SADIA MEHDI

HEAT SHOCK COGNATE PROTEIN 70 (HSC70) EST UN NOUVEAU PARTENAIRE POUR LA PROTÉINE HUNTINGTIN INTERACTING PROTEIN-1 RELATED (HIP1R)

Mémoire présenté
à la Faculté des Études Supérieures de l’Université Laval
comme exigence partielle du programme de maîtrise en Médecine Expérimentale
offert à l’Université du Québec à Chicoutimi
en vertu d’un protocole d’entente avec l’Université Laval
pour l'obtention du grade de Maître ès sciences (M.Sc.)

FACULTÉ DE MÉDECINE
UNIVERSITÉ LAVAL
QUÉBEC

ET

DÉPARTEMENT DES SCIENCES HUMAINES
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI
SAGUENAY

2011

© SADIA MEHDI, 2011.
RÉSUMÉ

Huntingtin interacting protein-1 (HIP1) et Huntingtin interacting protein-1-related (HIP1R) ont été identifiées comme des protéines intervenant dans l’endocytose médiée par les vésicules de clathrine par leurs interactions avec d’autres protéines endocytaires. Pour mieux comprendre les rôles attribués à HIP1/R dans cette machinerie, nous avons procédé à l’identification de nouveaux partenaires d’interaction.

Au cours de notre étude, nous avons identifié HSC70 (Heat-shock Cognate Protein70) comme un nouveau partenaire pour les domaines TALIN des deux protéines par des essais de pull-down et analