre réponses suivantes :

1. Une sensation dysesthésique, des picotements ou une sensation de chocs électriques pouvant être déclenchés mais limités au site percuté;
2. Une sensation de chocs électriques pouvant irradier dans le territoire cutané périphérique innervé par le nerf lésé;
3. Une sensation non douloureuse mais irradiante pouvant émaner du site percuté;
4. Aucune réponse anormale au site percuté (rarement).

Il est à noter qu’une réponse gâchette est souvent retrouvée lorsque le nerf lingual, le nerf infra-orbitaire ou le nerf mentonnier est traumatisé. Cette trouvaille est rare lorsqu’il y a traumatisme à un nerf qui a un trajet intra-osseux comme le nerf alvéolaire inférieur.

1.16.3 Étape 3 : Tests cliniques sensoriels

Les objectifs de la prise en charge et du traitement des patients ayant des dysesthésies ou de la douleur sont différents des objectifs visés chez les patients ayant simplement une hypoesthésie ou une anesthésie. Le clinicien verra à atténuer la douleur chez les patients du premier groupe tandis que le but sera d’améliorer la fonction sensitive chez les patients du second groupe. Puisque l’algorithme ne peut s’appliquer de façon identique pour chaque groupe de patient, il est recommandé de tester différemment les patients de chacun des deux groupes. Dans le groupe de patients ayant une diminution de la sensibilité mais sans douleur associée, le but est de déterminer l’étendue et l’importance du déficit sensoriel. Pour ce qui est du groupe de patients ayant une diminution de la sensibilité associée à de la douleur, le but est en plus de déterminer si la douleur a une composante centrale ou autonome. Chaque test doit être effectué à la fois sur la zone où la sensibilité est perturbée de même que sur une zone contrôle où la sensibilité est normale [107–110]. Les tests et les enregistrements des résultats prennent une trentaine de minutes à compléter. Si aucune dysesthésie ou si aucune douleur n’a pu être mise en évidence à l’histoire, il faut suivre les étapes de l’algorithme intitulé « diminution de la sensibilité » (voir Figure 27). Si des dysesthésies ou de la douleur sont associées à la diminution de la sensibilité, les tests qu’il faut faire sont décrits dans l’algorithme intitulé « sensation altérée déplaisante » (voir Figure 28).
FIGURE 27. ALGORITHMME POUR L’ÉVALUATION D’UNE DIMINUTION DE LA SENSIBILITÉ. (Adaptée de LaBanc et Gregg [15])

FIGURE 28. ALGORITHMME POUR L’ÉVALUATION DES DYSESTHÉSIES. (Adaptée de LaBanc et Gregg [15])
1.16.3.1 Diminution de la sensibilité

Trois niveaux de tests (niveau A, B et C) sont recommandés chez les patients ayant une diminution de la sensibilité sans dysesthésie. Le niveau A consiste à évaluer la discrimination tactile directionnelle ainsi que la discrimination entre deux points. Le niveau B consiste à évaluer la détection du contact. Le niveau C consiste à évaluer la capacité à percevoir la douleur. L’objectif de ces tests est de quantifier l’importance du déficit sensitif; il peut être léger, modéré, sévère ou complet (anesthésie). Chaque patient ne doit pas nécessairement passer tous les tests; on quitte l’algorithme de tests dès que suffisamment d’informations sont accumulées afin de pouvoir quantifier l’importance du déficit sensitif chez le patient. Cela est possible grâce au fait que plus on avance dans l’algorithme (passage du niveau A au niveau B puis au niveau C), moins les tests de fonction sensitive effectués sont discriminants. Conséquemment, le passage du niveau A au niveau C, tout en maintenant des résultats anormaux aux tests, suggère un déficit sensitif de grade de plus en plus important.

1.16.3.2 Tests de niveau A

Les tests de niveau A consistent en l’évaluation de la discrimination tactile directionnelle et en l’évaluation de la discrimination entre deux points. La discrimination tactile directionnelle est évaluée en bougeant les poils d’une petite brosse souple appuyés à la surface de la peau dans une certaine direction sur une certaine distance. Quinze essais sont effectués sur le site cutané testé et sur un site contrôle. Le pourcentage d’identifications correctes de la direction est noté. Normalement, le patient devrait avoir 90 à 100 % de bonnes réponses sur le site contrôle. Si le patient obtient 50 à 75 % de bonnes réponses sur le site testé, il est jugé comme étant moins sensible à la direction du mouvement que sur le site contrôle. Le test de la discrimination entre deux points est effectué en appliquant à la surface de la peau du patient un instrument permettant d’avoir un ou deux points de contact. La distance entre les deux points de contact est modifiable sur l’instrument. Le but du test est de déterminer la distance minimale entre les deux points de contact que le patient est capable de percevoir comme étant deux points de contact et non un seul point de contact. Les instruments recommandés pour ce test sont une jauge Boley modifiée à pointes fines [111,112], un Disk-Criminator [107,108,113] ou un aesthésiomètre à deux points de pression [103]. Pour dire qu’il y a anormalité dans la discrimination spatiale, la distance entre les deux points de contact que le patient est capable de percevoir comme étant deux points de contact distincts doit être de plus de 250 % de celle du site contrôle ou excéder de deux écarts-types les valeurs normales publiées dans la littérature pour le site en question (voir Tableau 7).
TABLEAU 7. VALEURS NORMALES POUR LES RÉSULTATS À DIFFÉRENTS TESTS SENSITIFS TACTILES.
(Adapté de LaBanc et Gregg [15])

<table>
<thead>
<tr>
<th>Orofacial Anatomic Site</th>
<th>Force Threshold(^{a}) (1 + log[mg-wgt])</th>
<th>Upper Limit(^{b}) (MM)</th>
<th>Static 2PDT (^{c}) (mm)</th>
<th>Upper Limit(^{b}) (MM)</th>
<th>Moving 2PDT (^{d}) (mm)</th>
<th>Upper Limit(^{b}) (MM)</th>
<th>Direction Discrimination (% correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forehead</td>
<td>1.95 + 0.19(^{a})</td>
<td>2.44</td>
<td>13.4 + 1.4(^{a})</td>
<td>13.9 + 6.4(^{a})</td>
<td>9.9 + 3.9(^{a})</td>
<td>11.8 + 1.3(^{a})</td>
<td>17</td>
</tr>
<tr>
<td>Cheek</td>
<td>1.84 + 0.15(^{a})</td>
<td>2.44</td>
<td>9.0 + 1.1(^{a})</td>
<td>9.0 + 1.5(^{a})</td>
<td>7.9 + 1.2(^{a})</td>
<td>8.9 + 3.3(^{a})</td>
<td>13</td>
</tr>
<tr>
<td>Upper lip (hairy)</td>
<td>1.81 + 0.14(^{a})</td>
<td>2.36</td>
<td>3.3 + 1.4(^{a})</td>
<td>4.3 + 0.7(^{a})</td>
<td>3.8 + 0.7(^{a})</td>
<td>7.0 + 1.8(^{a})</td>
<td>5</td>
</tr>
<tr>
<td>Upper lip (red)</td>
<td>2.38 + 0.32(^{a})</td>
<td>2.83</td>
<td>2.0 + 0.7(^{a})</td>
<td>3.0 + 0.6(^{a})</td>
<td>4.2 + 1.2(^{a})</td>
<td>7.0 + 1.7(^{a})</td>
<td>6</td>
</tr>
<tr>
<td>Lower lip (red)</td>
<td>2.26 + 0.36(^{a})</td>
<td>2.83</td>
<td>2.7 + 1.0(^{a})</td>
<td>3.0 + 0.7(^{a})</td>
<td>3.5 + 1.4(^{a})</td>
<td>4.5 + 1.1(^{a})</td>
<td>6</td>
</tr>
<tr>
<td>Lower lip (hairy)</td>
<td>1.95 + 0.19(^{a})</td>
<td>2.83</td>
<td>4.6 + 1.6(^{a})</td>
<td>5.4 + 0.8(^{a})</td>
<td>5.1 + 1.6(^{a})</td>
<td>7.0 + 2.0(^{a})</td>
<td>100(^{a})</td>
</tr>
<tr>
<td>Chin</td>
<td>1.95 + 0.19(^{a})</td>
<td>2.83</td>
<td>9.5 + 4.3(^{a})</td>
<td>18</td>
<td>7.9 + 2.8(^{a})</td>
<td>14</td>
<td>100(^{a})</td>
</tr>
<tr>
<td>Tongue tip</td>
<td>1.95 + 0.50(^{a})</td>
<td>2.83</td>
<td>2.2 + 0.8(^{a})</td>
<td>4.5</td>
<td>3.0 + 0.9(^{a})</td>
<td>12</td>
<td>100(^{a})</td>
</tr>
<tr>
<td>Tongue dorsum</td>
<td>2.53 + 0.85(^{a})</td>
<td>3.84</td>
<td>3.9 + 2.0(^{a})</td>
<td>5.0 + 2.2(^{a})</td>
<td>9.0 + 5.1(^{a})</td>
<td>12</td>
<td>100(^{a})</td>
</tr>
</tbody>
</table>

\(^{a}\)Contact detection threshold as determined with Semmes-Weinstein aesthesiometers.
\(^{b}\)Stiffest threshold filament at each test site consistent with normal sensitivity based on the literature and the authors’ experiences.
\(^{c}\)MM represents the manufacturer’s marking on the acrylic rod to which the filament is attached.
\(^{d}\)Greatest threshold separation (in mm) at each test site consistent with normal static two-point discrimination based on the literature and the authors’ experiences.
\(^{e}\)Greatest threshold separation (in mm) at each test site consistent with normal moving two-point discrimination based on the literature and the authors’ experiences.
\(^{f}\)Estimate applies to test site located on the midline. (Most estimates in table apply to test sites on the right and left sides of the face.)

L’évaluation que procurent les deux tests de niveau A (capacité de discrimination tactile directionnelle et capacité de discrimination entre deux points) permet d’estimer le degré de traumatisme aux éléments du tissu conjonctif nerveux (épinèvre, périnèvre et endonèvre). Chacun des deux tests évalue la densité de l’innervation sensitive périphérique, la grandeur des récepteurs sensitifs ainsi que l’ordre somatotopique. Un patient ayant de mauvais résultats au test de discrimination tactile directionnelle (< 80 %) et dont la mesure de discrimination entre deux points est jugée anormalement grande est classé d’après les tests de niveau A comme ayant une capacité sensorielle altérée. Par opposition, si un patient a des valeurs normales pour les deux tests
objectifs de niveau A, il est classé comme étant normal. Il est alors inutile de lui faire subir des tests supplémentaires puisqu’il ne peut bénéficier d’aucune intervention médicale ni chirurgicale pour améliorer sa sensibilité [112]. Il est à noter que les termes « capacité sensorielle altérée » et « normal » réfèrent à la capacité sensorielle du patient mesurée objectivement à l’aide des tests et non à ce que le patient rapporte subjectivement sur sa sensibilité, qui elle, peut être altérée. Le patient classé comme ayant une capacité sensorielle altérée d’après les tests de niveau A doit être évalué par le test de niveau B.

1.16.3.3 Test de niveau B

Le test de niveau B consiste en la détermination du seuil minimal de pression qu’un patient est capable de ressentir au niveau de sa peau. La détermination du seuil de perception de la pression se fait dans le territoire innervé par le nerf lésé de même que sur un site contrôle. Ce test s’effectue à l’aide des monofilaments de Semmes-Weinstein (test de Von Frey) et il donne des résultats en unité de force. Le seuil minimal de pression mesurée au site testé est jugé plus grand que celui mesuré au site contrôle s’il est au moins 250 % de la valeur mesurée au site contrôle ou si la valeur excède de deux écarts-types les valeurs normales publiées dans la littérature pour le site en question. Puisque seulement quelques potentiels d’action au sein de quelques axones régénérés sont nécessaires afin de détecter un contact, une valeur de seuil de perception de la pression normale confirme un degré minimal de continuité nerveuse. Dans ce sens, un seuil de perception de la pression anormal reflète un dommage nerveux significatif. Un patient ayant un seuil de détection de la pression normale est classé comme ayant une capacité sensorielle légèrement altérée et aucun autre test n’est nécessaire. Un patient ayant un seuil de détection de la pression élevé est classé d’après le test de niveau B comme ayant une capacité sensorielle modérément altérée. Le patient classé comme ayant une capacité sensorielle modérément altérée d’après le test de niveau B doit subir les tests de niveau C.

1.16.3.4 Tests de niveau C

Les tests de niveau C consistent en l’évaluation de la capacité à percevoir la douleur suite à un stimulus mécanique ou thermique. La douleur mécanique peut être produite par une piqûre à l’aide d’une aiguille mais cette méthode est peu recommandable. La mesure est très subjective (le patient dit ressentir ou non une douleur vive), il en résulte un saignement de la zone testée [103] et le stimulus n’est pas quantifiable. Alternativement, un algomètre peut être employé afin de mesurer la force nécessaire requise pour induire une douleur mécanique [114]. Lorsque le patient dit ne pas ressentir de douleur en réponse à un stimulus mécanique capable de déclencher de la douleur au site contrôle, il s’agit d’une réponse anormale. Afin d’évaluer la capacité à percevoir la douleur, l’utilisation d’un stimulateur thermique s’avère utile. Pour plusieurs sites du visage, la température
normale à laquelle de la douleur est ressentie a été répertoriée. On parle d’une réponse à la douleur thermique anormale lorsque la température à laquelle un patient ressent de la douleur est significativement plus haute que celle requise pour le site contrôle ou si elle est significativement plus haute que les valeurs normales répertoriées. Le but de mesurer la perception de la douleur est d’évaluer l’intégrité des fibres nerveuses finement myélinisées et non myélinisées qui sont reconnues pour transmettre l’information sur la douleur et la température. Puisque la capacité de percevoir la douleur est la première fonction sensitive à récupérer suite à un traumatisme nerveux [115], la présence d’un seuil anormalement élevé de détection de la douleur au site testé classe le patient comme ayant une capacité sensorielle sévèrement altérée et hypoalgésique. Un patient ayant un seuil de détection de la douleur normal d’après les tests de niveau C garde son diagnostic de niveau B (capacité sensorielle modérément altérée). Une absence complète de réponse aux tests de niveau C indique que le patient a une capacité sensorielle inexistante ou qu’il est anesthésique (voir Figure 27 et Tableau 8).

Tableau 8. Explications de l’algorithme pour l’évaluation d’une diminution de la sensibilité.

(Adapté de LaBanc et Gregg [15])

Il existe aussi un algorithme pour l’évaluation des dysesthésies (voir Figure 28). Il ne sera pas présenté en détail puisque l’évaluation des dysesthésies sort du cadre de ce travail. Celui-ci est constitué de trois niveaux d’évaluation (A, B et C). Le niveau A consiste à déterminer si un stimulus non douloureux (passage des poils d’une petite brosse sur la peau) déclenche une douleur au sein du site testé. Le niveau B consiste à déterminer si une douleur est déclenchée lorsque le site testé est touché de façon répétitive et le niveau C consiste à évaluer la capacité de perception de la douleur (stimulus mécanique ou thermique).
1.17 Ostéotomie sagittale mandibulaire bilatérale

1.17.1 Historique

Le développement d’ostéotomies pour la correction de difformités dento-faciales a beaucoup progressé au fil des ans. Il semblerait que ce soit Simon Hullihen qui fut le premier à décrire une ostéotomie mandibulaire en 1849. Il a corrigé la malocclusion d’un patient ayant une béance antérieure et une protrusion dento-alvéolaire mandibulaire à l’aide d’une ostéotomie par approche intra-orale. Sa chirurgie était similaire à celle actuellement décrite comme étant une ostéotomie sub-apicale antérieure.[116].

C’est environ une cinquantaine d’années plus tard que Angle a décrit une ostéotomie du corps mandibulaire qui fut réalisée par Blair afin de corriger un excès horizontal mandibulaire (voir Figure 29) [117,118]. Cette technique fut utilisée jusque dans les années 1970 sans trop de modifications. Depuis ce temps, les seules modifications majeures à la chirurgie d’ostéotomie du corps mandibulaire ont été de mettre l’emphase sur la préservation du nerf alvéolaire inférieur lors de la chirurgie et d’utiliser une approche intra-orale. À l’époque, l’ostéotomie horizontale de la branche montante popularisée par Blair était effectuée par approche extra-orale.[119].

![Figure 29. OSTÉOTOMIE DE LA BRANCHE MONTANTE DÉCRITE PAR BLAIR. (Adaptée de Miloro [3])](image)

Cette chirurgie était utilisée dans le but de corriger à la fois un déficit horizontal et un déficit vertical à la mandibule. Vingt-cinq ans plus tard, Ernst a décrit la technique par approche intra-orale.[120]). Cette technique chirurgicale fut utilisée pendant de nombreuses années mais elle a cessé d’être utilisée à cause du manque de stabilité post-opératoire. L’ostéotomie sous-condylienne décrite par Limberg, qui était effectuée via une approche extra-orale, a seulement bénéficié de raffinements.
mineurs pour devenir l’ostéotomie sous-condylienne verticale intra-ora

de que l’on connait aujourd’hui [121] (voir Figure 30).

![Diagram](image.png)

Figure 30. Ostéotomie oblique de la branche montante décrite par Limberg. (Adaptée de Miloro [3])

Il y a par contre eu un nombre substantiel de façons qui ont été décrites pour effectuer une ostéotomie passant à travers la branche montante mandibulaire. Le nom de ces ostéotomies varie en fonction de la longueur et de la direction de la coupe qui est faite à la portion postérieure de la branche montante (voir Figure 31).

![Diagrams](images.png)

Figure 31. Trois différentes façons d’effectuer une ostéotomie passant à travers la branche montante mandibulaire. (Adaptée de Miloro [3])

Le terme d’ostéotomie sous-condylienne était initialement réservé pour décrire l’ostéotomie du col condylien pratiquée par Kostecka et Moose [122,123]. Le terme d’ostéotomie oblique était utilisé
lorsqu’une coupe plus longue s’étendait au rebord postérieur de la branche montante au-dessus de l’angle mandibulaire tel que décrit par Limberg, Thoma et Robinson (120-125). Un peu plus tard, Caldwell et Letterman ont décrit une ostéotomie verticale de la branche montante dont la coupe passe de l’échancrure sigmoïde jusqu’au rebord inférieur de la mandibule devant l’angle mandibulaire (126). La coupe était pratiquée derrière le foramen mandibulaire et une portion du cortex latéral du fragment distal était décortiquée afin de permettre une zone de contact osseux plus grande.

De nos jours, les termes ostéotomie verticale sous-condylienne et ostéotomie verticale de la branche montante sont utilisées de façon interchangeable dans la littérature. Initialement, ce type d’ostéotomie servait à la correction d’un excès horizontal mandibulaire. L’approche intra- orale pour une ostéotomie sous-condylienne est relativement nouvelle et a été décrite par Moose en 1964 (123). Cette approche est devenue populaire depuis que Hebert et coll. ont décrit l’utilisation d’une scie oscillante dans la technique chirurgicale (127,128). Une variante de l’ostéotomie verticale sous-condylienne a été suggérée par Wassmund en 1927 (129). La chirurgie est semblable à l’ostéotomie en L inversée connue aujourd’hui (voir Figure 32).

FiguRE 32. OSTÉOTOMIE EN L INVERSÉ DE LA BRANCHE MONTANTE MANDIBULAIRE. (Adaptée de Miloro [3])

Caldwell et coll. ont modifié l’ostéotomie en L inversé en ajoutant une coupe horizontale tout juste au-dessus du rebord inférieur de la mandibule afin de créer la chirurgie qu’on appelle aujourd’hui l’ostéotomie en C (130) (voir Figure 33).
Figure 33. Ostéotomie en C de la branche montante mandibulaire. (Adaptée de Miloro [3])

Hayes a par la suite modifié la technique chirurgicale en séparant la partie inférieure de façon sagittale afin d’obtenir un contact osseux plus grand [131]. Fox et Tilson ont subséquemment décrit l’ostéotomie en L modifié [132]. Ils ne faisaient pas la coupe horizontale supérieure de l’ostéotomie en C et prolongeaient à la place la coupe verticale vers l’échancrure sigmoïde.

La plus grande évolution au niveau des ostéotomies de la branche montante mandibulaire est le développement de l’ostéotomie sagittale qui a été décrit par Obwegeser et Trauner en 1955 [133]. L’OSMB est devenue au fil du temps la procédure chirurgicale orthognathique mandibulaire la plus populaire. Schuchardt a obtenu le crédit d’avoir développé l’approche intra-ora le de cette chirurgie [134]. Lane avait décrit une chirurgie similaire auparavant, mais son approche était extra-ora le (voir Figure 34).

Figure 34. Ostéotomie par approche intra-ora le décrite par Lane. (Adaptée de Miloro [3])

Il avait développé l’ostéotomie sagittale en proposant des coupes horizontales parallèles, mais pas au même niveau, à travers le cortex médial et le cortex latéral de la branche montante [135]. La coupe médiale se situe au-dessus du lingula et la coupe latérale à environ 1 cm sous celle-ci. Cette
idée a été reprise et améliorée par Schuchardt avant d’être raffinée et popularisée par Obwegeser[134]. Obwegeser et Trauner ont décrit la technique intra-orale incluant une coupe horizontale médiale située tout juste au-dessus du lingala et une coupe horizontale latérale plus basse que celle de Schuchardt (au moins 25 mm sous la coupe horizontale médiane), celle-ci s’étendant jusqu’à un point situé juste au-dessus de l’angle mandibulaire (voir Figure 35).

Un ostéotome est utilisé afin d’obtenir une séparation entre le cortex médial et le cortex latéral tout en prenant soin de préserver le paquet vasculo-nerveux alvéolaire inférieur. Obwegeser a par la suite proposé encore une autre modification à la technique chirurgicale. Celle-ci angulait la coupe latérale encore plus en direction du rebord inférieur de la mandibule (voir Figure 36).

Les modifications majeures du design de l’OSMB qui sont encore utilisées de nos jours ont été proposées par DalPont. Il a décrit une coupe horizontale médiale au-dessus du lingala qui n’a pas
besoin de se rendre jusqu’au rebord postérieur de la mandibule et une coupe verticale à travers le cortex latéral derrière la deuxième molaire (voir Figure 37).

Figure 37. Modification de l’OSMB décrite par DalPONT. (Adaptée de Miloro [3])

La séparation postérieure de la mandibule se fait juste derrière le lingula au niveau de la gouttière mylo-hyoïdienne à la place d’être faite derrière le rebord mandibulaire postérieur. Cette technique raccourcit la séparation de la mandibule et, tel que mentionné par Hunsuck, minimise les traumatismes aux tissus mous de la région [136]. Au cours des années, plusieurs cliniciens ont proposé des suggestions afin d’améliorer l’ostéotomie sagittale, mais la seule innovation majeure à la technique à ce jour est l’utilisation de la fixation interne rigide. Spiessl a suggéré l’utilisation de vis pour la fixation des fragments dans l’ostéotomie sagittale [137]. Même si la fixation des fragments osseux à l’aide de fils métalliques est encore parfois utilisée de nos jours par certains chirurgiens, la fixation interne rigide est devenue la technique standard pour l’OSMB. L’historique des ostéotomies du corps mandibulaire ainsi que des ostéotomies alvéolaires mandibulaires ne sera pas traité ici puisque cela s’éloigne du sujet traité dans cet ouvrage.

Lors de la réalisation d’ostéotomies de la mandibule, il est essentiel de minimiser le plus possible les traumatismes à la 3e division du nerf trijumeau (nerf alvéolaire inférieur). Le trajet du nerf alvéolaire inférieur au sein de la branche montante puis au sein du corps de la mandibule le rend extrêmement susceptible d’être traumatisé au cours de presque toutes les chirurgies mandibulaires. Le but ultime du chirurgien maxillo-facial est de minimiser les traumatismes au nerf alvéolaire inférieur puisqu’il est presque impossible de les éviter complètement. Dans le passé, les chirurgiens mettaient de l’emphase sur l’importance de visualiser le nerf lors de la chirurgie et de le dégager au
moment où il entre et au moment où il sort de la mandibule avant de procéder à l’ostéotomie dans la région des foramens. La tendance actuelle est de ne plus procéder de la sorte à moins qu’il soit absolument nécessaire de pratiquer l’ostéotomie très près du nerf. Le simple fait d’exposer le nerf semble augmenter les chances d’observer un déficit sensoriel en post-opératoire. Le débat à savoir s’il est préférable d’opter pour une façon en particulier d’effectuer l’ostéotomie est basé sur le risque potentiel de traumatisme au nerf alvéolaire inférieur lors de l’exécution de la chirurgie. Cela a amené les cliniciens à vouloir mesurer les traumatismes nerveux associés à chaque technique d’ostéotomie mandibulaire. Des standards bien définis pour le suivi à court et à long terme des traumatismes nerveux suite à une ostéotomie mandibulaire ont été proposés \[138\]. Par contre, ils ont été peu utilisés. Très peu d’études contrôlées comparant les procédures d’ostéotomies mandibulaires ont été publiées. Il est donc difficile de se prononcer sur les impacts que les différentes modifications apportées aux ostéotomies mandibulaires peuvent avoir sur les traumatismes nerveux.

1.17.2 Indications

L’OSMB est utilisée en chirurgie orthognathique afin de corriger une grande diversité d’anomalies mandibulaires. Grâce à une OSMB, il est possible de corriger un déficit ou un excès horizontal mandibulaire, une pente (cant), une asymétrie faciale et une déviation des lignes médianes. Une OSMB peut également être nécessaire afin d’accommoder l’occlusion. Tous ces types d’anomalies mandibulaires se corrigent bien grâce à une OSMB puisque la chirurgie permet la réalisation de presque tous les mouvements possibles au niveau de la branche montante de la mandibule.

1.17.3 Fixation rigide

Plusieurs variations dans la technique chirurgicale de l’OSMB existent quant à l’utilisation ou non d’une fixation osseuse et lorsqu’il est question du choix concernant le type de fixation à utiliser \[133,136,139,140\]. La technique originale décrite par Obwegeser utilisait des fils d’acier placés à travers les cortex latéral et médial \[141\]. Cette technique, avec quelques petites variantes, était le standard pour fixer l’OSMB jusqu’à l’apparition des plaques et vis dans les années 70 \[142\]. Afin de mieux contrôler le mouvement du fragment proximal, il a été suggéré d’utiliser des fils métalliques circum-mandibulaires ou des fils placés au rebord inférieur de la mandible \[143\]. Il n’existe aucune évidence scientifique prouvant que l’une ou l’autre de ces techniques de fixation possède un avantage pour minimiser les complications \[137\]. Spiessl a introduit en 1974 l’utilisation de vis afin de fixer de façon interne et rigide lors d’une OSMB \[137\]. Il existe une grande variété de méthodes et de matériel d’ostéosynthèse pour fixer lors d’une OSMB. Initialement, l’utilisation de trois vis compressives était préconisée de chaque côté. La technique de la vis compressive est réalisée en perçant un trou dans le cortex latéral qui n’est pas du même diamètre que celui percé dans le
Le trou dans le cortex latéral est percé à l’aide d’une mèche dont le diamètre est un peu plus grand que celui de la vis, alors que le trou percé dans le cortex médial est à peine plus petit que le diamètre de la vis. La vis compressive est mise en place dans le trou du cortex latéral en passant du latéral vers le médial. Cette vis n’est pas à serre dans le trou du cortex latéral et elle peut y tourner librement. La vis est par la suite vissée dans le trou du cortex médial en passant toujours du latéral vers le médial. La vis mord bien dans le cortex médial. Plus la vis s’enfonce dans le cortex médial, plus l’espace entre le fragment proximal et le fragment distal diminue. Ce type de fixation sert à comprimer le fragment proximal sur le fragment distal (voir Figure 38). La compression entre les deux fragments semble être importante afin de diminuer le temps de guérison et améliorer la stabilité des fragments. Par contre, cette compression peut créer des traumatismes au nerf alvéolaire inférieur se trouvant entre les deux fragments. De plus, ce type de fixation peut déplacer les condyles mandibulaires ou leur induire des forces non nécessaires, ce qui peut mener au développement d’une dysfonction des articulations temporo-mandibulaires [144,145].

Figure 38. Technique de fixation à l’aide d’une vis compressive. Le trou dans le cortex latéral est de diamètre plus grand que celui de la vis alors que le trou dans le cortex médial est de diamètre plus petit que celui de la vis. Le serrement de la vis crée une compression des fragments osseux l’un contre l’autre. (Adaptée de Miloro [3])

La technique alternative consiste à utiliser encore des vis, mais cette fois-ci placées de façon dite positionnelle [146]. La mise en place de vis de façon positionnelle est réalisée en perçant le trou dans le cortex latéral ainsi que le trou dans le cortex médial à l’aide de la même mèche ayant un diamètre à peine plus petit que celui de la vis. Cette technique permet de maintenir un espace entre le fragment proximal et le fragment distal lors de la fixation. Il est alors possible de stabiliser les fragments en évitant la compression entre ceux-ci.

Il n’y a pas de standardisation de la technique de fixation rigide interne de lors d’une OSMB. Il y a beaucoup de différences dans le diamètre et dans le nombre de vis utilisées, dans le matériel de composition des vis et dans l’utilisation de plaques en plus de l’utilisation de vis. La plupart des
études aux États-Unis montrent que trois vis de 2 mm de diamètre sont utilisées. La comparaison directe des différentes techniques de fixation est rare et ne démontre pas qu’une technique en particulier est avantageuse [147–149]. Une exception a été notée par Fujioka et coll. qui ont trouvé qu’il y avait plus de rotation au site d’ostéotomie lorsque des plaques fixées à l’aide de vis monocoverticales sont utilisées en plus des vis [150]. L’utilisation de vis résorbables fabriquées à partir d’acide polyglycolique a été tentée en Finlande mais cette technique de fixation n’est pas populaire.

1.17.4 Dommages nerveux lors de la chirurgie

Les traumatismes à la 3e division du nerf trijumeau (V3) font partie des risques connus et acceptés lors d’une OSMB. Ils surviennent en dépit de la meilleure technique chirurgicale utilisée et sont souvent le résultat d’une variation dans l’anatomie du nerf. L’incidence de traumatisme au nerf alvéolaire inférieur suite à une OSMB varie de 0,025 % à 84,6 % [15]. La grande variabilité de l’incidence rapportée est due aux différentes façons dont ont été menées les études, aux méthodes d’évaluation, à l’inconsistance des termes utilisés afin de décrire les perturbations sensitives et finalement aux méthodes parfois médiocres utilisées pour classifier le dommage nerveux. Les études avec le plus bas taux d’incidence de traumatismes à V3 suite à une OSMB utilisent des méthodes d’évaluation sensitive très sommaires et sont des études rétrospectives. Par contre, les études rapportant les plus hauts taux d’incidence utilisent des méthodes d’évaluation sensitive beaucoup plus sensibles et sont des études prospectives.

Puisqu’il n’y a pas de standardisation pour l’évaluation sensitive de V3, il est presque impossible de comparer les résultats d’une étude à l’autre. De plus, il y a souvent une grande différence entre le déficit sensitif ressenti par le patient et celui mesuré objectivement par le clinicien. Certains auteurs prétendent que le nerf trijumeau a un potentiel de récupération sensitive spontanée remarquable [151,152]. D’autres auteurs préconisent une approche chirurgicale précoce pour réparer les traumatismes nerveux du nerf trijumeau puisqu’ils évoquent que le nerf aurait un potentiel de récupération sensitive spontanée plutôt faible [153–155]. Les auteurs ne s’entendent pas sur le sujet pour trois raisons majeures. La première raison est qu’il n’existe aucune norme standardisée pour l’évaluation sensitive de V3. La seconde raison est que la documentation de la perturbation sensitive est souvent mal effectuée. La troisième raison est que dans les études, il y a une grande inconstance dans la terminologie utilisée afin de décrire les perturbations sensitives.

Afin de déterminer si une chirurgie est nécessaire pour réparer un traumatisme nerveux, il faut déterminer :

- la sévérité du traumatisme nerveux;
- la sévérité de la perturbation sensitive;
- s’il y a ou non présence de douleur neuropathique;
- s’il y a ou non présence de signes et symptômes de récupération nerveuse.
Il y a parfois des poursuites judiciaires suite à des traumatismes de la 3e division du nerf trijumeau laissant des altérations sensitives permanentes. Les perturbations sensitives permanentes peuvent grossièrement être classées en paresthésie, dysesthésie ou anesthésie. La paresthésie est une des causes les plus fréquentes de poursuite judiciaire aux États-Unis dans le domaine dentaire et dans le domaine maxillo-facial et elle est parmi les quatre raisons de poursuite judiciaire impliquant le plus d’argent. Les traumatisms nerveux font partie des risques de la plupart des chirurgies maxillo-faciales et c’est pourquoi il est impératif qu’il y ait une mention de ces risques dans un consentement éclairé.

La possibilité de traumatiser le nerf alvéolaire inférieur durant une OSMB est bien connue, mais depuis plusieurs années les chirurgiens tentent de minimiser cette complication. Kole a été le premier à décrire un taux d’incidence élevé de problèmes sensitifs à court terme suite à une OSMB même si la plupart des cliniciens rapportaient une très faible incidence de problèmes à long terme. Dans une étude objective des altérations sensitives observées suite à une OSMB, Walter et Gregg ont noté une incidence importante de déficits sensitifs. Plusieurs études rapportent des taux d’incidence variés de perturbations de la sensibilité en aigu et en chronique suite à une OSMB. Westermark et coll. ont évalué la sensibilité post-opératoire de 496 patients opérés via une OSMB. Ils ont tenté de voir s’il y a une corrélation entre l’importance du déficit sensoriel en post-opératoire et l’âge du patient, le mouvement mandibulaire, la technique chirurgicale utilisée, le type de fixation utilisé, le degré de manipulation du nerf pendant la chirurgie et finalement l’habileté du chirurgien. Une dysfonction nerveuse a été retrouvée chez 40 % des sujets de l’étude. L’âge des patients avait une influence significative sur la sévérité des altérations neurosensorielles de même que sur leur récupération. La manipulation du nerf lors de la chirurgie ainsi que l’expérience du chirurgien avaient des répercussions sur la dysfonction nerveuse en post-opératoire. Les autres variables n’avaient pas d’effets significatifs sur l’incidence des dysfonctions neurosensorielles.

Ylikontiola et coll. ont observé une corrélation positive entre la perte de sensation subjective et l’âge des patients, l’amplitude du mouvement mandibulaire et le degré de manipulation du nerf. Un certain nombre de recherches cliniques ont noté une relation significative entre l’âge du patient et la récupération nerveuse. Cette trouvaille a été remarquée rapidement par MacIntosh qui n’utilise pas la technique de l’OSMB chez les patients âgés de plus de 40 ans. Van Sickels et coll. ont rapporté que les patients qui subissent une chirurgie du menton en plus d’une OSMB avaient une plus grande perte de sensibilité à court terme suite à la chirurgie.

Malheureusement, la grande variabilité entre les protocoles de mesure des altérations sensitives suite à une OSMB rend les différentes études sur le sujet difficilement comparables. Il est, par conséquent, également difficile d’évaluer les différentes techniques d’OSMB qui prétendent...
diminuer l’incidence des traumatismes nerveux. White et coll. ont démontré que lors de la chirurgie d’OSMB, les traumatismes au nerf alvéolaire inférieur surviennent plus fréquemment lors de deux moments en particulier. Le premier moment est lors de la rétraction médiale des tissus mous ainsi que du nerf lorsqu’il s’apprête à pénétrer dans le canal alvéolaire inférieur. Le deuxième moment est lors de la coupe verticale du corps mandibulaire [168]. Guernsey et DeChamplain ont trouvé que les dommages au nerf alvéolaire inférieur surviennent durant la séparation de la mandible lorsque le nerf demeure en partie dans le fragment proximal suite au clivage mandibulaire [162]. Cela a amené des chirurgiens à recommander l’utilisation d’ostéotomes spéciaux pour la réalisation de la chirurgie [161]. Il semblerait que moins d’altérations sensitives soient rapportées lorsque l’exposition du nerf alvéolaire inférieur est minimisée pendant l’OSMB [160, 174]. Yoshida et coll. de même que Yamamoto et coll. ont trouvé que les nerfs alvéolaires inférieurs qui sont visualisés tout près du cortex latéral via une radiographie faite en pré-opératoire sont plus sujets à présenter des altérations sensitives sévères suite à une OSMB [174, 179]. Les déficits sensoriels ont plus de chance d’être encore présents un an suite à une OSMB lorsque la moelle osseuse entre le canal mandibulaire et le cortex osseux externe mesure 0,8 mm ou moins. Certains chirurgiens croient que le fait d’effectuer la coupe verticale dans le cortex latéral plus postérieurement donnerait une incidence plus faible d’altérations sensitives en post-opératoire d’OSMB [174, 176]. Cela n’a pas été prouvé dans des études comparatives.

Le traumatisme nerveux occasionnant une perte de sensibilité suite à une OSMB peut avoir lieu de nombreuses façons. Des aspérités osseuses pointues ou coupantes présentes sur la portion interne du fragment proximal peuvent traumatiser le nerf alvéolaire inférieur pendant ou suite à la fixation de l’OSMB. Une compression du nerf alvéolaire inférieur peut survenir lorsque le fragment mandibulaire proximal est fixé au fragment mandibulaire distal [177, 178]. Un traumatisme direct au nerf à l’aide d’instruments lors de la chirurgie peut également expliquer une perte de sensibilité dans le territoire de V3 suite à une OSMB.

Paulis et Steinhauser ont noté un taux d’incidence légèrement plus élevé de perte de sensibilité à long terme chez les patients dont l’OSMB a été fixée à l’aide de vis comparativement à ceux dont l’OSMB a été fixée à l’aide de fils métalliques, mais cette observation n’a pas été analysée statistiquement [166]. Nishioka et coll. ont étudié la perte de sensibilité suite à une OSMB fixée à l’aide de vis et ont trouvé que l’incidence de perte de sensibilité du nerf alvéolaire inférieur était élevée mais qu’elle se situait aisément dans le spectre des pertes de sensibilité rapportées dans les études objectives et bien planifiées [165]. L’impact que le type de fixation utilisé a sur la fonction sensitive a beaucoup été étudié et différentes méthodes d’évaluation clinique ont été utilisées [179-182]. La détection du toucher léger était davantage diminuée dans le groupe où l’OSMB était fixée de façon rigide comparativement au groupe où l’OSMB était fixée avec des fils métalliques pendant une période de huit semaines à deux ans post-opératoire. Par contre, le test
de détermination du seuil de perception de la pression n’a démontré aucune différence significative entre les deux types de fixation durant un suivi d’une durée de deux ans [179].

Même si un grand nombre d’études ont été effectuées sur l’altération de la sensibilité suite à une chirurgie orthognathique, la sévérité des traumatismes au nerf alvéolaire est difficile à comparer entre les études. Cela est dû au fait qu’il y a un manque de standardisation des tests neurosensoriels utilisés, que ces tests sont effectués avec une méthodologie peu rigoureuse et que les résultats de ces tests sont interprétés de façons parfois douteuses. Certains tests neurosensoriels sont plus sensibles que d’autres pour détecter les déficits sensitifs. Les tests qui évaluent l’habileté d’un patient à discriminer la direction d’un stimulus en mouvement sont des indicateurs plus sensibles d’un désordre neurosensoriel du nerf trijumeau que d’autres tests comme ceux évaluant la détection du toucher léger. Westermark et coll. ont utilisé le test de perception du toucher léger et le test de perception de la température de même qu’une échelle visuelle analogue pour évaluer la sensibilité des patients en post-opératoire d’OSMB. Ils ont conclu qu’en ce qui a trait à la dysfonction nerveuse, il y a une bonne corrélation entre les résultats aux tests sensitifs et les valeurs rapportées par les patients sur l’échelle visuelle analogue [180].

Chen et coll. ont comparé trois méthodes d’évaluation des dysfonctions sensitives suite à une OSMB : le test de la discrimination entre deux points, le test du seuil minimal de pression nécessaire pour déclencher une douleur et l’évaluation des changements de perception de la sensation [181]. Les résultats au test de la discrimination entre deux points étaient concordants avec l’évaluation subjective que les patients avaient de leur propre sensibilité. Par contre, le test du seuil minimal de pression nécessaire pour déclencher une douleur était le moins sensible pour la détection des changements neurosensoriels. Dans une étude menée par Nakagawa et coll., il a été démontré que la survenue d’une hypoesthésie à long terme à V3 suite à une OSMB est dépendante de la position du nerf lors de la séparation de la mandibule, de la méthode de fixation des fragments et de la manipulation des tissus autour du nerf lors de la chirurgie [182].

1.18 Sommaire de la problématique et pertinence du projet

Le chirurgien maxillo-facial consacre souvent plus de la moitié de son temps opératoire en hôpital à l’exécution de chirurgies orthognathiques. En Amérique du Nord, c’est à l’Hôpital de l’Enfant-Jésus de Québec (HEJ) qu’il se pratique le plus de chirurgies de ce type. Près de 250 chirurgies orthognathiques y sont pratiquées chaque année. L’OSMB est la plus populaire des chirurgies orthognathiques. Elle est indiquée afin de corriger certaines malocclusions dento-squelettiques. Puisque les paresthésies temporaires de V3 sont très fréquentes suite à une OSMB, nous avons jugé bon de les étudier davantage.
L’altération sensitive de la région orofaciale peut créer un handicap au patient en interférant avec la parole, l’alimentation ou les interactions sociales [15]. Des changements mêmes mineurs peuvent avoir un impact significatif sur la qualité de vie des patients. De plus, le fait de demeurer dans l’ignorance quant à une récupération nerveuse complète ou partielle crée de l’anxiété inutile chez les patients ayant subi une chirurgie d’OSMB. Il est important d’évaluer les déficits sensoriels pour plusieurs raisons [183]. Cela permet premièrement de les détecter et même de pouvoir les quantifier. Une fois les altérations sensititives quantifiées, il est alors possible de se prononcer sur leur pronostic de récupération. L’évaluation des déficits sensoriels permet de prendre la décision si une thérapie doit être entreprise ou non et permet également de juger de l’efficacité de cette thérapie.

Dans le projet de recherche proposé, il sera utile d’évaluer objectivement, à l’aide du Neurometer, l’incidence, la sévérité et le potentiel de récupération des altérations sensitives de V3 suite à une OSMB. Il sera intéressant de voir quelle est la corrélation entre les altérations sensitives mesurées objectivement par l’appareil Neurometer et la perte de sensibilité subjective rapportée par les sujets au fil des rendez-vous de suivi. Il sera également intéressant de voir quelle est la corrélation entre les altérations sensitives mesurées à l’aide du test de détermination du seuil de perception de la pression (test de Von Frey) et la perte de sensibilité subjective rapportée par les sujets au fil des rendez-vous de suivi. Une corrélation pourra aussi être faite entre l’évaluation de la sensibilité mesurée avec le Neurometer et celle mesurée avec le test de Von Frey effectué à l’aide des monofilaments de Semmes-Weinstein. Il sera finalement possible de proposer un modèle de la récupération nerveuse sensitive de V3 suite à une OSMB. Pour ce faire, la séquence de récupération des fibres nerveuses A-Bêta, A-Delta et C sera déterminée de même que le temps nécessaire pour la récupération de chacun de ces types de fibres nerveuses sensitives. Ces informations seront utiles afin de pouvoir rassurer les patients lors de leurs visites de contrôle post-opératoire d’OSMB.
1.19 Objectifs du projet de recherche

L’objectif principal du projet de recherche est de déterminer, de façon objective à l’aide du Neurometer, la séquence de récupération de trois des types de fibres sensitives de V3 (A-Bêta, A-Delta et C) suite à une OSMB. Les valeurs de CPT enregistrées pour chaque patient aux diverses étapes de l’évaluation post-opératoire (2, 4, 20, 36 et 52 semaines) seront donc comparées aux valeurs de CPT enregistrées initialement en pré-opératoire afin de déterminer le temps nécessaire pour la récupération de chacun des trois types de fibres nerveuses étudiées.

Un second objectif est de vérifier la corrélation qui existe entre la sensibilité évaluée à l’aide du Neurometer de même que celle évaluée à l’aide du test de Von Frey et l’évaluation subjective qu’ont les sujets de leur sensibilité au cours du suivi post-opératoire. En post-opératoire, les valeurs de CPT ainsi que les résultats obtenus au test de Von Frey seront comparées aux évaluations subjectives que les sujets ont de leur sensibilité (évaluation à l’aide de l’échelle visuelle analogue). Cela permettra d’établir une corrélation clinique aux indices CPT de même qu’aux résultats obtenus lors du test de Von Frey.

Un dernier objectif est de vérifier si au cours du suivi post-opératoire les résultats obtenus au test de Von Frey ont une bonne corrélation avec les résultats obtenus à l’aide du Neurometer pour les fibres A-Bêta puisque ce sont les fibres A-Bêta qui transmettent la pression.

1.20 Hypothèses de recherche

Il est attendu que la séquence de récupération des trois différents types de fibres nerveuses sensitives qu’il est possible d’évaluer à l’aide du Neurometer soit la suivante : les fibres C devraient récupérer en premier, suivi des fibres A-Delta, puis finalement des fibres A-Bêta. Cette hypothèse découle de l’état actuel des connaissances sur la récupération nerveuse périphérique suite à un traumatisme. La récupération complète devrait se situer entre trois mois et un an pour chacun des trois différents types de fibres nerveuses étudiés.

Il est attendu qu’il y ait une bonne corrélation entre l’évaluation objective de la sensibilité des sujets évaluée à l’aide du Neurometer et celle subjective qu’ont les sujets de leur propre sensibilité déterminée grâce à l’échelle visuelle analogue. Il est également attendu qu’il y ait une bonne corrélation entre l’évaluation de la sensibilité des sujets mesurée à l’aide du test de Von Frey et celle subjective qu’ont les sujets de leur propre sensibilité (déterminée par l’échelle visuelle analogue).
Il est finalement attendu que les résultats obtenus au test de Von Frey effectué à l'aide des monofilaments de Semmes-Weinstein corrèlent bien avec les résultats obtenus à l'aide du *Neurometer* pour les fibres A-Bêta.
CHAPITRE 2
MATÉRIEL ET MÉTHODES

2.1 Matériel et méthodes

2.1.1 Type d’étude

Le projet réalisé est une étude prospective. Il a été approuvé par le comité d’éthique de la recherche du CHA en date du 8 février 2008. Le numéro du projet de recherche est le DR-002-1219 et il a été approuvé conformément à la résolution # 2008HSS-260-05 du sous-comité de l'Hôpital du St-Sacrement (HSS) (voir Annexe I).

2.1.2 Critères d’inclusion

- Accepter de faire partie de l’étude
- Être âgé de 15 à 30 ans inclusivement
- Être un patient de l'Hôpital de l'Enfant-Jésus (HEJ) ou de l'Hôpital du St-Sacrement (HSS)
- Être en bon état de santé (classe ASA 1 et 2 de l’American Society of Anesthesiology) (voir la section 2.1.4)
- Nécessiter un plan de traitement incluant une chirurgie d’avancement ou de recul mandibulaire via une OSMB
- Accepter qu’il soit possible qu’une ostéotomie Le Fort I soit nécessaire en plus de l’OSMB

2.1.3 Critères d’exclusion

- Avoir une altération objective ou subjective de la sensibilité dans le territoire de V3 :
 - Antécédent de fracture mandibulaire
 - Antécédent de chirurgie à la mandibule
 - Antécédent de traumatisme au nerf alvéolaire inférieur
 - Antécédent de pathologie interférant avec la sensibilité cutanée
- Avoir besoin d’une procédure chirurgicale concomitante à l’OSMB pouvant créer des lésions à V3 :
 - Génioplastie
 - Extraction de l’une ou des deux dents de sagesse à la mandibule (dents 38 et 48)
- Être atteint de troubles psychologiques, psychiatriques ou neurologiques affectant l’attention et la collaboration requises pour l’évaluation à l’aide du Neurometer
- Ne pas pouvoir se présenter aux rendez-vous de contrôle post-opératoire aux intervalles de temps prévus pour l’étude (2, 4, 20, 36 et 52 semaines)
2.1.4 Classification de l’American Society of Anesthesiology (ASA)

Le système de classification ASA ou score ASA a été mis au point par la société américaine des anesthésistes en 1941[184]. Il est utilisé en médecine afin d’exprimer l’état de santé pré-opératoire d’un patient. Il permet d’évaluer le risque anesthésique et d’obtenir un paramètre prédictif de la morbidité et de la mortalité péri-opératoire. Le score va de 1 à 6 selon les définitions ci-dessous :

1. Patient sain, en bonne santé, c’est-à-dire sans atteinte organique, physiologique, biochimique ou psychologique;
2. Patient atteint d’une maladie systémique légère. Patient présentant une atteinte modérée d’une grande fonction. Par exemple : hypertension artérielle légère, anémie ou bronchite chronique légère;
3. Patient atteint d’une maladie systémique sévère ou invalidante. Patient présentant une atteinte sévère d’une grande fonction qui n’entraîne pas d’incapacité. Par exemple : angine de poitrine modérée, diabète, hypertension artérielle grave ou décompensation cardiaque débutante;
4. Patient présentant une atteinte sévère d’une grande fonction qui est invalidante et qui met en jeu le pronostic vital. Par exemple : angine de poitrine au repos, insuffisance systémique prononcée (pulmonaire, rénale, hépatique, cardiaque, etc.);
5. Patient moribond dont l’espérance de vie ne dépasse pas 24 heures sans intervention chirurgicale;

2.1.5 Méthode de recrutement

L’étude a été proposée à tous les patients consécutifs référés au service de chirurgie buccale et maxillo-faciale de l’HEJ qui avaient une chirurgie d’OSMB dans leur plan de traitement. Les patients qui ont accepté de participer à l’étude ont confirmé leur approbation en signant le formulaire de consentement (voir annexe II).

2.1.6 Collecte de données

En pré-opératoire ainsi qu’à cinq autres reprises en post-opératoire, les sujets ont été testés à l’aide du Neurometer afin de déterminer l’intensité minimale de courant électrique que ceux-ci peuvent ressentir dans le territoire cutané innervé par V3. Également en pré-opératoire ainsi qu’à cinq autres reprises en post-opératoire, les sujets ont été testés à l’aide des monofilaments de Semmes-Weinstein afin de déterminer le seuil minimal de pression que ceux-ci peuvent ressentir dans le territoire cutané innervé par V3 (test de Von Frey). Les tests ont été effectués sur le côté droit ainsi que sur le côté gauche de chacun des sujets. À cinq reprises en post-opératoire, les sujets ont rempli l’échelle visuelle analogue leur demandant de quantifier subjectivement leur sensibilité dans le territoire cutané innervé par V3. Il a été choisi d’évaluer la sensibilité des patients en post-opératoire aux 2, 4, 20, 36 et finalement 52 semaines après la chirurgie puisque dans la littérature scientifique, ce sont principalement à ces intervalles de temps que sont évaluées les fonctions sensitives des sujets ayant subi une OSMB [1,2,4,5,8,9].
2.2 Moments des rendez-vous

2.3 Test de détermination des CPT

2.3.1 Tests avec le Neurometer

L'évaluation objective de la sensibilité dans le territoire cutané innervé par V3 a été effectuée à l'aide de l'appareil nommé Neurometer (Innovate Medical Technology, Baltimore, MD) (procédure décrite à l'Annexe III). L'évaluation a été réalisée en pré-opératoire de chaque côté ainsi qu'à 2, 4, 20, 36 et 52 semaines post-opératoires également de chaque côté.

La stimulation électrique nerveuse sensorielle est bien documentée dans la littérature médicale depuis 1851. L'évaluation sensorielle du seuil de conduction nerveuse (sensory nerve conduction threshold [sNCT]) est une procédure d'électrodiagnostic automatique non douloureuse qui quantifie objectivement le fonctionnement des fibres nerveuses sensitives. Les fibres nerveuses peuvent être myélinisées ou non et peuvent être situées n'importe où à la surface de la peau. Cette procédure est habituellement utilisée afin d'évaluer, de façon objective, les seuils de perception du courant électrique (Current Perception Threshold [CPT]) chez des patients atteints des pathologies suivantes :

- neuropathies sensorielles;
- polyneuropathies diabétique et urémique \(^{[186-190]}\);
- lésions focales nerveuses (syndrome du tunnel carpien) \(^{[191]}\);
- radiculopathies \(^{[192]}\);
- atteintes de la moelle épinière \(^{[193]}\).

Le Neurometer permet de déterminer l'intensité minimale de courant électrique qu'un sujet est capable de ressentir à la surface de sa peau (Current Perception Threshold [CPT]). Le courant électrique généré est constant et de forme sinusoïdale. L'unité des CPT est le milliampère. L'étendue de l'intensité de courant électrique pouvant être générée par l'appareil va de 0,01 à 9,99 milliampères. L'appareil donne le résultat du CPT en multipliant la valeur des milliampères par un facteur de 100 (donc 0,01 à 9,99 milliampères = valeur de 1 à 999 sur le Neurometer). Le courant électrique est envoyé à une petite électrode en or circulaire de 1 cm de diamètre qui est maintenue en place à la surface de la peau.
L'évaluation des CPT est neurosélective, c'est-à-dire qu'elle est capable d'évaluer séparément et de quantifier la fonctionnalité de chacune des trois sous-populations de fibres nerveuses sensitives suivantes : les fibres A-Bêta, les fibres A-Delta et les fibres C. Le Neurometer peut fonctionner à trois fréquences de courant différentes (2 000 Hz, 250 Hz et 5 Hz). Chaque fréquence est utilisée afin de stimuler préférentiellement un seul type de fibre nerveuse composant un nerf [186,194]. À 2 000 Hz, ce sont préférentiellement les fibres A-Bêta qui sont stimulées. À 250 Hz, ce sont uniquement les fibres A-Delta qui sont stimulées et finalement à 5 Hz, seules les fibres C sont stimulées.

Dans les premiers mois de l'étude, les tests effectués avec le Neurometer étaient exécutés selon l'une ou l'autre des deux séquences suivantes : séquence 1 = côté droit testé en premier, puis côté gauche, puis côté droit testé de nouveau ou séquence 2 = côté gauche testé en premier, puis côté droit, puis côté gauche testé de nouveau. La séquence utilisée était déterminée de façon aléatoire grâce au tir d'une pièce de monnaie à pile ou face. Dans les premiers mois de l'étude, le premier côté testé était donc retesté de nouveau. Il avait été décidé de procéder ainsi dans la méthodologie de l'étude puisqu'une hypothèse de phénomène d'apprentissage avait été soulevée dans l'étude de Caissie et coll. [11]. En effet, ils ont émis l'hypothèse que la répétition à court terme du test effectué à l'aide du Neurometer sur un même sujet pouvait modifier les résultats au test puisque le sujet aurait la capacité de s'habituer au stimulus délivré et à la procédure du test. Après quelques mois de tests effectués à l'aide du Neurometer au cours de l'étude, une analyse statistique a permis de démontrer que lorsqu'un côté est retesté à nouveau lors d'une même séance de prise de mesure, le résultat du CPT est statistiquement significativement le même que la première fois qu'il est mesuré. Suite à cette analyse statistique, il a été jugé inutile de retester le premier côté à nouveau chez les sujets et les séquences d’enregistrement de mesures à l’aide du Neurometer pour le reste de la durée de l’étude sont devenues les suivantes : séquence 1 = côté droit, puis côté gauche ou séquence 2 = côté gauche, puis côté droit.

Lors de la chirurgie d’OSMB, il y a souvent un léger traumatisme au nerf alvéolaire inférieur qui survient. La conduction nerveuse sensitive est alors altérée et cela résulte en une hypoesthésie dans le territoire cutané innervé par V3 pendant un certain temps de la période post-opéatoire. S’il y a eu traumatisme au nerf alvéolaire inférieur lors de la chirurgie, l’intensité de courant (CPT) alors nécessaire afin de stimuler la fibre nerveuse en post-opéatoire devrait être plus grand. Au fur et à mesure que les trois types de fibres nerveuses récupèrent, les CPT devraient revenir autour des valeurs initialement mesurées en pré-opéatoire. L'évaluation avec le Neurometer a été effectuée selon le protocole normalisé décrit par Caissie et coll. [11].
2.3.2 Emplacement de l’électrode

Préalablement à l’installation de l’électrode à la surface de la peau, celle-ci était rasée avec une lame de rasoir si le sujet masculin portait une barbe. Afin de retirer le maquillage, l’excès de graisse ou les squames sur la peau, celle-ci était nettoyée avec une pâte spécialement conçue à cet effet (skin prep, Neurotron, Inc). Il a été choisi de placer l’électrode de stimulation nerveuse à la surface de la peau directement à l’endroit où le nerf labio-mentonnier sort de la mandibule par le foramen mentonnier. C’est à cet endroit que les fibres nerveuses sont les plus volumineuses en diamètre puisque le nerf alvéolaire inférieur vient tout juste de sortir du foramen pour devenir le nerf mentonnier. La localisation du nerf labio-mentonnier droit et gauche était effectuée de façon standardisée pour chaque sujet. Il s’agit de l’intersection de deux lignes, l’une verticale et l’autre horizontale. La ligne verticale était tracée de la commissure labiale jusqu’au rebord mandibulaire inférieur. La ligne horizontale était tracée de façon à séparer la ligne verticale en deux parties égales. L’électrode était placée à l’intersection de ces deux lignes. Afin de faciliter la conduction électrique à la surface de la peau, 0,06 mL de gel échographique (EcoGel™) a été appliqué sur l’électrode avant que celle-ci ne soit apposée sur la peau. L’électrode était maintenue en place sur la peau du sujet à l’aide d’un ruban adhésif isolant (Softape, Neurotron, Inc).

2.3.3 Fonctionnement du Neurometer

L’évaluation du CPT pour chaque type de fibre nerveuse à l’aide du Neurometer est entièrement automatisée et est d’une durée de 5 à 10 minutes par site testé. Le sujet ne connaît pas la valeur de chacun de ses CPT. C’est seulement une fois l’évaluation terminée pour un type de fibre nerveuse que le Neurometer indique le CPT du sujet sur un écran. L’évaluateur prend note du CPT sur l’écran mais le sujet ne voit pas le résultat.

L’évaluation à l’aide du Neurometer peut débuter une fois que l’électrode est maintenue en place sur la peau du sujet en regard du nerf labio-mentonnier et qu’une autre électrode de dispersion (mise à la terre) est placée à l’intérieur de la main droite du sujet. Juste avant d’initier le test, les directives et consignes d’usage sont présentées au sujet afin de s’assurer de sa compréhension et collaboration optimale. Afin d’évaluer le CPT d’un type de fibre nerveuse (A-Bêta, A-Delta ou C), il faut d’abord sélectionner la fréquence du courant électrique lui correspondant (respectivement 2 000 Hz, 250 Hz et 5 Hz).

La première étape de l’évaluation consiste en une évaluation grossière par le Neurometer de l’intensité minimale de courant électrique pouvant être ressentie par le sujet à l’endroit où a été placée l’électrode. Le sujet a en main une petite boîte métallique d’environ 12 X 9 cm sur laquelle se retrouvent quatre boutons et trois voyants lumineux. Il y a un bouton rouge situé à la gauche et
trois boutons bleus situés à la droite de cette boîte. Au-dessus de chaque bouton bleu se trouve un voyant lumineux. Le Neurometer envoie sur l’électrode maintenue en place sur le visage du sujet un courant électrique d’une intensité progressive en débutant à zéro. Le sujet maintient le bouton rouge enfoncé tant et aussi longtemps qu’il ne ressent pas le courant électrique à la surface de sa peau. À l’instant exact où il ressent le courant sur sa peau, le sujet relâche le bouton rouge qu’il maintenait enfoncé. Le Neurometer note alors l’intensité du courant électrique qu’il envoiait à l’électrode au moment où le sujet a retiré son doigt de sur le bouton. Ensuite, un second test identique reprend, mais le Neurometer ne débute pas le test à une intensité de courant électrique de zéro. Il débute le test en envoyant un courant électrique toujours d’intensité progressive, mais légèrement en deçà du seuil de perception identifié lors du premier test. Le Neurometer note encore une fois à quelle intensité de courant le sujet relâche le bouton. Plusieurs tests successifs de la sorte sont effectués jusqu’à ce que le Neurometer note trois seuils de courant électrique relativement semblables.

Une fois que trois seuils de courant électrique relativement semblables sont notés par le Neurometer, la deuxième étape de l’évaluation débute. Le Neurometer peut soit envoyer à l’électrode un stimulus réel (courant électrique d’une intensité précise) ou bien envoyer un stimulus placebo (aucun courant électrique). La séquence du déroulement de la deuxième étape de l’évaluation est la suivante : Le Neurometer envoie à l’électrode un premier stimulus (réel ou placebo) d’une durée de 2 secondes pendant que le voyant lumineux situé au-dessus du bouton bleu de gauche s’allume. Suite à cela, il y a une pause de 2 secondes. Pendant cette pause, le voyant lumineux situé au-dessus du bouton bleu du centre s’allume. Après la période de pause, le Neurometer envoie à l’électrode un deuxième stimulus (encore une fois réel ou placebo) d’une durée de 2 secondes pendant que le voyant lumineux situé au-dessus du bouton bleu de droite s’allume. Suite à une autre période de pause de 2 secondes, le sujet doit appuyer sur l’un des trois boutons bleus. Il doit appuyer sur le bouton bleu de gauche s’il a ressenti seulement le premier stimulus ou si l’intensité du courant électrique du premier stimulus était plus grande que celle du second stimulus. Le sujet doit appuyer sur le bouton bleu de droite s’il a ressenti seulement le deuxième stimulus ou si l’intensité du courant électrique du second stimulus était plus grande que celle du premier stimulus. Finalement, le sujet doit appuyer sur le bouton bleu du centre s’il n’a ressenti aucun stimulus ou s’il ne peut déterminer lequel des deux stimuli avait l’intensité de courant la plus grande. Le Neurometer génère un algorithme de stimulations électriques d’intensités variables ajustées aux réponses du sujet afin de déterminer le CPT du type de fibre nerveuse sélectionné. Le CPT de chacun des types de fibres nerveuses est déterminé d’après les réponses que donne le sujet à chacun des petits tests comparatifs.
2.4 Test de détermination du seuil de perception de la pression (test de Von Frey)

Le seuil minimal de pression perceptible à la surface de la peau innervée par V3 a été évalué à l’aide des monofilaments de Semmes-Weinstein (test de Von Frey) (procédure décrite à l’Annexe IV). Les monofilaments avec lesquels le test est effectué portent les noms interchangeables de monofilaments de Semmes-Weinstein ou de monofilaments de Von Frey. Il a été choisi de procéder à ce test au même endroit que l’électrode est apposée lors du test avec le Neurometer. Il s’agit de la peau sus-jacente à l’endroit où le nerf labio-mentonnier sort de la mandibule par le foramen mentonnier. Le test de Von Frey consiste à appliquer doucement un filament de nylon de façon perpendiculaire à la surface de la peau. Une fois que le filament touche la peau, il faut continuer d’appliquer de la pression sur le filament, perpendiculairement à la peau, jusqu’à ce que le filament fléchisse. C’est au moment où le filament débute sa flexion que nous sommes certains qu’une pression spécifique calibrée est appliquée à la surface de la peau de la zone testée. En effet, dès que le filament a commencé à fléchir, une quantité de pression exacte et précise est appliquée sur la peau. Toute la pression excédentaire appliquée sur le filament se transforme en une augmentation de la flexion de celui-ci. Même si la pression sur le filament et la flexion du filament augmentent progressivement, la quantité de pression appliquée à la surface de la peau demeure toujours identique à celle initialement appliquée dès le début de la flexion du filament. Il y a 20 monofilaments de Semmes-Weinstein différents. Chaque monofilament porte un chiffre de 1 à 20. Chaque filament a un diamètre spécifique et délivre donc une quantité précise de pression lorsque celui-ci est appliqué correctement sur la surface de la peau.

L’inscription du manufacturier sur le manche de chaque filament représente le logarithme de la force en milligramme qu’il faut appliquer dans l’axe du monofilament afin de le faire fléchir (voir Tableau 9). Dans l’étude, les résultats du test de Von Frey sont exprimés en mentionnant le chiffre correspondant au dernier filament que le sujet a été capable de ressentir à la surface de sa peau.

TABLEAU 9. MONOFILAMENTS DE SEMMES-WEINSTEIN. LOGARITHME DE LA FORCE NÉCESSAIRE EN MG POUR LES FLÉCHIR ET FORCE DÉLivrÉE SUR LA PEAU PAR CHACUN D’EUX EN G/MM².

<table>
<thead>
<tr>
<th>Numéro du monofilament</th>
<th>Logarithme de la force nécessaire en mg pour le fléchir</th>
<th>Force délivrée sur la peau en g/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,65</td>
<td>0,008</td>
</tr>
<tr>
<td>2</td>
<td>2,36</td>
<td>0,02</td>
</tr>
<tr>
<td>3</td>
<td>2,44</td>
<td>0,04</td>
</tr>
<tr>
<td>4</td>
<td>2,83</td>
<td>0,07</td>
</tr>
<tr>
<td>5</td>
<td>3,22</td>
<td>0,16</td>
</tr>
<tr>
<td>6</td>
<td>3,61</td>
<td>0,4</td>
</tr>
<tr>
<td>7</td>
<td>3,84</td>
<td>0,6</td>
</tr>
<tr>
<td>8</td>
<td>4,08</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4,17</td>
<td>1,4</td>
</tr>
<tr>
<td>10</td>
<td>4,31</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>4,56</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4,74</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>4,93</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>5,07</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>5,18</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>5,46</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>5,88</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>6,10</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>6,45</td>
<td>180</td>
</tr>
<tr>
<td>20</td>
<td>6,65</td>
<td>300</td>
</tr>
</tbody>
</table>

Le filament ne doit pas glisser sur la peau et il doit demeurer en place pour une durée de 1,5 seconde. Il y a une grande reproductibilité de la force délivrée à l’aide de ces monofilaments comparativement à celle délivrée à l’aide d’un instrument quelconque maintenu dans une main (par exemple un crayon) [195]. Même si certains cliniciens font rebondir les sept filaments les plus fins sur la peau [111,196] ou brossent les 3 filaments les plus fins sur la peau [197], ces façons de délivrer le
stimulus ne sont pas recommandées et peuvent donner des résultats de seuil de perception de la pression qui diffèrent par un facteur de huit [198]. De plus, le fait de bouger le filament sur la peau diminue de façon appréciable la valeur du seuil de perception de la pression [159,199].

Les monofilaments utilisés dans l’étude ont été achetés de la compagnie US Neurologicals. Lors du test, les patients doivent garder les yeux fermés et doivent dire s’ils ressentent ou non la pression exercée par le filament lorsque celui-ci est appliqué à la surface de la peau. Chaque filament est appliqué sur la peau trois fois de façon véritable et trois autres fois où il n’est pas appliqué sur la peau (stimulus placebo). Les trois stimuli réels peuvent être consécutifs ou être entrecoupés de stimuli placebo de façon aléatoire. Il est par contre demandé au patient s’il ressent la pression exercée par le filament à chacune des six reprises. Si le patient dit sentir au moins deux des trois stimuli réels, il est noté que le patient ressent la pression spécifique délivrée par le filament utilisé. Les 20 filaments différents sont appliqués successivement du plus gros au plus petit diamètre. Le seuil de perception de la pression du sujet correspond au dernier filament pour lequel le sujet est capable de ressentir la pression délivrée. Lorsque le test de Von Frey est utilisé sur la paume de la main, le seuil de pression est jugé normal quand le sujet ressent la pression délivrée par l’un des 4 premiers filaments. Lorsque le test est utilisé sur la plante du pied, le seuil de pression est jugé normal quand le sujet ressent la pression délivrée par l’un des six premiers filaments. Puisque le visage est une zone où la sensibilité est accrue par rapport à la paume de la main et la plante du pied, la valeur normale du seuil de perception de la pression à cet endroit est différente et elle est plus petite. Posnick et coll. ont déterminé que le logarithme de la force qu’il faut pour faire fléchir le filament qui délivre la pression correspondante à la valeur normale du seuil de perception de la pression au niveau de la surface cutanée sus-jacente au nerf labio-mentonnier est de 1,95 [108]. Cette valeur correspond à une valeur se situant entre les deux plus petits filaments utilisés dans l’étude. Il a donc été statué qu’un sujet qui ressent la pression délivrée par les deux premiers filaments a un seuil de perception de la pression jugé normal. En ce sens, un sujet présente une hypoesthésie détectée au test de Von Frey lorsque le premier filament que celui-ci ressent est le 3e filament ou un filament plus gros.

En pré-opératoire, étant donné que la sensibilité des sujets est normale, seulement les trois plus petits filaments ont été testés. En post-opératoire, dépendamment si les sujets étaient légèrement, modérément ou sévèrement hypoesthésiés, plusieurs filaments ont été testés. La durée de la prise des mesures varie de 5 à 20 minutes par sujet afin de tester ses deux côtés.
Endroits où se sont déroulés les tests avec le Neurometer et le test de Von Frey

Les tests effectués à l'aide du Neurometer ainsi que le test de Von Frey se sont déroulés dans une pièce calme et bien éclairée. Une telle pièce avec des conditions contrôlées est requise afin d'éviter toute forme de distraction et de permettre une bonne visualisation des monofilaments de Semmes-Weinstein. L'évaluation est faite sur le sujet une fois celui-ci détendu, en position semi-allongée. Il doit garder la bouche légèrement entrouverte afin de minimiser l'impact sur les résultats que peuvent avoir les contractions des muscles du visage.

2.4.1 Échelle visuelle analogue

Lors de chacun des rendez-vous post-opératoires (2, 4, 20, 36 et 52 semaines), il a été demandé au sujet de quantifier subjectivement sa sensibilité dans le territoire cutané innervé par V3 pour chacun de ses côtés (voir l'échelle visuelle analogue à l'Annexe V). L'échelle visuelle analogue débute à gauche avec le chiffre zéro qui correspond à une absence complète de sensibilité (anesthésie) et se termine à droite avec le chiffre dix qui correspond à une sensibilité normale (identique à celle pré-opératoire). Les sujets n'ont pas rempli l'échelle visuelle analogue en pré-opératoire puisqu'il a été présumé que chacun des sujets avait une sensibilité normale dans le territoire de V3 de chaque côté. Les sujets n’auraient pas pu être recrutés dans l’étude s’ils avaient une altération objective ou subjective de la sensibilité dans le territoire de V3 en pré-opératoire (voir critères d’exclusion dans la section matériel et méthode). Toute valeur autre que le chiffre dix sur cette échelle visuelle analogue constitue en fait une diminution de la sensibilité et correspond donc à une hypoesthésie rapportée par le sujet.

2.5 Déroulement de l’étude

Les patients devant subir une OSMB étaient référés à la clinique de chirurgie buccale et maxillo-faciale de l’HEJ par l’orthodontiste ou le dentiste traitant. La première visite consistait en une rencontre avec le chirurgien afin d’analyser l’occlusion et le profil du patient. Lors de cette rencontre, le patient remplissait un questionnaire de santé général. La nécessité de la chirurgie était validée et une discussion était tenue afin d’informer les patients sur la phase chirurgicale du traitement. Le patient pouvait alors débuter la phase orthodontique de son traitement d’une durée de un à deux ans dépendamment de la complexité du cas.

Une fois le traitement orthodontique terminé, les patients étaient rencontrés à nouveau à la clinique de chirurgie buccale et maxillo-faciale de l’HEJ. Cette rencontre avait lieu environ deux semaines avant la date prévue de la chirurgie. La deuxième visite consistait à ré-analyser l’occlusion et le profil du patient, à prendre plusieurs mesures, à analyser les modèles dentaires et à prendre une relation centrée de l’occlusion du patient. Lors de cette rencontre, les derniers détails sur la phase
chirurgicale du traitement étaient donnés au patient. Une fois la chirurgie expliquée et ses risques présentés, le consentement opératoire était obtenu. C’est au cours de cette rencontre que le chirurgien traitant présentait grossièrement l’étude au patient et lui disait qu’il allait être contacté par téléphone pour se faire parler de l’étude plus en détail.

Les patients intéressés à faire partie de l’étude étaient par la suite contactés par téléphone. Lors de cet entretien téléphonique, l’étude était expliquée au patient de façon détaillée. Les patients étant toujours intéressés à faire partie de l’étude étaient convoqués pour une première rencontre avec le chercheur principal de l’étude afin de réviser les conditions de l’étude, de signer le formulaire de consentement et de procéder à une première prise de mesures. La première prise de mesure était effectuée en pré-opératoire. Lors de cette première prise de mesure, les tests réalisés à l’aide du Neurometer et le test de Von Frey étaient effectués. Le patient était par la suite opéré à l’HEJ ou à l’HSS.

Pendant l’opération, il était demandé au chirurgien et à son assistant, un résident du programme de chirurgie buccale et maxillo-faciale de Québec, de noter la position du nerf alvéolaire inférieur lors de la fracture contrôlée de la mandibule. Cela a été noté pour chacun des sujets de l’étude et pour chacun des côtés. De plus, il était également noté si le nerf alvéolaire inférieur a dû être dégagé ou non, de chaque côté, pendant l’intervention chirurgicale.

2.6 Technique chirurgicale de l’OSMB

Les chirurgies ont toutes été effectuées au bloc opératoire de l’HEJ ou au bloc opératoire de l’HSS. Les chirurgies étaient effectuées par l’un des six chirurgiens de l’équipe de chirurgie buccale et maxillo-faciale de l’HEJ. Le chirurgien principal était assisté par un ou une résident(e) du programme de résidence en chirurgie buccale et maxillo-faciale de Québec. Les chirurgies étaient pratiquées sous anesthésie générale avec intubation naso-trachéale selon la technique décrite par Obwegeser et modifiée par DalPont [3].
Le patient était positionné en décubitus dorsal. Un badigeonnage de la sphère oro-cervico-maxillo-faciale à l'aide d'une solution de Proviodine 10 % ou d'une solution de chlorhexidine 0,05 % (Baxedin) était effectué. Des champs opératoires stériles ont été apposés de façon usuelle puis une anesthésie locale à l'aide d'une solution de marcaïne 0,5 % avec épinéphrine 1 : 200 000 était effectuée. Les sites infiltrés étaient la région mandibulaire en regard de l'épine de Spix de façon bilatérale afin de créer un bloc mandibulaire (bloc du nerf alvéolaire inférieur) et un bloc linguale (bloc du nerf linguale). Un bloc du nerf long buccal était également effectué, et ce, de façon bilatérale. Un total d'environ 10 cc de solution de marcaïne était utilisé. La cavité orale était ensuite succionnée de ses sécrétions puis une compresse humide dépliée était introduite dans l’oropharynx en guise de barrage oropharyngé.

La chirurgie débutait par une incision de la muqueuse buccale sur la portion antérieure de la branche montante de la mandibule environ à mi-chemin entre les plans occlusaux du côté droit. Cette incision, d’une longueur d’environ 5 cm, se prolongeait vers le bas jusqu’à environ 5 mm derrière la deuxième molaire. L’incision était poursuivie latéralement et antérieurement jusqu’à un point situé distalement à la première molaire. L’incision était effectuée à l’aide d’une lame de bistouri #15.

Un lambeau muco-périosté de pleine épaisseur était relevé à l’aide d’une Rugine Molt 9 puis une dissection sur le versant latéral de la mandibule était effectuée afin d’exposer la face latérale du corps mandibulaire au niveau de l’angle mandibulaire. Après désinsertion partielle des fibres du muscle temporal sur la portion antérieure de l’apophyse coronoïde, la dissection était poursuivie sur le versant interne de la mandibule juste au-dessus de l’épine de Spix.

Le paquet vasculo-nerveux était protégé à l’aide d’écateurs appropriés, puis une ostéotomie horizontale de la demi-épaisseur interne de la mandibule était effectuée à l’aide d’une fraise chirurgicale, parallèlement au plan occlusal tout juste au-dessus de l’épine de Spix. Une autre ostéotomie, celle-ci verticale, était pratiquée sur le cortex latéral et le rebord mandibulaire inférieur, dans la région de la première ou de la deuxième molaire, à une profondeur de la demi-épaisseur externe de la mandibule. Les deux traits d’ostéotomie étaient par la suite joints par une corticotomie effectuée à l’aide d’une scie réciproque ou d’une fraise chirurgicale dans le plan sagittal le long de la crête oblique externe. Le clivage mandibulaire était complété à l’aide des ostéotomes et des écarteurs appropriés.

C’est au moment du clivage mandibulaire que la position du nerf alvéolaire inférieur était notée pour chacun des côtés et qu’il était également noté si des manipulations étaient nécessaires afin de
libérer le nerf alvéolaire inférieur de son canal osseux. Toutes les situations rencontrées étaient classées dans l'une des trois catégories suivantes :

Situation 1 : le nerf n’est pas exposé et il reste entièrement dans son canal osseux inframandibulaire au sein du fragment distal (le nerf n’est pas manipulé).

Situation 2 : le nerf est entièrement exposé et il est libre entre le fragment proximal et le fragment distal (le nerf est légèrement manipulé).

Situation 3 : le nerf demeure en partie dans son canal osseux inframandibulaire, mais cette fois-ci au sein du fragment proximal. Le chirurgien doit alors réséquer l’os du fragment proximal qui forme le canal osseux autour du nerf. Le nerf est manipulé afin de le libérer du fragment proximal.

Les interférences osseuses étaient éliminées à l’aide d’une fraise banane. Une irrigation copieuse était effectuée puis une ostéotomie en tous points similaires était effectuée de l’autre côté. Ces deux ostéotomies séparaient la mandibule en trois fragments ; un premier fragment, appelé fragment distal, en forme de fer à cheval sur lequel se retrouvent les dents mandibulaires et deux autres fragments identiques, un droit et un gauche, appelés fragments proximaux, composés du condyle mandibulaire, de la branche montante et d’une partie du corps mandibulaire.

La sangle ptérygo-massétérine était détachée de la face inférieure du fragment distal de façon bilatérale. Le périoste du muscle ptérygoïdien interne était détaché du fragment proximal de façon bilatérale afin de permettre un mouvement libre entre le fragment proximal et le fragment distal. La matrice musculaire et périostée était étirée afin de permettre le repositionnement mandibulaire sans traction. Un léger meulage de certaines cuspides dentaires était effectué au besoin puis une gaufre en vinylpolysiloxane était ensuite placée en bouche afin que les dents du maxillaire et de la mandibule puissent s’y imbriquer. Cette gaufrette comportait la prescription des mouvements à effectuer sur la mandibule lors de la chirurgie. Une fixation intermaxillaire consistant en l’application d’élastiques et de fils métalliques de calibre 28 simple était nécessaire afin de stabiliser le fragment mandibulaire distal comportant l’arcade dentaire inférieure. Le fragment proximal mandibulaire droit était repositionné de sorte que le condyle mandibulaire puisse reposer au fond de la cavité glénoïde puis il était fixé en place de façon rigide à l’aide de matériel d’ostéosynthèses (plaques et vis). Le type de fixation utilisé était deux ou trois vis bi-corticales ou sinon deux vis bi-corticales en plus d’une plaque et de vis mono-corticales. Ces gestes étaient répétés de manière similaire afin de fixer de façon rigide le fragment mandibulaire proximal gauche sur le fragment mandibulaire distal. La fixation intermaxillaire était par la suite retirée pour constater la nouvelle occlusion entre les dents du maxillaire et les dents mandibulaires, et également pour vérifier la position des condyles mandibulaires.

Les sites d’incision sur la muqueuse buccale étaient par la suite refermés à l’aide d’un surjet continu effectué à l’aide d’un fil de Plain ou de Chromic 3.0. La cavité buccale était toilettée et aspirée de ses sécrétions puis le barrage oropharyngé mis en place en début d’intervention était
l'intervention se terminait par la mise en place d'un élastique de chaque côté reliant le fil d'orthodontie du maxillaire à celui sur la mandibule en région canine et prémolaire afin de guider le patient dans sa nouvelle occlusion. Suite à la chirurgie, le patient était conduit à la salle de réveil. Il y passait un certain temps avant de pouvoir être transféré à l'étage. Le patient quittait l'hôpital le lendemain ou le surlendemain de sa chirurgie pour retourner à son domicile. Il était par la suite convoqué à son premier rendez-vous de contrôle post-opératoire deux semaines après l'intervention chirurgicale.

2.6.1 Gestion des risques chirurgicaux

Les risques chirurgicaux pour les patients faisant partie de l'étude étaient les mêmes que ceux encourus par les patients ne faisant pas partie de l'étude. La chirurgie demeurait identique en tout point que les patients fassent partie de l'étude ou non. Cette étude n'apportait aucune modification au protocole chirurgical habituel de l'HEJ ou de l'HSS. Les patients étaient tous revus et suivis en post-opératoire par leur chirurgien traitant selon les standards de pratique de la chirurgie maxillo-faciale.

2.7 Traitement et analyse des données

Les données recueillies lors des tests réalisés à l'aide du Neurometer et lors du test de Von Frey ont été compilées dans deux cahiers de laboratoire. Ces données ont par la suite été organisées dans des grilles sur le logiciel Excel aux fins d'analyse. Les données recueillies à l'aide de l'échelle visuelle analogue ont également été organisées dans des grilles sur le logiciel Excel aux fins d'analyse.

Toutes les données ont été conservées au Département de chirurgie buccale et maxillo-faciale de l'HEJ. Suite au dépôt final de ce mémoire, les cahiers de laboratoire contenant les données de l'étude seront conservés pendant une période de cinq ans, puis ils seront détruits. Ces cahiers ne peuvent être consultés que par les responsables de l'étude ainsi que par des représentants des organismes réglementaires impliqués.
CHAPITRE 3
RÉSULTATS

3.1 Méthodologie statistique

Dans un premier temps, des statistiques descriptives sont présentées. Elles concernent toutes les variables qui ont été mesurées au cours de l’étude. On retrouve tout d’abord les statistiques descriptives sur les caractéristiques des sujets de l’étude de même que celles sur les caractéristiques des chirurgies d’OSMB. Par la suite, les statistiques descriptives sur les résultats obtenus avec les trois différentes méthodes d’évaluation de la sensibilité des sujets en post-opératoire sont présentées. Il s’agit des résultats obtenus aux tests effectués à l’aide du Neurometer (CPT), des résultats obtenus au test de Von Frey et des résultats obtenus grâce à l’échelle visuelle analogue.

Pour étudier la récupération au fil du temps des trois types de fibres nerveuses sensitives de V3 suite à une OSMB, un modèle de régression polynomial a été ajusté à la valeur du CPT en fonction du nombre de jours écoulés entre la prise de mesure du CPT et la date de l’intervention chirurgicale. À partir de ce modèle, on peut estimer le nombre de jours que cela prend avant que la valeur du CPT ne revienne à la valeur initiale mesurée en pré-opératoire. Par la suite, à l’aide de la méthode du delta, on peut aussi estimer l’erreur type associée à cette estimation. On retrouve à l’annexe VI les détails du modèle ajusté ainsi que les formules utilisées pour estimer le nombre de jours avant que la valeur du CPT ne revienne à la valeur initiale mesurée en pré-opératoire. Les modèles ont été ajustés à l’aide de la procédure MIXED du logiciel SAS1 afin de tenir compte du fait que plusieurs mesures sont effectuées sur un même sujet.

Finalement, les relations entre les trois différentes méthodes utilisées afin d’évaluer la sensibilité des sujets (CPT, seuil de perception de la pression et échelle visuelle analogue) ont été étudiées grâce à la corrélation de Spearman. La procédure CORR de SAS a permis d’estimer la valeur de la corrélation. Cependant, c’est la procédure MIXED de SAS qui a été utilisée pour tester si cette corrélation est significativement différente de zéro. Cette procédure, en considérant le sujet comme effet aléatoire, nous permet de tenir compte de la dépendance entre les dix mesures pour un même sujet (deux côtés * cinq RV).

Les analyses statistiques ont été effectuées par Mme Hélène Crépeau du service de consultation statistique de l’Université Laval en utilisant le logiciel SAS. Le seuil de signification statistique a été fixé à 5 % pour tous les tests effectués.

3.1.2 Résultats des analyses statistiques

3.1.2.1 Statistiques descriptives

Dans les sections suivantes, on retrouve les statistiques descriptives des caractéristiques des sujets qui ont fait partie de l’étude. On y retrouve également les statistiques concernant les rendez-vous de même que les statistiques descriptives des caractéristiques des chirurgies qui ont été effectuées.

3.1.2.2 Statistiques concernant les rendez-vous

3.1.2.3 Caractéristiques de l’échantillon

Un total de 19 sujets (trois hommes et 16 femmes) ont été recrutés pour faire partie de l’étude entre le 1er mars et le 31 août 2008. L’âge moyen des sujets était de 20,4 ans (15 à 25 ans). L’échantillon était composé de 17 droitiers et de deux gauchers.

3.1.2.4 Caractéristiques des chirurgies

Onze des 19 sujets ont également eu une chirurgie d’avancement du maxillaire en plus de l’OSMB lors de l’opération. Toutes les chirurgies d’OSMB se sont bien déroulées. Aucune mauvaise fracture n’est survenue lors de la séparation des fragments mandibulaires. Il a été noté, en cours de chirurgie, que le nerf alvéolaire inférieur droit s’est retrouvé au sein du fragment proximal à six reprises, dans le fragment distal à huit reprises et qu’il était libre à cinq reprises. Pour ce qui est du
nerf alvéolaire inférieur gauche, il s’est retrouvé au sein du fragment proximal à cinq reprises, dans le fragment distal à 12 reprises et il était libre à deux reprises. L’OSMB a permis d’avancer la mandibule pour 17 chirurgies et de la reculer pour seulement deux cas. L’ampleur moyenne du mouvement mandibulaire était de 6,1 mm. Le matériel d’ostéosynthèse utilisé pour trois des chirurgies d’OSMB a été deux vis bi-corticales de 2,4 mm. Pour sept chirurgies, il s’agissait de trois vis bi-corticales de 2 mm et pour les neuf autres chirurgies, une plaque de même que deux vis bi-corticales de 2,4 mm ont été utilisées.

3.1.2.5 Valeurs de CPT

On retrouve dans le tableau 10 les moyennes, l’écart-type, le minimum et le maximum pour les valeurs obtenues de chacun des trois CPT mesurés lors des rendez-vous, et ce, pour chacun des côtés.

Tableau 10. Moyenne, écart-type, minimum et maximum des valeurs de CPT mesurées au fil des rendez-vous pour le côté droit et gauche. Les valeurs inscrites en rouge sont les valeurs minimales et maximales obtenues en post-opératoire pour chacun des trois CPT.

<table>
<thead>
<tr>
<th></th>
<th>Côté droit</th>
<th>Côté gauche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td>N</td>
</tr>
<tr>
<td>CPT5</td>
<td>Pré-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2re post-op</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5re post-op</td>
<td>19</td>
</tr>
<tr>
<td>CPT250</td>
<td>Pré-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5re post-op</td>
<td>19</td>
</tr>
<tr>
<td>CPT2000</td>
<td>Pré-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4re post-op</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5re post-op</td>
<td>19</td>
</tr>
</tbody>
</table>

Les valeurs maximales de CPT ont toutes été observées lors du premier rendez-vous post-opératoire (à 2 semaines post-opératoires) sauf la valeur de CPT2000 pour le côté gauche qui a
été observée lors du 2e rendez-vous post-opératoire (à 4 semaines post-opératoires). Les valeurs minimales de CPT ont toutes été observées lors du 5e et dernier rendez-vous post-opératoire (à 52 semaines post-opératoires) sauf la valeur de CPT5 pour le côté gauche qui a été observée lors du 3e rendez-vous post-opératoire (à 20 semaines post-opératoires).

Seuils de perception de la pression

On retrouve dans le tableau 11 les moyennes, l’écart-type, le minimum et le maximum pour les valeurs obtenues de seuils de perception de la pression mesurés lors des rendez-vous, et ce, pour chacun des côtés.

TABLEAU 11. MOYENNE, ÉCART-TYPE, MINIMUM ET MAXIMUM DES VALEURS DE SEUILS DE PERCEPTION DE LA PRESSION MESURÉS AU FIL DES RENDEZ-VOUS POUR LE CÔTÉ DROIT ET GAUCHE. LES VALEURS INSCRITES EN ROUGE SONT LES VALEURS MINIMALES ET MAXIMALES OBTENUES EN POST-OPÉRATOIRE POUR LE SEUIL DE PERCEPTION DE LA PRESSION.

<table>
<thead>
<tr>
<th>Seuil de perception de la pression</th>
<th>Côté droit</th>
<th>Côté gauche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td>N</td>
</tr>
<tr>
<td>Pré-op</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1er post-op</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>2e post-op</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>3e post-op</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>4e post-op</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>5e post-op</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

La valeur maximale pour le côté droit a été observée lors du 2e rendez-vous post-opératoire (à 4 semaines post-opératoires) tandis que la valeur maximale pour le côté gauche a été observée lors du premier rendez-vous post-opératoire (à 2 semaines post-opératoires). Il est à noter que les valeurs de 15 et 18 sont relativement semblables et donc que la valeur maximale obtenue pour le côté droit aurait très bien pu également être observée lors du premier rendez-vous post-opératoire.
Taux d'hypoesthésies détectés au test de Von Frey

Un sujet qui ressent la pression délivrée par les deux plus petits filaments a un seuil de perception de la pression normal. Un sujet qui ne ressent que le 3ᵉ filament ou qui ne ressent qu'un filament plus gros que le 3ᵉ présente donc une hypoesthésie détectée au test de Von Frey. Les tableaux 12 et 13 démontrent les taux d'hypoesthésies détectés au test de Von Frey au fil des rendez-vous post-opératoires. Les taux d'hypoesthésies sont rapportés dans le tableau 4 en terme de sujets et dans le tableau 5 en terme de côtés.

TABLEAU 12. TAUX D’HYPOESTHÉSIES DÉTECTÉS AU TEST DE VON FREY AU FIL DES RENDEZ-VOUS POST-OPÉRATOIRES. Les résultats sont rapportés en terme de sujets.

<table>
<thead>
<tr>
<th>Résultat au test d’hypoesthésie</th>
<th>1ᵉʳ RV post-op</th>
<th>2ᵉ RV post-op</th>
<th>3ᵉ RV post-op</th>
<th>4ᵉ RV post-op</th>
<th>5ᵉ RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Frey normal (nombre de participants)</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Von Frey anormal (nombre de participants)</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total (nombre de participants)</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Taux d’hypoesthésies au test de Von Frey (%)</td>
<td>63</td>
<td>33</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLEAU 13. TAUX D’HYPOESTHÉSIES DÉTECTÉS AU TEST DE VON FREY AU FIL DES RENDEZ-VOUS POST-OPÉRATOIRES. Les résultats sont rapportés en terme de côtés.

<table>
<thead>
<tr>
<th>Résultats au test d’hypoesthésie</th>
<th>1ᵉʳ RV post-op</th>
<th>2ᵉ RV post-op</th>
<th>3ᵉ RV post-op</th>
<th>4ᵉ RV post-op</th>
<th>5ᵉ RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Frey normal (nombre de côtés)</td>
<td>17</td>
<td>26</td>
<td>35</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Von Frey anormal (nombre de côtés)</td>
<td>21</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total (nombre de côtés)</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Taux d’hypoesthésies au test de Von Frey (%)</td>
<td>55</td>
<td>28</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Valeurs de sensibilité subjective

On retrouve dans le tableau 14 les moyennes, l’écart-type, le minimum et le maximum pour les valeurs de sensibilité subjective obtenues sur l’échelle visuelle analogue lors des rendez-vous, et ce, pour chacun des côtés.

TABLEAU 14. MOYENNE, ÉCART-TYPE, MINIMUM ET MAXIMUM DES VALEURS OBTENUES SUR L’ÉCHELLE VISUELLE ANALOGUE AU FIL DES RENDEZ-VOUS POUR LE CÔTÉ DROIT ET GAUCHE. LES VALEURS INSCRITES EN ROUGE SONT LES VALEURS MINIMALES OBTENUES EN POST-OPÉRATOIRE SUR L’ÉCHELLE VISUELLE ANALOGUE.

<table>
<thead>
<tr>
<th>Sensibilité subjective</th>
<th>Côté droit</th>
<th></th>
<th></th>
<th></th>
<th>Côté gauche</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rendez-vous</td>
<td>Moyenne</td>
<td>Écart-type</td>
<td>Min</td>
<td>Max</td>
<td>Moyenne</td>
<td>Écart-type</td>
</tr>
<tr>
<td>1<sup>er</sup> post-op</td>
<td>19</td>
<td>5.7</td>
<td>3.5</td>
<td>0</td>
<td>10</td>
<td>19</td>
<td>5.5</td>
</tr>
<tr>
<td>2<sup>e</sup> post-op</td>
<td>18</td>
<td>7.0</td>
<td>3.2</td>
<td>2</td>
<td>10</td>
<td>18</td>
<td>6.6</td>
</tr>
<tr>
<td>3<sup>e</sup> post-op</td>
<td>19</td>
<td>9.2</td>
<td>1.3</td>
<td>6</td>
<td>10</td>
<td>19</td>
<td>8.5</td>
</tr>
<tr>
<td>4<sup>e</sup> post-op</td>
<td>19</td>
<td>9.6</td>
<td>0.8</td>
<td>7</td>
<td>10</td>
<td>19</td>
<td>9.2</td>
</tr>
<tr>
<td>5<sup>e</sup> post-op</td>
<td>19</td>
<td>9.5</td>
<td>1.0</td>
<td>7</td>
<td>10</td>
<td>19</td>
<td>9.2</td>
</tr>
</tbody>
</table>

La valeur minimale obtenue pour le côté droit ainsi que pour le côté a été observée lors du premier rendez-vous post-opératoire (à 2 semaines post-opératoires). Lorsqu’on analyse les valeurs que les sujets ont données quand il leur a été demandé de quantifier leur sensibilité dans le territoire de V3 suite à une OSMB, on note que les valeurs s’améliorent progressivement au fil des rendez-vous post-opératoires. Les tableaux 15 et 16 démontrent les taux d’hypoesthésies subjectives rapportés par les sujets au fil des rendez-vous post-opératoires. Les taux d’hypoesthésies sont rapportés dans le tableau 15 en terme de sujets et dans le tableau 16 en terme de côtés.
TABLEAU 15. TAUX D’HYPÖESTHÉSIES SUBJECTIVES RAPPORTÉES PAR LES SUJETS AU FIL DES RENDEZ-VOUS POST-OPÉRATOIRES. Les résultats sont rapportés en terme de sujets.

<table>
<thead>
<tr>
<th>Résultats au test d’hypoesthésie</th>
<th>1er RV post-op</th>
<th>2e RV post-op</th>
<th>3e RV post-op</th>
<th>4e RV post-op</th>
<th>5e RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité normale (nombre de participants)</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Sensibilité anormale (nombre de participants)</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Total (nombre de participants)</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Taux d’hypoesthésies subjectives (%)</td>
<td>84</td>
<td>67</td>
<td>63</td>
<td>47</td>
<td>42</td>
</tr>
</tbody>
</table>

TABLEAU 16. TAUX D’HYPÖESTHÉSIES SUBJECTIVES RAPPORTÉES PAR LES SUJETS AU FIL DES RENDEZ-VOUS POST-OPÉRATOIRES. Les résultats sont rapportés en terme de côtés.

<table>
<thead>
<tr>
<th>Résultats au test d’hypoesthésie</th>
<th>1er RV post-op</th>
<th>2e RV post-op</th>
<th>3e RV post-op</th>
<th>4e RV post-op</th>
<th>5e RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité normale (nombre de côtés)</td>
<td>9</td>
<td>15</td>
<td>19</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Sensibilité anormale (nombre de côtés)</td>
<td>29</td>
<td>21</td>
<td>19</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Total (nombre de côtés)</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Taux d’hypoesthésies subjectives (%)</td>
<td>76</td>
<td>58</td>
<td>50</td>
<td>32</td>
<td>34</td>
</tr>
</tbody>
</table>
Comparaison des taux d'hypoesthésies détectés au test de Von Frey versus ceux rapportés subjectivement par les sujets au fil des rendez-vous post-opératoires

Les taux d'hypoesthésies sont rapportés dans le tableau 17 en terme de sujets et dans le tableau 18 en terme de côtés.

Tableau 17. Comparaison des taux d’hypoesthésies détectés au test de Von Frey versus les taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires. Les résultats sont rapportés en terme de sujets.

<table>
<thead>
<tr>
<th>Taux d’hypoesthésie</th>
<th>1er RV post-op</th>
<th>2e RV post-op</th>
<th>3e RV post-op</th>
<th>4e RV post-op</th>
<th>5e RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au test de Von Frey (%)</td>
<td>63</td>
<td>33</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Par évaluation subjective (%)</td>
<td>84</td>
<td>67</td>
<td>63</td>
<td>47</td>
<td>42</td>
</tr>
</tbody>
</table>

Tableau 18. Comparaison des taux d’hypoesthésies détectés au test de Von Frey versus les taux d’hypoesthésies subjectives rapportées par les sujets au fil des rendez-vous post-opératoires. Les résultats sont rapportés en terme de côtés.

<table>
<thead>
<tr>
<th>Taux d’hypoesthésie</th>
<th>1er RV post-op</th>
<th>2e RV post-op</th>
<th>3e RV post-op</th>
<th>4e RV post-op</th>
<th>5e RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au test de Von Frey (%)</td>
<td>55</td>
<td>28</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Par évaluation subjective (%)</td>
<td>76</td>
<td>58</td>
<td>50</td>
<td>32</td>
<td>34</td>
</tr>
</tbody>
</table>

Lorsque l'on compare les taux d'hypoesthésie détectés au test de Von Frey aux taux d'hypoesthésie rapportées subjectivement par les sujets en post-opéatoire, on constate que les taux détectés à l'aide du test de Von Frey sont bien moindres que les taux d’hypoesthésies rapportées subjectivement par les patients. Cela est vrai à la fois lorsque les taux sont mesurés en terme de sujets et lorsque les taux sont mesurés en terme de côtés (voir Tableaux 17 et 18).
Chaque valeur obtenue sur l’échelle visuelle analogue, peu importe de quel côté elle se retrouvait, a été classée dans l’un des quatre groupes suivants :

- Absence d’hypoesthésie : valeur de 10 sur l’échelle visuelle analogue
- Hypoesthésie légère : valeurs de 9, 8 et 7 sur l’échelle visuelle analogue
- Hypoesthésie modérée : valeurs de 6, 5 et 4 sur l’échelle visuelle analogue
- Hypoesthésie sévère : valeurs de 3, 2, 1 et 0 sur l’échelle visuelle analogue

On retrouve dans le tableau 19 les valeurs obtenues sur l’échelle visuelle analogue au fil des rendez-vous post-opératoires une fois celles-ci classées dans l’un des quatre groupes mentionnés précédemment.

<table>
<thead>
<tr>
<th>Hypoesthésie</th>
<th>1er RV post-op</th>
<th>2e RV post-op</th>
<th>3e RV post-op</th>
<th>4e RV post-op</th>
<th>5e RV post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence (nombre de côtés)</td>
<td>9</td>
<td>15</td>
<td>19</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Légère (nombre de côtés)</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Modérée (nombre de côtés)</td>
<td>13</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sévère (nombre de côtés)</td>
<td>11</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total (nombre de côtés)</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Analyse de la récupération des trois différents types de fibres nerveuses

Fibres nerveuses de type C

La fréquence de courant électrique capable de stimuler préférentiellement les fibres nerveuses de type C est de 5 Hz. La valeur de CPT mesurée à cette fréquence s’appelle CPT5. Afin de déterminer le nombre approximatif de jours nécessaires avant que la valeur de CPT5 mesurée en post-opératoire redevienne égale à la valeur initiale mesurée en pré-opératoire, un modèle quadratique a été utilisé puisqu’il s’ajustait bien aux données. L’équation du modèle quadratique est la suivante :

\[
\log_{10}\text{opt5} = 3,08 + 0,83 \times \log_{10}\text{jour} - 0,16 \times (\log_{10}\text{jour})^2
\]
À partir de cette équation, l’estimation du nombre de jours nécessaires avant que le log_cpt5 redevienne égal à 3,08 (valeur du log_cpt5 au temps zéro) est égale à 177 jours avec un intervalle de confiance à 95 % qui varie de 120 à 262 jours.

Fibres nerveuses de type A-Delta

La fréquence de courant électrique capable de stimuler préférentiellement les fibres nerveuses de type A-Delta est de 250 Hz. La valeur de CPT mesurée à cette fréquence s’appelle CPT250. Afin de déterminer le nombre approximatif de jours nécessaires avant que la valeur de CPT250 mesurée en post-opératoire redevienne égale à la valeur initiale mesurée en pré-opératoire, un modèle cubique a été utilisé puisqu’il s’ajustait bien aux données. L’équation du modèle cubique est la suivante :

\[
\text{Log}_\text{cpt250} = 3,47 + 1,52 \times \text{log}_\text{jour} - 0,53 \times (\text{log}_\text{jour})^2 + 0,045 \times (\text{log}_\text{jour})^3
\]

À partir de cette équation, l’estimation du nombre de jours nécessaires avant que le log_cpt250 redevienne égal à 3,47 (valeur du log_cpt250 au temps zéro) est égale à 117 jours avec un intervalle de confiance à 95 % qui varie de 63 à 219 jours.

Fibres nerveuses de type A-Bêta

La fréquence de courant électrique capable de stimuler préférentiellement les fibres nerveuses de type A-Bêta est de 2 000 Hz. La valeur de CPT mesurée à cette fréquence s’appelle CPT2000. Afin de déterminer le nombre approximatif de jours nécessaires avant que la valeur de CPT2000 mesurée en post-opératoire redevienne égale à la valeur initiale mesurée en pré-opératoire, un modèle quadratique a été utilisé puisqu’il s’ajustait bien aux données. L’équation du modèle quadratique est la suivante :

\[
\text{Log}_\text{cpt2000} = 4,92 + 0,37 \times \text{log}_\text{jour} - 0,061 \times (\text{log}_\text{jour})^2
\]

À partir de cette équation, l’estimation du nombre de jours nécessaires avant que le log_cpt2000 redevienne égal à 4,91 (valeur du log_cpt2000 au temps zéro) est égale à 399 jours avec un intervalle de confiance à 95 % qui varie de 242 à 657 jours.

Séquence de récupération des fibres nerveuses

Le temps nécessaire pour la récupération des fibres nerveuses de type C a été estimé à 177 jours avec un intervalle de confiance variant de 120 à 262 jours. Le temps nécessaire pour la récupération des fibres nerveuses de type A-Delta a été estimé à 117 jours avec un intervalle de confiance variant de 63 à 219 jours et finalement le temps nécessaire pour la récupération des
fibres nerveuses de type A-Bêta a été estimé à 399 jours avec un intervalle de confiance variant de 242 à 657 jours. D’après le temps estimé pour la récupération de chacun des trois types de fibres nerveuses, la séquence de récupération des fibres sensitives de V3 suite à une OSMB est la suivante : Les fibres A-Delta récupèrent en premier, suivies des fibres C et finalement des fibres A-Bêta. Il est à noter que les intervalles de confiance sont énormes. Elles se recoupent grandement pour ce qui est du temps nécessaire à la récupération des fibres A-Delta et des fibres C et elles se recoupent encore, mais de façon moindre, pour ce qui est du temps nécessaire à la récupération des fibres A-Bêta et des fibres C (voir le graphique à l’Annexe VII).

Analyse de la corrélation entre les trois différentes méthodes utilisées afin d’évaluer la sensibilité

Au cours de l’étude, trois différentes méthodes ont été utilisées afin d’évaluer la sensibilité des sujets dans le territoire cutané innervé par V3 suite à une OSMB. Il s’agit des mesures de CPT effectuées à l’aide du Neurometer (CPT5, CPT250 et CPT2000), du test de Von Frey et de l’évaluation subjective de la sensibilité quantifiée à l’aide de l’échelle visuelle analogue. Le tableau 20 suivant démontre les corrélations qui existent entre les trois différentes méthodes utilisées au cours de l’étude afin d’évaluer la sensibilité des sujets dans le territoire cutané innervé par V3 suite à une OSMB.

Tableau 20. Corrélations entre les trois différentes méthodes utilisées afin d’évaluer la sensibilité des sujets suite à une OSMB et seuils statistiques observés.

<table>
<thead>
<tr>
<th>Méthodes comparées</th>
<th>Corrélation de Spearman</th>
<th>Seuil observé</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT5 vs Von Frey</td>
<td>0.415</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CPT250 vs Von Frey</td>
<td>0.448</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CPT2000 vs Von Frey</td>
<td>0.432</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CPT5 vs sensibilité subjective</td>
<td>-0.554</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CPT250 vs sensibilité subjective</td>
<td>-0.542</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CPT2000 vs sensibilité subjective</td>
<td>-0.664</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Von Frey vs sensibilité subjective</td>
<td>-0.587</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

D’après les seuils observés, toutes les corrélations sont significativement différentes de zéro.
L’analyse du tableau 12 permet d’affirmer que la corrélation qui existe entre les valeurs de CPT et les seuils de perception de la pression mesurés au fil des rendez-vous post-opératoires est plutôt faible. Qu’il s’agisse des CPT5 (fibres nerveuses de type C), des CPT250 (fibres nerveuses de type A-Delta) ou des CPT2000 (fibres nerveuses de type A-Bêta), la corrélation qui existe entre les valeurs de CPT et les seuils de perception de la pression demeure faible, varie peu, et est respectivement de 0.415, 0.448 et de 0.432.

La corrélation qui existe entre les valeurs de CPT et les valeurs obtenues à l’aide de l’échelle visuelle analogue (évaluation subjective de la sensibilité des sujets) s’améliore. Elle est de -0.554 pour les CPT5 (fibres nerveuses de type C), de -0.542 pour les CPT250 (fibres nerveuses de type A-Delta) et finalement de -0.664 pour les CPT2000 (fibres nerveuses de type A-Bêta).

Pour ce qui est de la corrélation qui existe entre les seuils de perception de la pression et les valeurs obtenues à l’aide de l’échelle visuelle analogue (évaluation subjective de la sensibilité des sujets), celle-ci est relativement bonne et se chiffre à -0.587.
Le but du projet de recherche était d'étudier la récupération nerveuse suite à une OSMB. Afin d'optimiser l'observation de la récupération nerveuse, nous n'avons recruté pour l'étude que les sujets ayant le plus grand potentiel de récupération suite à un traumatisme nerveux. Les études de Westermark et coll., Ylikontiola et coll. ainsi que de Macintosh ne sont que quelques études parmi toutes celles qui démontrent que l’âge des sujets influence la récupération neurosensorielle suite à une OSMB [170–172]. Il a été prouvé que les jeunes sujets récupèrent plus rapidement et de façon plus complète suite à un traumatisme nerveux [43]. C’est pour cette raison que nous avions établi comme critère d’inclusion que seuls les sujets étant âgés de 15 à 30 ans inclusivement pouvaient faire partie de l’étude. La moyenne d’âge des sujets était de 20,4 ans, donc un bon potentiel de récupération nerveuse était escompté suite à leur chirurgie.

Il a été décidé de procéder à l’évaluation des fonctions sensitives dans le territoire cutané de V3 suite à une OSMB à cinq reprises en post-opératoire, soit : 2, 4, 20, 36 et finalement 52 semaines après à la chirurgie puisque, dans la littérature scientifique, ce sont souvent à ces intervalles de temps que sont évaluées les fonctions sensitives des sujets ayant subi une OSMB [1,2,4,5,8,9]. Suite à un traumatisme nerveux, la récupération est plus rapide au cours des premières semaines et des premiers mois. C’est pour cette raison que la prise de mesures est plus rapprochée au début de l’étude et que l’intervalle de temps entre les prises de mesures s’allonge plus on s’éloigne de la date de la chirurgie. Il aurait été idéal de procéder à une prise de mesures toutes les deux semaines pendant une période de quelques mois, mais cela aurait été passablement fastidieux et onéreux. Par contre, nous avons pris soin de respecter le plus fidèlement possible les moments des prises de mesures afin d’augmenter la rigueur de l’étude :

1er rendez-vous post-opératoire tenu à 14 ± 4 jours
2e rendez-vous post-opératoire tenu à 28 ± 9 jours
3e rendez-vous post-opératoire tenu à 140 ± 5 jours
4e rendez-vous post-opératoire tenu à 252 ± 3 jours sauf une seule fois à 252 + 19 jours
5e rendez-vous post-opératoire tenu à 364 ± 3 jours
De plus, il est à noter qu’il n’y a qu’une seule prise de mesure qui n’a pu être effectuée sur les 114 exigées par le protocole de l’étude.

En ce qui concerne les valeurs de CPT mesurées en post-opératoire, il est intéressant de constater que les valeurs maximales de CPT ont toutes été observées lors du premier rendez-vous post-opératoire (à 2 semaines post-opératoires) sauf la valeur de CPT2000 pour le côté gauche qui a été observée lors du 2e rendez-vous post-opératoire (à 4 semaines post-opératoires) (voir le Tableau 10). Il est à noter que les valeurs maximales de CPT2000 pour le côté gauche obtenues lors du 1er rendez-vous post-opératoire (valeur de 836) et lors du 2e rendez-vous post-opératoire (valeur de 916) sont relativement semblables compte-tenu de l’écart-type observé sur les mesures de CPT. La valeur maximale de CPT2000 obtenue pour le côté gauche aurait donc très bien pu également être observée lors du premier rendez-vous post-opératoire. Cette constatation à l’effet que les valeurs maximales de CPT sont observées lors du premier rendez-vous post-opératoire concorde avec la physiopathologie des traumatismes nerveux et la physiologie de leur récupération. Lors de la chirurgie d’OSMB, la majorité des nerfs alvéolaires inférieurs subissent de légers traumatismes. Ces légers traumatismes font en sorte que la conduction nerveuse est ralentie au sein des nerfs. Cela se manifeste par une hypoesthésie dans le territoire cutané innervé par le nerf lésé. Afin que les sujets puissent ressentir le courant électrique à la surface de leur peau dans le territoire cutané innervé par V3 suite à la chirurgie, le courant électrique se doit d’être d’intensité supérieure à celle pouvant être ressentie en pré-opératoire. Il est donc normal que ce soit lors du premier rendez-vous post-opératoire que les valeurs maximales de CPT sont observées.

En ce qui concerne les valeurs minimales de CPT, elles ont toutes été observées lors du 5e et dernier rendez-vous post-opératoire (à 52 semaines post-opératoires) sauf la valeur de CPT5 pour le côté gauche qui a été observée lors du 3e rendez-vous post-opératoire (à 20 semaines post-opératoires) (voir le Tableau 10). Il est à noter que les valeurs minimales de CPT5 pour le côté gauche obtenues lors du 3e rendez-vous post-opératoire (valeur de 2) et lors du 5e rendez-vous post-opératoire (valeur de 3) sont quasiment semblables. On peut donc affirmer que la valeur minimal de CPT5 obtenue pour le côté gauche aurait très bien pu également être observée lors du dernier rendez-vous post-opératoire. Le fait que les valeurs minimales de CPT sont observées lors du dernier rendez-vous post-opératoire concorde également avec la physiopathologie des traumatismes nerveux et la physiologie de leur récupération. En effet, il est normal qu’au fil du temps les nerfs lésés récupèrent progressivement et qu’une intensité de courant électrique de plus en plus petite soit nécessaire afin que le sujet puisse ressentir le courant à la surface de sa peau suite à une OSMB.

Si davantage de prises de mesures avaient été effectuées au cours de l’étude, les résultats obtenus auraient probablement été meilleurs. La séquence de récupération des trois différents
types de fibres nerveuses aurait peut-être alors été celle escomptée. Théoriquement, la vitesse de récupération nerveuse suite à un traumatisme est déterminée par plusieurs principes et plusieurs facteurs. Un premier principe est que plus le diamètre des fibres nerveuses est petit, plus elles récupèrent rapidement. Un second principe est que les fibres nerveuses non-myélinisées récupèrent plus rapidement que celles qui le sont. Le mécanisme du traumatisme influence également la vitesse de récupération nerveuse. Un des deux mécanismes de traumatisme nerveux les plus susceptibles de survenir lors d’une OSMB est une compression nerveuse. Il a été prouvé que, lors d’un traumatisme nerveux par compression, les fibres nerveuses de gros calibre qui sont myélinisées sont davantage affectées mais que les fibres nerveuses de petit diamètre sont souvent épargnées.\[15\]. Voici le diamètre des fibres nerveuses évaluées dans l’étude :

- Fibres de type C : 0,2 à 1,5 μm
- Fibres de type A-Delta : 1 à 5 μm
- Fibres de type A-Bêta : 6 à 12 μm

Voici les caractéristiques des fibres nerveuses évaluées dans l’étude quant à leur myélinisation :

- Fibres de type C : non myélinisées
- Fibres de type A-Delta : myélinisées
- Fibres de type A-Bêta : myélinisées

D’après la théorie, l’hypothèse de l’étude était que la séquence de récupération des fibres sensitives de la 3e division du nerf trijumeau suite à une OSMB, évaluée à l’aide du Neurometer, soit la suivante : les fibres C auraient dû récupérer en premier, suivies par les fibres A-Delta et finalement par les fibres A-Bêta. Il a été observé que les fibres A-Delta ont récupéré en premier, suivies par les fibres C et finalement par les fibres A-Bêta. Les fibres A-Bêta ont effectivement récupéré en dernier, tel que prévu, puisque ce sont ces fibres qui ont le plus grand diamètre (6 à 12 μm) et qu’elles sont myélinisées. Par contre, les fibres A-Delta n’auraient normalement pas dû récupérer avant les fibres C. La séquence de récupération des fibres nerveuses observée diffère de l’hypothèse proposée et cela peut s’expliquer par au moins deux raisons. La première est que la fréquence de la prise de mesures au cours de l’étude n’était pas suffisante. En effet, avec davantage de prises de mesures de CPT, le modèle d’analyse choisi pour déterminer le nombre de jours nécessaire à la récupération complète de chacun des trois types de fibres nerveuses aurait produit des résultats plus précis et surtout des intervalles de confiance qui sont beaucoup moins grands. Voici les résultats obtenus par le modèle d’analyse choisi pour déterminer le nombre de jours nécessaire à la récupération complète de chacun des trois types de fibres nerveuses :

- Fibres A-Delta : 117 jours avec un intervalle de confiance variant de 63 à 219 jours
- Fibres C : 177 jours avec un intervalle de confiance variant de 120 à 262 jours
- Fibres A-Bêta : 399 jours avec un intervalle de confiance variant de 242 à 657 jours
Malheureusement, les intervalles de confiance se recoupent grandement en ce qui concerne le temps nécessaire à la récupération complète des fibres A-Delta et des fibres C. Cela nous amène à dire qu’il aurait bien pu être observé que les fibres C récupèrent en premier, suivies par les fibres A-Delta. Cela aurait confirmé l’hypothèse de recherche proposée. La deuxième raison qui peut expliquer que la séquence de récupération des fibres nerveuses observée au cours de l’étude diffère de l’hypothèse proposée est que les mesures de CPT effectuées à l’aide du Neurometer ne sont pas aussi précises et reproductibles que prévu. Théoriquement, le Neurometer est supposé donner un résultat précis et reproductible de CPT. Dans les faits, il n’en est pas tout à fait ainsi. Lorsque l’on répète une prise de mesure de CPT à l’aide du Neurometer sur un même sujet, lors d’un même rendez-vous, les valeurs de CPT obtenues diffèrent et cette différence est parfois plutôt grande. Il aurait été intéressant de quantifier l’incertitude obtenue sur les valeurs de CPT lorsque celles-ci sont mesurées de façon répétitive chez un même sujet, lors d’un même rendez-vous.

Lorsque le Neurometer est utilisé pour évaluer la récupération nerveuse au fil du temps, rien ne nous indique que tous les paramètres entourant chaque prise de mesure avec l’appareil sont identiques à chacun des rendez-vous. Les résultats obtenus pour les valeurs de CPT peuvent donc parfois être discutables. Dans l’étude, nous avons tenté de contrôler le maximum de paramètres possibles, mais certains n’ont pu être contrôlés parfaitement et il aurait été intéressant de savoir quel est l’impact de ceux-ci sur le résultat d’une prise de mesure. Les paramètres contrôlés pour la prise de mesure à l’aide du Neurometer ont été les suivants :

- Environnement du test;
- État de détente du sujet;
- Position du sujet;
- État de la peau du sujet;
- Emplacement de l’électrode;
- Quantité de gel conducteur utilisé;
- Algorithme d’évaluation automatique généré par l’appareil.

Par contre, les paramètres suivants n’ont pu être contrôlés :

- Compréhension du sujet;
- Collaboration du sujet;
- État d’esprit du sujet;
- Pression appliquée par l’électrode à la surface de la peau.

Il aurait été intéressant de vérifier si la quantité de pression appliquée par l’électrode à la surface de la peau influence le résultat du CPT lors de la prise de mesure et de quantifier l’impact de cette influence. Cela nous amène donc à affirmer qu’avec une plus grande fréquence de prise de mesures à l’aide du Neurometer, avec un meilleur contrôle des paramètres entourant la prise de mesure et avec une incertitude moins grande sur les mesures de CPT effectuées, les intervalles de confiance du nombre de jours nécessaires à la récupération complète de chacun des trois types de
fibres nerveuses n’auraient pas été aussi grands et ne se seraient probablement pas recoupés. Il aurait alors pu être possible de valider l’hypothèse de recherche proposée quant à la séquence de récupération des fibres sensitives de V3 suite à une OSMB.

Au cours de l’étude, les 19 sujets ont eu une chirurgie d’OSMB. Il est possible et fort probable que chacun des deux nerfs alvéolaires inférieurs des sujets n’ait pas subi le même traumatisme nerveux. Par contre, chaque nerf sur un même sujet possède le même potentiel de récupération. Cela explique donc la complexité de l’analyse des résultats obtenus dans l’étude.

Lors des chirurgies, le nerf mandibulaire a pu être traumatisé à plusieurs moments différents et à plusieurs endroits différents. Le premier moment et le premier endroit où le nerf mandibulaire a pu être traumatisé sont lors de l’injection de la solution anesthésique au-dessus de l’épine de Spix en tout début de chirurgie. En effet, le simple fait de lacérer quelques fibres du nerf avec le biseau tranchant de l’aiguille peut occasionner une hypoesthésie en post-opératoire. Les seules études démontrant ce phénomène sont des études histologiques effectuées sur des animaux. Ces études démontrent que le nerf subit un dommage minime et qu’aucune altération histologique ni physiologique n’a été observée à long terme \[40–42\]. Par contre, une injection intra-nerveuse, directement dans le fascicule nerveux, de la solution anesthésique peut endommager le nerf de façon irréversible. Il semble que ce soit l’hydrolyse enzymatique de la solution anesthésique en alcool et en métabolites qui puisse causer un déficit neurosensoriel persistant \[40\]. S’il y a développement de fibrose et de tissu cicatriciel suite à l’injection, ceux-ci peuvent ralentir la conduction nerveuse, ce qui aura comme conséquence de causer une hypoesthésie dans le territoire cutané innervé par le nerf en question. Il est à noter que l’injection de solution anesthésique en extra-fasciculaire ne cause pas de dommages nerveux. Puisque le sujet était sous anesthésie générale lors de l’injection de la solution anesthésique, il est impossible de savoir si une injection traumatique a été effectuée. La seule façon de l’objectiver aurait été de constater une douleur sévère spontanée qui irradie dans le territoire innervé par le nerf lors de l’injection. Cela aurait pu être observé uniquement chez un patient éveillé. La probabilité qu’une injection intra-nervée de solution anesthésique se soit produite au cours de l’étude est si mince que nous présentons ici simplement le concept théorique de la chose.

Un deuxième moment et endroit où le nerf mandibulaire a pu être traumatisé lors de la chirurgie d’OSMB est lors de la rétraction des tissus mous comportant le nerf mandibulaire vers le médial alors que le nerf est sur le point de pénétrer dans le canal alvéolaire inférieur. Cette action est posée afin de bien visualiser l’épine de Spix au moment de procéder à la coupe horizontale de la branche montante mandibulaire. White et coll. ont démontré que les traumatismes au nerf alvéolaire inférieur surviennent plus fréquemment à ce moment \[168\].
Le moment où le nerf mandibulaire a le plus de chance, d’être traumatisé lors de la chirurgie est lors de la séparation du corps mandibulaire en deux fragments distincts [160,163,200]. Si une mauvaise fracture survient à ce moment, c'est-à-dire que les fragments de la mandibule ne clivent pas à l'endroit désiré et dicté par les ostéotomies, il y a une plus grande probabilité de traumatiser le nerf. C’est pour cela que dans l’étude il a été noté, pour chaque côté, si la mandibule a pu être séparée de la façon désirée. Pendant l’étude, aucune mauvaise fracture n’est survenue. Également, aucune section nerveuse ne s’est produite. Si une section nerveuse était survenue, celle-ci aurait été retrouvée sur le protocole opératoire dicté par le chirurgien en fin d'intervention. L’absence de mauvaise fracture et de section nerveuse nous indique qu’il est peu probable qu’un traumatisme sévère au nerf soit survenu chez les sujets de l’étude.

La position dans laquelle se retrouve le nerf lors de la séparation de la mandibule et le degré de manipulation du nerf ont également une influence sur la possibilité que celui-ci soit traumatisé ou non. Guernsey et DeChamplain ont démontré que les dommages au nerf alvéolaire inférieur surviennent lorsque le nerf demeure en partie dans le fragment proximal suite au clivage mandibulaire [162]. Moins d’hypoesthésies sont rapportées lorsque l’exposition du nerf alvéolaire inférieur est minimisée pendant l’OSMB [160,174]. C’est pour cela qu’il a été noté, pour chaque côté, la position du nerf lors du clivage et si des manipulations avaient été nécessaires afin de libérer le nerf alvéolaire inférieur de son canal osseux. On se souvient que toutes les situations rencontrées étaient classées dans l’une des trois catégories suivantes :

- Situation 1 : le nerf n’est pas exposé et il reste entièrement dans son canal osseux intra-mandibulaire au sein du fragment distal (le nerf n’est pas manipulé).
- Situation 2 : le nerf est entièrement exposé et il est libre entre le fragment proximal et le fragment distal (le nerf est légèrement manipulé).
- Situation 3 : le nerf demeure en partie dans son canal osseux intra-mandibulaire, mais cette fois-ci au sein du fragment proximal. Le chirurgien doit alors réséquer l’os du fragment proximal qui forme le canal osseux autour du nerf. Le nerf est manipulé afin de le libérer du fragment proximal.

Chaque fois qu’un nerf est touché, étiré, comprimé ou manipulé, il est possible qu’il soit traumatisé. La situation 1 était donc la plus favorable puisque dans celle-ci le nerf n’a été ni exposé ni manipulé. Sur une possibilité de 38 nerfs, 20 nerfs se sont retrouvés dans la situation 1. La situation 2 risque d’avoir traumatisé davantage le nerf puisque, dans cette situation, le nerf a été légèrement manipulé. Sept nerfs se sont retrouvés dans la situation 2. Finalement, la situation 3 était la moins désirée puisqu’il y a une plus grande probabilité que le nerf ait été traumatisé en le délogeant de son canal osseux et en le manipulant. Onze nerfs se sont retrouvés dans la situation 3.

La situation 1 fut retrouvée dans la majorité des cas. C’est la situation où il y a le moins de chance qu’un traumatisme au nerf soit survenu. Il est alors presque impossible que les sujets aient
présenté une hypoesthésie en post-opératoire. Si les traumatismes au nerf sont mineurs, les hypoesthésies découlant de ces traumatismes récupèrent progressivement pendant la période post-opératoire et la sensation dans le territoire cutané innervé par V3 des sujets revient peu à peu au fil du temps. Dans notre étude, le fait que la situation 1 fut retrouvée dans la majorité des cas explique bien le faible taux d’hypoesthésie de seulement 3 % qui a été mesuré à l’aide du test de Von Frey à un an post-chirurgie d’OSMB.

Le dernier moment où le nerf alvéolaire inférieur peut être traumatisé lors de la chirurgie est lors de la fixation du fragment mandibulaire proximal avec le fragment distal. Une compression du nerf peut alors survenir [177,178]. Il existe plusieurs méthodes afin de fixer les fragments mandibulaires entre eux. Des fils métalliques, des vis (compressives ou positionnelles) ou la combinaison de plaques et de vis peuvent être utilisés. Paulis et Steinhauser ont observé un peu plus d’hypoesthésies à long terme lorsque l’OSMB est fixée à l’aide de vis plutôt qu’à l’aide de fils métalliques [166]. L’impact du type de fixation sur les hypoesthésies en post-opératoire d’OSMB a été étudié, mais à l’aide de différentes méthodes d’évaluation clinique [179–182]. Dans la présente étude, il n’a pas été possible de démontrer l’impact que peut avoir le type de fixation utilisé sur les hypoesthésies en post-opératoire d’OSMB étant donné le nombre trop restreint de sujets ainsi que la trop grande diversité des méthodes de fixation utilisées.

Suite à la chirurgie d’OSMB, les nerfs alvéolaires inférieurs des sujets ont presque tous été, à divers degrés, traumatisés. Cela a fait en sorte que la conduction nerveuse au sein de ces nerfs a également été altérée, à divers degrés. La plupart des sujets de l’étude ont donc ressenti une hypoesthésie dans le territoire cutané innervé par V3 suite à une OSMB. Cette hypoesthésie a pu être quantifiée lors des rendez-vous post-opératoires via la mesure des CPT effectuée à l’aide du Neurometer. Rappelons que le CPT est le seuil minimal de courant électrique qu’un sujet est capable de ressentir à la surface de sa peau dans le territoire cutané innervé par le nerf évalué. Puisque la conduction nerveuse était sous-optimale en post-opératoire, l’intensité minimale de courant électrique qu’il était nécessaire d’envoyer à la surface de la peau du sujet, afin que celui-ci puisse le ressentir, devait être plus grande. C’est ce qui a été observé au cours de l’étude. Les valeurs de CPT mesurées lors du premier rendez-vous post-opératoire étaient toutes supérieures aux valeurs de CPT mesurées en pré-opératoire. Nous avons même observé que c’est lors du premier rendez-vous post-opératoire que toutes les valeurs maximales de CPT ont été enregistrées à l’exception du CPT2000 pour le côté gauche. Étant donné l’ampleur de l’incertitude sur la prise de mesure d’un CPT, la valeur maximale de CPT2000 pour le côté gauche aurait également bien pu être observée lors du premier rendez-vous post-opératoire, tout comme pour toutes les autres valeurs maximales de CPT.
Au fil du temps, la récupération nerveuse s’est effectuée tel que prévu et la conduction nerveuse au sein des nerfs alvéolaires inférieurs s’est améliorée. Les hypoesthésies des sujets sont donc venues de moins en moins importantes. Dans la majorité des cas, les hypoesthésies ont complètement disparu et les sujets ont récupéré une sensation tout à fait normale dans le territoire cutané innervé par V3. Cela s’est traduit par des valeurs de CPT qui se sont progressivement abaissées plus on s’éloigne du temps de la chirurgie pour revenir tout près des valeurs normales mesurées en pré-opératoire. Pour la grande majorité des sujets de l’étude, il est intéressant de constater que les valeurs de CPT5 et de CPT250 mesurées lors du dernier rendez-vous post-opératoire étaient inférieures à celles mesurées en pré-opératoire (voir moyenne des CPT dans le Tableau 10). Cela peut s’expliquer par le phénomène de la sensibilisation nerveuse. En effet, il est décrit que plusieurs patients retrouvent des seuils de détection de stimuli plus bas suite à une chirurgie où il y a eu traumatisme nerveux (hyperesthésie ou allodynie) [15]. Ce phénomène a des explications à la fois au niveau du système nerveux périphérique et du système nerveux central. Il s’agirait en fait de l’activation de nocicepteurs silencieux qui ont récemment été découverts et qui pourraient composer jusqu’à 50% des fibres normales non myélinisées. Ces nocicepteurs sont ubiquitaires dans tous les tissus somatosensoriels. Ils sont activés par un traumatisme et par les neurotransmetteurs inflammatoires.

Par opposition à ce qui vient d’être mentionné, les valeurs de CPT2000 mesurées lors du dernier rendez-vous post-opératoire étaient légèrement supérieures à celles mesurées en pré-opératoire (voir moyenne des CPT2000 dans le Tableau 10). Cela s’explique par le fait que ce sont les fibres de type A-Bêta qui sont évaluées par le CPT2000. Tel que mentionné précédemment, ce sont les fibres de type A-Bêta qui sont les dernières à récupérer suite à un traumatisme nerveux puisqu’elles ont le diamètre le plus grand et qu’elles sont myélinisées. Il est possible que lors du dernier rendez-vous post-opératoire (un an après la chirurgie d’OSMB), ce type de fibre n’ait pas encore complètement récupéré.

De la même façon que les mesures de CPT, le test de Von Frey a été utilisé afin de quantifier la sensibilité des sujets en post-opératoire. La conduction nerveuse au sein des nerfs alvéolaires inférieurs en post-opératoire étant altérée et sous-optimale chez plusieurs sujets de l’étude, le seuil de perception de la pression a donc augmenté. En post-opératoire, il était donc nécessaire d’appliquer une plus grande pression sur la peau des sujets dans le territoire cutané innervé par V3 afin que ceux-ci puissent la ressentir. Tout comme les mesures de CPT effectuées chez les sujets ayant une hypoesthésie en post-opératoire, les seuils de perception de la pression mesurés en post-opératoire étaient tous supérieurs au seuil de perception de la pression mesurés en pré-opératoire. Il a été constaté que pour les sujets ayant une hypoesthésie en post-opératoire, c’est lors du premier rendez-vous post-opératoire que tous les seuils de perceptions de la pression maximaux ont été enregistrés à l’exception d’un seul sujet où c’est lors du deuxième rendez-vous...
post-opératoire où ce fut le cas. Grâce à la récupération nerveuse, plus on s’éloignait de la date de l’intervention chirurgicale, meilleure était la conduction nerveuse au sein des nerfs alvéolaires inférieurs. Cela s’est traduit par un abaissement progressif des seuils de perception de la pression au fil des rendez-vous post-opératoire jusqu’à un retour de ceux-ci à une valeur quasi-identique à celle mesurée en pré-opératoire.

De façon identique aux mesures de CPT et au seuil de perception de la pression, la sensibilité des sujets a été quantifiée à l’aide d’une échelle visuelle analogue en post-opératoire d’OSMB. Il a été observé que chez les sujets présentant une hypoesthésie en post-opératoire, la pire cote obtenue sur l’échelle visuelle analogue a été obtenue lors du premier rendez-vous post-opératoire (voir moyenne des valeurs dans le Tableau 14). Tout comme les CPT et les seuils de perception de la pression chez les sujets ayant une hypoesthésie en post-opératoire, la sensibilité des sujets qui a été cotée selon l’échelle visuelle analogue s’est détériorée suite à la chirurgie puis elle est revenue progressivement vers une valeur normale au fil des rendez-vous post-opératoires. Cela s’explique par la conduction nerveuse au sein des nerfs alvéolaires inférieurs qui s’améliorent grâce au processus de récupération nerveuse.

Il est parfois difficile de comparer les résultats des études traitant de l’évaluation de la sensibilité dans le territoire cutané innervé par V3 suite à une OSMB puisque certaines études rapportent leurs résultats en terme de sujets alors que d’autres le font en terme de côtés. C’est pour cette raison que, dans notre étude, les résultats concernant les hypoesthésies ont donc été rapportés autant en terme de sujets qu’en terme de côtés. Dans notre étude, nous avons comparé les taux d’hypoesthésie détectés à l’aide du test de Von Frey à ceux rapportés par les sujets selon l’échelle visuelle analogue (voir Tableaux 17 et 18). Cela nous a permis de constater qu’ils sont substantiellement différents. Nous avons observé que les taux d’hypoesthésie détectés à l’aide du test de Von Frey sont bien moindres que ceux rapportés par les sujets selon l’échelle visuelle analogue et cela demeurent vrais que les résultats sont rapportés en terme de sujets qu’en terme de côtés. Cela peut s’expliquer par au moins trois raisons. La première est que le test de Von Frey stimule les mécanorécepteurs cutanés et qu’il est bien établi qu’un tout petit contact à la surface de la peau, même minime, est capable de stimuler ces mécanorécepteurs [15]. La stimulation produite par les monofilaments de Von Frey évoque une sensation dès qu’un minimum de potentiels d’action est généré par le contact du filament sur un seul ou sur un nombre minimal de mécanorécepteurs [201,202]. Cela fait en sorte que dès que seulement quelques fibres nerveuses ont récupéré, le seuil de perception de la pression revient tout près des valeurs normales. C’est entre autres pour cela que les taux d’hypoesthésies détectés à l’aide du test de Von Frey sont bien moindres que ceux rapportés par les sujets selon l’échelle visuelle analogue. Deuxièmement, le phénomène de collatéralisation explique également que les taux d’hypoesthésie détectés à l’aide du test de Von Frey sont moindres que ceux rapportés subjectivement par les sujets. En effet, lors
du processus de récupération nerveuse, la dégénérescence de fibres nerveuses induit un bourgeonnement axonal collatéral auprès des fibres nerveuses adjacentes non-lésées, ce qui permet une réinnervation temporaire relativement rapide des mécanorécepteurs cutanés [94]. Puisque les mécanorécepteurs sont ré-innervés rapidement, le seuil de perception de la pression revient rapidement vers des valeurs normales et ne permet donc pas de mettre en évidence des hypoesthésies qui sont présentes chez les sujets. Certains auteurs trouvent même paradoxal que le test de détermination du seuil de perception de la pression soit jugé autant utile dans l’évaluation de traumatismes nerveux de la région orofaciale [111,159,165,197]. Finalement, la dernière raison qui permet d’expliquer que les taux d’hypoesthésie détectés à l’aide du test de Von Frey sont moindres que ceux rapportés par les sujets selon l’échelle visuelle analogue est que la sensibilité cutanée est un phénomène fort complexe et qu’elle est caractérisée par plusieurs modalités. En effet, les différentes modalités sensitives sont la détection du toucher, de la pression, de la vibration, de la douleur, de la température et la proprioception. Lorsqu’il a été demandé aux sujets d’évaluer leur sensibilité dans le territoire cutané innervé par V3 suite à une OSMB selon l’échelle visuelle analogue, nous ne savons pas selon quelle modalité ou selon quel ensemble de modalités se sont basés les sujets pour quantifier leur sensibilité. Il est fort probable que les sujets ont rapporté des hypoesthésies sur l’échelle visuelle analogue tant et aussi longtemps que toutes les modalités n’avaient pas encore complètement récupéré. Des hypoesthésies ont donc été rapportées sur l’échelle visuelle analogue même si la modalité de la détection de la pression, elle, était revenue à la normale. Dans la littérature scientifique sur le sujet, il est courant d’observer que des hypoesthésies subjectives sont plus fréquemment rapportées que ce que peuvent détecter les tests cliniques neurosensoriels. Les patients ont souvent tendance à rapporter plus d’anomalies nerveuses que ce qu’il est possible de mettre en évidence à l’aide de tests objectifs [5,159,203]. Par contre, il est également possible d’observer le contraire [183,204].

Lorsqu’on analyse le Tableau 19 présentant la sensibilité subjective des sujets évaluée selon l’échelle visuelle analogue au fil des rendez-vous post-opératoires une fois celle-ci classée dans l’un des quatre groupes (absence d’hypoesthésie, hypoesthésie légère, modérée ou sévère), on note que les hypoesthésies sévères sont présentes seulement lors des deux premiers rendez-vous post-opératoires. Dans l’étude, des hypoesthésies sévères sont donc rapportées seulement lors du premier mois post-opératoire suite à une chirurgie d’OSMB et sont retrouvées chez un peu plus du tiers des côtés opérés. On note également que plus on s’éloigne du moment de la chirurgie, plus les hypoesthésies modérées diminuent en nombre pour se transformer progressivement en hypoesthésies légères. De plus, on note que les hypoesthésies légères disparaissent progressivement pour laisser place à une sensibilité normale. Cela s’explique par le fait que la récupération nerveuse suit son cours au fil du temps. On note finalement que lors du dernier rendez-vous post-opératoire (à 52 semaines), il n’y a qu’un seul sujet qui rapportait une
hypoesthésie modérée. Cela démontre donc que, un an après une OSMB, toutes les hypoesthésies rapportées par les sujets, à l’exception d’une seule d’entre elles, sont des hypoesthésies légères.

En utilisant la classification des dommages aux nerfs périphériques décrite par Seddon et Sunderland pour classifier les dommages nerveux subis par les nerfs alvéolaires des sujets de l’étude suite à une OSMB, nous pouvons affirmer que la plupart des dommages sont de classe I de Seddon ainsi que de classe I de Sunderland (neurapraxies), de classe II de Seddon ainsi que de classe II, III et IV de Sunderland (axonotmèses). Très peu de dommages de classe III de Seddon et de classe V de Sunderland (neurotmèses) sont survenus. Puisqu’il est impossible de juger de la sévérité des dommages tissulaires subis lors de l’intervention chirurgicale (aucune dissection et aucune analyse microscopique n’ayant été effectuée), nous nous sommes basés sur le pronostic de récupération de même que sur le temps nécessaire à la récupération nerveuse afin de faire ces affirmations. Étant donné que dans le cas de neurapraxie, la récupération complète de la conduction nerveuse se produit en terme d’heures et de jours, il est difficile pour nous de nous prononcer sur le nombre de nerfs ayant pu subir ce type de dommage puisque les deux premières mesures de la sensibilité des sujets suite à la chirurgie ont été effectuées à deux semaines et à quatre semaines post-opératoires. Les côtés des sujets présentant une sensibilité normale lors du premier rendez-vous post-opératoire ont pu soit ne subir aucun dommage nerveux ou soit seulement présenter de la neurapraxie. La neurapraxie aurait alors eu le temps de récupérer au cours des deux premières semaines post-opératoires. Il est plus certain d’affirmer que de la neurapraxie s’est produite chez les sujets présentant une hypoesthésie lors du premier rendez-vous post-opératoire et chez qui cette hypoesthésie n’était pas présente lors du deuxième rendez-vous post-opératoire. La majorité des dommages subis par les nerfs au cours de l’étude est fort probablement de l’axonotmèse. Il y a alors eu perte de continuité de certains axones et démyélinisation des axones myélinisés. De la dégénérescence wallérienne est survenue, suivie ensuite par une régénération axonale d’une durée de plusieurs mois. Cela a pu être observé par des hypoesthésies qui ont progressivement récupéré au fil des mois. Finalement, les rares sujets présentant toujours une hypoesthésie un an après la chirurgie ont pu subir une neurotmèse partielle, c’est-à-dire une destruction des axones, de la gaine de myéline et de l’endonèvre. La récupération nerveuse a eu lieu, mais elle est incomplète et laisse des déficits neurosensoriels. Nous croyons qu’aucune neurotmèse complète n’est survenue au cours de l’étude puisqu’aucun nerf alvéolaire inférieur n’a été sectionné pendant l’intervention chirurgicale.

Dans notre étude, la faible quantité d’hypoesthésies rapportées un an après la chirurgie et le fait que ces hypoesthésies soient légères peuvent s’expliquer par le fait que les dommages subis par les nerfs alvéolaires inférieurs lors de l’OSMB sont surtout occasionnés par un faible degré d’étirement et de compression. Il est plus difficile d’estimer les dommages occasionnés par un étirement nerveux puisque les changements histologiques associés à un traumatisme nerveux par
étirement ne sont pas encore totalement compris. Par contre, lors d’une compression nerveuse, une ischémie survient sur une certaine portion du nerf et de la démyélinisation segmentaire survient également. Il y a dégénérescence wallérienne puis régénération nerveuse. Le potentiel de récupération nerveuse suite à ces deux types de traumatismes est bon et c’est que nous avons pu observer dans l’étude.

Les résultats de l’étude ont démontré que la corrélation qui existe entre les valeurs de CPT et les seuils de perception de la pression mesurés au fil des rendez-vous post-opératoires est plutôt faible. La valeur de la corrélation étant de 0.415 pour les CPT5 (fibres nerveuses de type C), de 0.448 pour les CPT250 (fibres nerveuses de type A-Delta) et de 0.432 pour les CPT2000 (fibres nerveuses de type A-Bêta) (voir Tableau 20). Il est difficile pour nous d’apprécier et d’interpréter ces valeurs de corrélation puisque notre étude est la première à évaluer la corrélation qui existe entre les valeurs de CPT et les résultats obtenus à l’aide d’un autre test objectif mesurant la sensibilité des sujets suite à une chirurgie. Il est possible que les valeurs de corrélation obtenues dans notre étude soient relativement bonnes si l’on tient compte de l’imprécision sur les mesures de CPT et du peu de mesures qui ont été effectuées. On se serait attendu que la meilleure corrélation des trois soit celle qui existe entre les valeurs de CPT2000 et les seuils de perception de la pression puisque ce sont en fait les fibres nerveuses de type A-Bêta qui transmettent la sensation de la pression. Malheureusement, ce ne fut pas le cas et nous n’arrivons pas à bien expliquer ce résultat. Il aurait été paradoxal d’observer une bonne corrélation entre les valeurs de CPT2000 et les seuils de perception de la pression. En effet, les CPT2000 évaluent les fibres de type A-Bêta qui sont les fibres nerveuses ayant le plus grand diamètre au sein du nerf alvéolaire inférieur et celles-ci sont myélinisées. Ces deux caractéristiques font en sorte que la récupération des fibres nerveuses de type A-Bêta est la plus lente. À l’opposé, nous avons observé que les seuils de détection de la pression reviennent rapidement à des valeurs normales en post-opératoire.

Il est également difficile pour nous d’apprécier et d’interpréter les valeurs de corrélation qui existent entre les valeurs de CPT et les valeurs obtenues sur l’échelle visuelle analogue puisque notre étude est la première à évaluer la corrélation qui existe entre les résultats de CPT et les résultats obtenus à l’aide d’un autre test, mais cette fois-ci subjectif, mesurant la sensibilité des sujets suite à une chirurgie. La meilleure corrélation qui existe entre les valeurs de CPT et les valeurs obtenues à l’aide de l’échelle visuelle analogue est de -0.664 et elle a été observée pour les CPT2000 (voir Tableau 20). Cela signifie que les sujets auraient tendance à évaluer subjectivement que leur sensibilité revient à la normale lorsque les fibres A-Bêta ont récupéré. Il s’agit du dernier type de fibres nerveuses à récupérer suite à une OSMB. Cela peut s’expliquer, tel que mentionné précédemment, par l’hypothèse que les sujets auraient rapporté des hypesthésies sur l’échelle visuelle analogue tant et aussi longtemps que toutes les modalités sensitives et donc que tous les types de fibres nerveuses n’auraient pas encore complètement récupéré.
La valeur de la corrélation qui existe entre les seuils de perception de la pression et les valeurs obtenues à l’aide de l’échelle visuelle analogue est de -0,587. Cette valeur de corrélation est relativement bonne et signifie que le test de Von Frey évalue relativement bien la sensibilité subjective rapportée par les sujets dans le territoire cutané innervé par V3 suite à une OSMB.
Nous avons réalisé une étude prospective afin d'évaluer de façon objective la séquence de récupération des fibres sensitives de V3 suite à une OSMB. Un échantillon de jeunes sujets fut utilisé puisque la récupération nerveuse est plus rapide et meilleure chez les sujets plus jeunes. Les traumatismes nerveux rencontrés lors de l’OSMB s’effectuent par différents mécanismes et surviennent à divers moments lors de la chirurgie. On retrouve davantage de la neurapraxie et de l’axonotmèse d’après la classification des traumatismes nerveux périphériques de Seddon et Sunderland. La neurapraxie et l’axonotmèse récupèrent en terme de jours et de semaines. C’est ce qui a pu être observé dans notre étude. D’après les résultats observés sur l’échelle visuelle analogue quantifiant de façon subjective la sensibilité des sujets dans le territoire cutané innervé par V3 suite à une OSMB, un an après la chirurgie, aucune hypoesthésie jugée sévère ne fut rapportée par les sujets de l’étude. Toutes les hypoesthésies rapportées étaient jugées légères à l’exception d’une seule qui fut jugée modérée.

Au cours de l’étude, trois différentes méthodes furent utilisées afin d’évaluer la récupération nerveuse suite à une OSMB. La première, grâce à l’appareil Neurometer, a permis d’évaluer objectivement la récupération des fibres nerveuses de type A-Bêta, A-Delta et C. Cela nous a permis de déterminer que la séquence de récupération des fibres sensitives de la 3e division du nerf trijumeau suite à une OSMB est la suivante : les fibres A-Delta récupèrent en premier, suivies des fibres C puis des fibres A-Bêta. Cette séquence diffère quelque peu de l’hypothèse de recherche proposée mais cela s’explique entre autres par l’imprécision sur la valeur des mesures effectuées à l’aide du Neurometer et par le nombre limité de prises de mesures au cours de l’étude.

La récupération nerveuse fut également évaluée à l’aide du test de détermination du seuil de perception de la pression ou test de Von Frey. Nous avons démontré que les taux d’hypoesthésies détectés à l’aide de ce test sont plutôt faibles et qu’ils ressemblent à ceux rapportés dans la littérature suite à une OSMB \([2,205–208]\). Les faibles taux d’hypoesthésie mis en évidence à l’aide du test de Von Frey s’expliquent par le phénomène de collatéralisation qui survient lors de la récupération nerveuse et également par le fait que le seuil de perception de la pression revient près des valeurs normales dès que seulement quelques fibres nerveuses ont récupéré.
La récupération nerveuse sensitive dans le territoire cutané innervé par V3 suite à une OSMB fut évaluée par une troisième méthode, de façon subjective, à l’aide d’une échelle visuelle analogue. Cela nous a démontré que les taux d’hypoesthésie détectés de cette façon sont bien plus importants que ceux mis en évidence par le test de Von Frey. Cela s’explique par le phénomène de collatéralisation, par le fait que le test de Von Frey est un test peu sensible pour évaluer les hypoesthésies et par le fait que la sensibilité est déterminée par plusieurs modalités différentes.

Malheureusement, il n’a pas été possible d’observer une bonne corrélation entre les valeurs obtenues à l’aide du Neurometer et les seuils de perception de la pression mesurés à l’aide des monofilaments de Von Frey. Par contre, une bonne corrélation a pu être observée entre les valeurs mesurées à l’aide du Neurometer en ce qui concerne la récupération des fibres nerveuses sensitives de type A-Bêta et les valeurs obtenues à l’aide de l’échelle visuelle analogue. Cela signifie que les sujets ont tendance à évaluer subjectivement que leur sensibilité revient à la normale lorsque les fibres A-Bêta ont récupéré.

Pour ce qui est de la corrélation qui existe entre les seuils de perception de la pression et l’évaluation subjective que les sujets ont de leur sensibilité, celle-ci est relativement bonne. Cela signifie que le test de Von Frey évalue relativement bien la sensibilité subjective rapportée par les sujets dans le territoire cutané innervé par V3 suite à une OSMB.

Notre étude s’est voulu être une étude plutôt exploratoire. Elle était avant-gardiste puisqu’elle est la première et seule étude à avoir utilisé l’appareil Neurometer afin d’évaluer dans le temps la récupération nerveuse sensitive suite à une OSMB. L’étude réalisée fut un projet d’envergure comportant plusieurs prises de mesures, sur plusieurs sujets, à l’aide de différentes méthodes, et ce, sur une année complète. Plusieurs hypothèses de recherches ont été formulées mais seulement quelques-unes d’entre elles ont pu être vérifiées. La complétion de ce projet de recherche nous a permis de réaliser que la sensation est un phénomène fort complexe et que le processus de récupération nerveuse l’est du moins tout autant sinon davantage. Il s’avère que le Neurometer semble être un appareil de mesure objectif très prometteur pour l’évaluation de la récupération nerveuse. Il serait intéressant de perfectionner son utilisation dans d’autres projets de recherche concernant l’évaluation de la récupération nerveuse sensitive.
BIBLIOGRAPHIE

59. Rasminsky M. Ectopic generation of impulses and cross-talk in spinal nerve roots of
60. Devor M, Wall PD. Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J
61. Rasminsky M. Ephaptic transmission between single nerve fibres in the spinal nerve roots of
62. Seltzer Z, Devor M. Ephaptic transmission in chronically damaged peripheral nerves.
63. Seltzer Z, Devor M. Formation of neuroma in continuity by sensor fibers that fail to regenerate
after sciatic nerve cut and suture. 1980;6:859.
64. Granit R, Skoglund CR. Facilitation, inhibition and depression at the 'artificial synapse'
66. Lisney SJ, Devor M. Afterdischarge and interactions among fibers in damaged peripheral
67. Capra NF. Localization and central projections of primary afferent neurons that innervate the
68. Peyronnard J, Charron L, LaVoie J. Differences in horseradish peroxidase labeling of
sensory, motor and sympathetic neurons following chronic axotomy of the rat sural nerve.
Brain Res. 1986;364:137.
69. Aldskogius H, Risling M. Effect of sciatic neurectomy on neuronal number and size
70. Bondok AA, Sansone FM. Retrograde and transganglionic degeneration of sensory neurons
71. Devor M, Govrin-Lippmann R, Frank I, Raber P. Proliferation of primary sensory neurons in
adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve
73. Dellon AL, Witebsky FG, Terrill RE. The denervated Meissner corpuscle. A sequential
histological study after nerve division in the Rhesus monkey. Plast Reconstr Surg. 1975
74. Aldskogius H, Arvidsson J, Grant G. The reaction of primary sensory neurons to peripheral
nerve injury with particular emphasis on transganglionic changes. Brain Res. 1985
Sep;357(1):27–46.
75. Atkinson ME, Shehab SA. Peripheral axotomy of the rat mandibular trigeminal nerve leads to
an increase in VIP and decrease of other primary afferent neuropeptides in the spinal
76. Devor M. Pain research and clinical management: proceedings of the 5th world congress on
77. Gobel S, Binck JM. Degenerative changes in primary trigeminal axons and in neurons in
nucleus caudalis following tooth pulp extirpations in the cat. Brain Res. 1977 Aug

129. Wassmund M. Frakturen und luxationen des gesichtesschadels. 1927.

Annexe I – Formulaire de consentement à la recherche
Formulaire de consentement à la recherche

Recherche clinique

Titre de l’étude :
Évaluation objective de la séquence de récupération des fibres sensitives de la troisième division du nerf trijumeau suite à une ostéotomie sagittale mandibulaire bilatérale (OSMB)

Chercheur principal :
Dr Alain Guimont, docteur en médecine de l’Université Laval, étudiant au doctorat en médecine dentaire et à la maîtrise en sciences dentaires de la faculté de médecine dentaire de l’Université Laval

Cochercheurs :
Dr Pierre-Éric Landry, DMD, FRCDC, directeur du programme de chirurgie buccale et maxillo-faciale de la Faculté de médecine dentaire de l’Université Laval
Dr François Berthod, Ph.D, professeur sous octroi du Département de chirurgie de l’Université Laval et chercheur au LOEX, Centre de recherche du CHA de Québec à l’Hôpital du St-Sacrement

Renseignements généraux
Avant d’accepter de participer à ce projet de recherche, il faut prendre le temps de bien lire et de comprendre les renseignements qui suivent. Ce document explique le but du projet de recherche, ses procédures, avantages, risques et inconvénients. Les patients sont invités à poser toutes les questions jugées utiles à la personne qui leur présente ce document.

But de l’étude
Le but de l’étude est d’évaluer la récupération du nerf trijumeau suite à une chirurgie nommée ostéotomie sagittale mandibulaire bilatérale (OSMB). Le nerf trijumeau est responsable de la sensibilité du tiers inférieur du visage et non de la motricité (mouvement) du visage. Suite à une OSMB, le nerf trijumeau fonctionne moins bien chez la plupart des patients pendant un certain temps. Cela donne une zone « engourdie comme lorsque nous sommes gelés par le dentiste » d’une partie de la lèvre inférieure et du menton. Au fil du temps, le nerf fonctionne de mieux en mieux (récupération) et les patients sont de moins en moins « engourdis » dans la région. L’étude sera effectuée en utilisant un appareil prouvé efficace, le *Neurometer*, qui permet de vérifier la fonction nerveuse par l’utilisation d’un courant électrique non douloureux.

Déroulement de l’étude
Les sujets passeront le test avec le *Neurometer* environ une semaine avant leur chirurgie, puis ceux-ci repasseront le test à 4 autres reprises, soit 2 semaines, 1 mois, 6 mois et 1 an après leur chirurgie. De plus, à chaque rencontre, les patients devront évaluer leur sensation d’inconfort et la modification de leur sensibilité selon une échelle visuelle analogue. Chaque test avec le *Neurometer* est d’une durée d’environ 20 minutes. La zone testée avec le *Neurometer* sera au niveau de la lèvre inférieure. Cette zone représente le territoire du nerf étudié (3e division du nerf trijumeau). L’examen sera effectué pendant que le sujet sera le plus détendu possible, en position semi-allongée, dans une pièce calme. Le sujet devra garder la bouche légèrement entrouverte afin
de diminuer les contractions musculaires de son visage. Le Neurometer sera hors de vue lors de l'examen. Par contre, le sujet aura en main une télécommande lui permettant de répondre aux questions posées par le Neurometer. La procédure sera expliquée à nouveau avant de débuter l'examen (avec la télécommande en main). Une électrode en or de 1 cm sera installée au niveau de la lèvre inférieure après avoir appliqué du gel non-allergène sur celle-ci. L'électrode sera maintenue en place par du ruban adhésif. L’électrode sera placée au même endroit des deux côtés de la lèvre inférieure en alternance (à droite, puis à gauche, puis encore à droite). Avant de positionner l’électrode, deux petites lignes seront dessinées sur le coin de la bouche des sujets afin de s’assurer que l’électrode soit placée exactement au même endroit sur chacun des sujets (points de repère). Ces lignes seront tracées avec un crayon qui se nettoie facilement. Par la suite, le test sera débuté. Le test est complètement automatique et sans douleur. Le Neurometer présente au sujet un stimulus (petit choc électrique non douloureux) et demande au sujet s’il l’a ressenti ou non. Le sujet répond avec la télécommande qu’il a en main. Les opérateurs de l'instrument n’ont aucun contrôle sur le test. Celui-ci est complètement automatisé et à double insu (les sujets ainsi que les opérateurs de l'instrument ne savent pas si les petits chocs électriques non douloureux sont forts ou faibles et réels ou non).

Une fois les données des tests récoltées, celles-ci seront utilisées à des fins de recherche. Les responsabilités des participants de l’étude se limitent aux réponses adéquates données durant l’examen avec le Neurometer (selon si le participant a ressenti ou non le petit choc électrique non douloureux).

Avantages, risques ou inconvenients possibles liés à la participation

Il n’y a aucun risque à participer à cette étude. Les risques chirurgicaux reliés à l’ostéotomie sagittale mandibulaire bilatérale (OSMB) demeurent les mêmes qu’un sujet participe à l’étude ou non. Les risques chirurgicaux reliés à l’OSMB ont déjà été expliqués (saignement, ecchymoses (« bleus »), infection, engourdissements temporaires/permanents de la lèvre inférieure et du menton, douleur, enflure). Si une complication survient suite à la chirurgie, les patients participant à l’étude bénéficient des mêmes traitements que les patients n’y participant pas. Cependant, les sujets participant à l’étude profiteront d’un suivi systématique et standardisé exemplaire. C'est-à-dire qu'ils seront vus par un chirurgien maxillo-facial précisément aux intervalles de temps prévus par l’étude, soit 2 semaines, 1 mois, 6 mois et 1 an suite à leur chirurgie. Les rencontres avec le chirurgien seront prolongées d’une vingtaine de minutes afin de procéder à l’enregistrement des mesures à l’aide du Neurometer. Les patients auront également à quantifier leur sensation d’inconfort et la modification de leur sensibilité selon une échelle visuelle analogue lors de chacune des rencontres.

Les frais de la chirurgie sont couverts par la Régie de l’Assurance Maladie du Québec (RAMQ). Les frais des traitements des complications de la chirurgie (s’il y en a) sont également couverts par la RAMQ. Les participants à cette étude n’auront donc aucun frais supplémentaire à débourser.

Il n’y a aucun risque connu lié à la participation à cette étude. L'utilisation du Neurometer est très sécuritaire puisque la procédure est non invasive et que les stimuli (petits chocs électriques) générés par l’appareil sont non-douloureux. Depuis la mise en marché du Neurometer en 1986, aucun incident n’a été rapporté dans la littérature avec l’utilisation de cet appareil. Le seul inconveni ent rapporté par les sujets est une rougeur locale au niveau des sites où a été placée l’électrode. Ce phénomène a été rapporté dans de rares cas et la rougeur disparaît en 30 minutes.

Confidentialité des informations recueillies

Les mesures suivantes seront appliquées pour assurer la confidentialité des renseignements fournis par les participants :

- les noms des participants ne paraîtront dans aucun rapport;
- les divers documents de la recherche seront codifiés et seul le chercheur aura accès à la liste des noms et des codes;
• les résultats individuels des participants ne seront jamais communiqués;
• les matériaux de la recherche, incluant les données, seront conservés pendant deux ans après quoi ils seront détruits;
• la recherche fera l’objet de publications dans des revues scientifiques, et aucun participant ne pourra y être identifié ou reconnu.

Dans un souci de protection, le ministère de la Santé et des Services sociaux demande à tous les comités d’éthique désignés d’exiger que le chercheur conserve, pendant au moins un an après la fin du projet, la liste des participants de la recherche ainsi que leurs coordonnées, de manière à ce que, en cas de nécessité, ceux-ci puissent être rejoints rapidement.

Liberté de participation et droit de retrait
Les patients sont tout à fait libres de participer à cette étude. Ils peuvent mettre fin à leur participation sans conséquence négative ou préjudice et sans avoir à justifier leur décision. Si des patients décident de se retirer de l’étude en cours de route, il est par contre important d’en prévenir le chercheur dont les coordonnées sont incluses dans ce document. Tous les renseignements personnels concernant ces patients seront alors détruits.

Les sujets éprouvant de l’anxiété exagérée pendant la prise de mesures avec le Neurometer pourront se voir retirer de l’étude. Les patients atteints de troubles psychiatriques ou neurologiques affectant l’attention et la collaboration requises pour le test à l’aide du Neurometer qui n’ont pas été décelés avant leur enrôlement dans l’étude pourront également se voir retirer de celle-ci.

En signant ce formulaire de consentement, les patients ne renoncent aucunement à leurs droits et ne libèrent pas les chercheurs ni les institutions impliquées de leurs responsabilités légales ou professionnelles à leur égard. Dans l’éventualité où des patients deviendraient malades ou subissent un dommage en participant à cette étude, les traitements médicaux nécessaires leur seront donnés.

Renseignements supplémentaires
Les patients ayant des questions sur la recherche sont priés de communiquer avec le Dr Alain Guimont, responsable du projet de recherche, au numéro de téléphone suivant : xxx xxx-xxxx (résidence), ou à l’adresse courriel suivante : xxxxxxxx@xxxx. Pour toute question relative aux droits en tant que participant à un projet de recherche, s’adresser au Comité d’éthique de la recherche de l’Hôpital du Saint-Sacrement au (418) 682-7838 ou le Comité d’éthique de la recherche de l’Hôpital de l’Enfant-Jésus au (418) 649-0252, poste 3344.

Remerciements
La collaboration des patients est très précieuse pour la réalisation de cette étude et nous remercions les personnes qui acceptent de participer à ce projet de recherche.

Signatures
Je consens librement à participer à la recherche intitulée : Évaluation objective de la séquence de récupération des fibres sensitives de la troisième division du nerf trijumeau suite à une ostéotomie sagittale mandibulaire bilatérale (OSMB). J’ai pris connaissance du formulaire et j’ai compris le but, la nature, les avantages, les risques et les inconvénients du projet de recherche. Je suis satisfait(e) des explications, précisions et réponses que le chercheur m’a fournies, le cas échéant, quant à ma participation à ce projet. J’ai reçu une copie signée du formulaire de consentement.
Participant majeur

Nom du participant en caractère d'imprimerie

Signature du participant

Date

Nom en caractère d'imprimerie de la personne qui a dirigé la discussion entourant le consentement éclairé

Signature de la personne qui a dirigé la discussion entourant le consentement éclairé

Participant mineur

Nom du participant en caractère d'imprimerie

Signature du participant

Date

Nom du titulaire de l’autorité parentale ou du tuteur en caractères d'imprimerie

Signature du titulaire de l’autorité parentale ou du tuteur

Date

Nom en caractère d'imprimerie de la personne qui a dirigé la discussion entourant le consentement éclairé

Signature de la personne qui a dirigé la discussion entourant le consentement éclairé

Date
Un court résumé des résultats de la recherche sera expédié aux participants qui en feront la demande en indiquant ci-dessous l’adresse où ils aimeraient recevoir le document. Les résultats ne seront pas disponibles avant le 1er mars 2010. Si cette adresse changeait d’ici cette date, les patients participant à l’étude sont invités à informer le chercheur de la nouvelle adresse où ils souhaitent recevoir ce document.

L’adresse à laquelle je souhaite recevoir un court résumé des résultats de la recherche est la suivante :

__

__

__

__

Coordonnées du Comité d’Éthique de la Recherche du Centre Hospitalier Affilié universitaire de Québec (CÉR du CHA) :

Marielle Roberge, secrétaire de direction du comité d’éthique de la recherche
Hôpital du Saint-Sacrement (Local JS1-04)
1050 chemin Ste-Foy
Québec, QC G1S 4L8
Téléphone : 418 649-0252 poste 3344 (Hôpital de l’Enfant-Jésus)
Téléphone : 418 682-7838 (Hôpital du St-Sacrement)
Télécopieur : 418 682-7949
Courriel : marielle.roberge.cha@ssss.gouv.qc.ca
Annexe II – Procédure à suivre pour mesurer les CPT à l’aide du Neurometer
Procédure à suivre pour mesurer les CPT à l'aide du Neurometer

Sortir :
1. L’appareil,
2. Le remote control
3. Les 2 paires de câbles
4. Une électrode de dispersion (rectangulaire)
5. 2 électrodes en or
6. 2 rubans Softape
7. La seringue de gel
8. La pièce de monnaie

- Brancher le remote control et une paire de câbles à l’arrière de l’appareil (petite patte vers le bas)
- Appuyer sur le bouton « Power »
- Appuyer sur le bouton « Reset to zero » en dedans de 5 secondes lorsque l’appareil le demande (pour désactiver l’audio), sinon fermer l’appareil en appuyant sur le bouton « Power » et recommencer
- L’appareil indique le pourcentage de batterie restant (recharger l’appareil s’il est inférieur à 60 %)
- Appuyer sur le bouton « Reset to zero » pour faire un test de câble
- Maintenir la partie métallique des électrodes rouges ensemble et appuyer sur le bouton « Reset to zero »
- Agiter les électrodes pendant 4 secondes
- Tenir les électrodes rouges éloignées l’une de l’autre et appuyer sur le bouton « Reset to zero »
- Agiter les électrodes pendant 4 secondes
- Appuyer sur le bouton jaune de gauche « Site select » une seule fois (on doit voir le terme « Fully automatic » apparaître)
- Appuyer sur le bouton rouge « Mode select » pour confirmer le choix « Fully automatic »
- Appuyer sur le bouton jaune de gauche « Site select » une seule fois (on doit voir le terme « Testing area : face » apparaître)
- Appuyer sur le bouton rouge « Mode select » pour confirmer le choix « Face »
- Appuyer sur le bouton jaune de gauche « Site select » une seule fois (on doit voir le terme « Jaw : trigeminal mandibular » apparaître)
- Appuyer sur le bouton rouge « Mode select » pour confirmer le choix « Trigeminal mandibular »
- Appuyer sur le bouton rouge « Mode select » pour confirmer le choix « Left »
- Appuyer sur 250 Hz en bas à gauche
- Tirer à pile ou face pour savoir si c’est la séquence D-G-D ou G-D-G qui doit être faite et l’écrire
Apposer les électrodes sur le patient :

- Coller l'électrode de dispersion (rectangulaire) dans la paume de la main Droite du patient
- Brancher une des 2 électrodes rouges sur l'électrode de dispersion (déjà branchée derrière l'appareil)
- Mettre une électrode en or sur l'autre embout rouge du même câble
- Mettre 0,06 ml de gel à l'intérieur de l'électrode en or
- Coller l'électrode en or à l'aide du Softape sur la peau sus-jacente au nerf labio-mentonnier à sa sortie de la mandibule (séparer en 2 parties égales la ligne verticale partant de la commissure labiale au rebord mandibulaire)
- Refaire la même chose pour l'autre câble qui n'est pas branché derrière l'appareil
- S'assurer que les électrodes sont bien en contact avec la peau

Premier test

Dire au patient qu'il doit tenir enfonce le bouton rouge du remote control jusqu'à ce qu'il ressente quelque chose sur sa peau à l'endroit où a été apposé l'électrode (lui rappeler de quel côté le test débute). Le courant électrique monte progressivement. La sensation peut être un picotement, un pincement, une petite piqûre, un léger choc électrique, une petite brûlure, une vibration, etc. Il est important que le patient retire son doigt du bouton rouge dès qu'il sent le stimulus.

Si l'appareil indique le terme « Clipping », il faut demander au patient de relâcher le bouton rouge et il faut appuyer sur le bouton « test cycle » pour ignorer le « Clipping » et ainsi poursuivre les tests. Noter sous les fréquences (250 Hz, 5 Hz et 2 000 Hz) si l'appareil a indiqué « Clipping » ou non.

L’appareil demande de refaire le premier test à plusieurs reprises jusqu’à ce que 3 intensités de courant semblables soient obtenues. Noter le nombre d’essais. Quand les 2 lumières vertes clignotent, c’est que l’appareil est prêt pour débuter le 2e test (minimum d’essais pour calibrer = 3, maximum d’essais = 20).

Deuxième test

Le patient appuie une fois sur le bouton rouge et le test débute. L’appareil envoie un test A qui peut contenir ou non le courant, puis l’appareil fait une pause, puis envoie un test B qui peut contenir ou non le courant. Le courant est obligatoirement dans un des 2 tests (soit le A ou soit le B) et n’est donc forcément pas dans l’autre (aucun stimulus). Lorsque les trois lumières vertes du remote control s’allument, le patient doit peser sur le bouton bleu correspondant au test dans lequel était le courant. Si le patient n’a rien senti ni dans le test A et ni dans le test B, il répond en appuyant le bouton bleu du centre « rest/none ». En appuyant de nouveau sur le bouton rouge, l’appareil débute un autre test.

L’appareil répète des tests jusqu’à ce que le courant minimum que le patient peut ressentir sur sa peau soit déterminé. Noter le nombre de tests nécessaires (cycles). Une fois le test terminé, les boutons verts de l’appareil clignotent et l’appareil indique la valeur du CPT. Bien noter le CPT et demander au patient la sensation ressentie (minimum de cycles = 7, maximum de cycles = 20). Si l’appareil se rend à 20 tests (20 cycles), il sera inscrit « Inconsistent response » et le test doit être redébuté (appuyer sur le bouton rouge « Reset to zero » puis sur le bouton « Clear » et ré-sélectionner la fréquence désirée en bas à gauche).

Lorsque l’appareil indique la valeur du CPT et que celui-ci a été noté, il faut appuyer sur le bouton rouge « Reset to zero » puis sur le bouton « Clear » pour effacer la valeur du CPT. Une autre fréquence pour les tests peut alors être sélectionnée (ordre des fréquences = 250 Hz, 5Hz puis 2 000 Hz).
Annexe III – Procédure à suivre pour effectuer le test de Von Frey
Procédure à suivre pour effectuer le test de détermination du seuil de perception de la pression (test de Von Frey) à l’aide des monofilaments de Semmes-Weinstein

- Orienter le patient de façon à bien voir le filament dans la lumière ambiante;
- Dire au patient que l’on va appuyer notre avant-bras sur son épaule lors du test afin de stabiliser notre main;
- Demander au patient de dire s’il ressent ou non le filament en évitant le plus possible de bouger sa lèvre inférieure car cela peut endommager les plus petits filaments;
- Demander au patient de fermer les yeux;
- Tester du plus gros filament vers le plus petit;
- Appliquer délicatement le filament sur la peau du patient à 90° de celle-ci pendant 1,5 seconde;
- S’assurer que le filament fléchit légèrement et qu’il demeure stable (le filament ne doit pas bouger pendant le test);
- Demander au patient s’il ressent ou non le filament;
- Cesser de tester des filaments dès que le patient ne ressent pas 2 filaments successifs.
Annexe IV – Échelle visuelle analogue
Échelle visuelle analogue

1- Identifier l’échelle visuelle analogue en y inscrivant les informations suivantes :

- Nom du patient,
- Rendez-vous dont il s’agit :
 - Rendez-vous pré-opératoire
 - 1er rendez-vous post-opératoire (2 semaines post-opératoire)
 - 2e rendez-vous post-opératoire (4 semaines post-opératoire)
 - 3e rendez-vous post-opératoire (20 semaines post-opératoire)
 - 4e rendez-vous post-opératoire (36 semaines post-opératoire)
 - 5e rendez-vous post-opératoire (52 semaines post-opératoire)
- Date de l’évaluation
- Heure de l’évaluation
- Endroit de l’évaluation

2- Demander au patient de remplir l’échelle visuelle analogue en lui mentionnant les informations suivantes :

L’échelle visuelle analogue sert à quantifier subjectivement votre sensibilité dans le territoire cutané innervé par la 3e division du nerf trijumeau de chaque côté. Quelle est, selon vous, aujourd’hui, votre sensibilité dans ce territoire cutané ?

Il faut alors montrer au patient la zone à évaluer (peau de la lèvre inférieure et du menton).

Si vous entourez le chiffre 0, c’est que vous n’avez aucune sensibilité dans le territoire cutané et que l’on peut vous piquer à l’aide d’une aiguille dans cette région sans que vous ne sentiez rien.

Si vous entourez le chiffre 10, c’est que votre sensibilité est parfaite, soit exactement la même qu’en pré-chirurgie, tout comme si vous n’aviez pas eu de chirurgie.

Il faut mentionner au patient qu’il est possible et normal qu’un de leur côté puisse avoir une meilleure sensibilité que l’autre.

Valider avec le patient lequel de ses côtés est le plus « engourdi » afin de s’assurer que le patient a bien quantifié sa sensibilité de chaque côté.
Échelle visuelle analogue

Sur une échelle de 0 à 10 (0 étant une absence complète de sensibilité et 10 étant une sensibilité normale), à combien estimez-vous votre sensibilité au niveau de la lèvre inférieure et du menton aujourd'hui? Veuillez entourer le chiffre correspondant.

Côté Gauche :

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Côté Droit :

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Annexe V – Modélisation pour étudier la récupération des trois types de fibres nerveuses sensitives de V3 suite à une OSM au fil du temps
MODÉLISATION POUR ÉTUDIER LA RÉCUPÉRATION DES TROIS TYPES DE FIBRES NERVEUSES SENSITIVES DE LA 3e DIVISION DU NERF TRIJUMEAU SUITE À UNE OSM AU FIL DU TEMPS

Nous avons, pour chaque sujet, le nombre de jours écoulés entre la prise de mesure du CPT et la date de son intervention chirurgicale. Afin d’étudier la récupération au fil du temps des 3 types de fibres nerveuses sensitives de la 3e division du nerf trijumeau suite à une OSM, un modèle polynomial a été ajusté à la valeur du CPT en fonction du nombre de jours écoulés entre la prise de mesure du CPT et la date de l’intervention chirurgicale. À partir du modèle, on peut estimer le nombre de jours que cela prend avant que la valeur du CPT retourne à sa valeur initiale mesurée en pré-opératoire. Par la suite, à l’aide la méthode du delta, on peut aussi estimer l’erreur-type associée à cette estimation.

Par exemple, pour CPT5 et CPT2000 le modèle qui s’ajustait le mieux aux données est le modèle quadratique suivant :

\[
\log (\text{CPT}) = a \cdot (\log(\text{jours}))^2 + b \cdot (\log(\text{jours})) + c.
\]

Donc à partir de cette équation, le nombre de jours écoulés avant que la valeur du CPT retourne à sa valeur initiale est obtenu lorsque le \(\log (\text{CPT}) \) est égal au paramètre \(c \). La formule obtenue est la suivante :

\[
\text{jours}_0 = \exp\left(-\frac{b}{a}\right).
\]

Et son erreur –type est égal à

\[
t(\text{jours}_0) = \text{jours}_0 \cdot \sqrt{\text{var}(r)},
\]

où \(\text{var}(r) \) est égale à la formule suivante :

\[
\text{var}(r) = \left(-\frac{b}{a}\right)^2 \cdot \left[\frac{\text{var}(b)}{b^2} + \frac{\text{var}(a)}{a} - 2 \cdot \frac{\text{cov}(a,b)}{a \cdot b}\right].
\]

Pour CPT250, le modèle qui s’ajustait le mieux aux données est le modèle cubique suivant :

\[
\log (\text{CPT250}) = a \cdot (\log(\text{jours}))^3 + b \cdot (\log(\text{jours}))^2 + c \cdot (\log(\text{jours})) + d.
\]

\(^2c = \text{ordonnée à l’origine}\)
Donc à partir de cette équation, le nombre de jours écoulés avant que la valeur du CPT retourne à sa valeur initiale est obtenu lorsque le Log (CPT) est égal au paramètre d. La formule obtenue est la suivante :

$$j\hat{0} = \exp((-b - \sqrt{b^2 - 4 * a * c})/(2*a))$$.

Et son erreur –type est égal à

$$et(j\hat{0}) = j\hat{0} * \sqrt{var(r)}$$

où $var(r)$ est égale à la formule suivante :

$$\left[\begin{array}{c}
\frac{1}{2} \frac{1}{(-b^2 + 4 a c) a^4} (-6 covab a^2 b c \\
+ 2 covab b^2 \sqrt{b^2 - 4 a c} \\
- 2 covab a^2 \sqrt{b^2 - 4 a c} c \\
- 2 covac a^2 \sqrt{b^2 - 4 a c} b \\
- vb a^2 b \sqrt{b^2 - 4 a c} + 4 va a c b^2 \\
- 2 va a^2 c^2 - va \sqrt{b^2 - 4 a c} b^3 \\
+ 2 va a c \sqrt{b^2 - 4 a c} b + 4 covac a^3 c \\
- vb a^2 b^2 + 2 covbc a^3 b \\
+ 2 covbc a^3 \sqrt{b^2 - 4 a c} - 2 a^4 vc - va b^4 \\
+ 2 covab a b^3 - 2 covac a^2 b^2 + 2 vb a^3 c) \end{array} \right]$$
Annexe VI – Graphique démontrant le temps nécessaire pour la récupération des trois types de fibres nerveuses sensitives
Graphique démontrant le temps nécessaire pour la récupération des trois types de fibres nerveuses sensitives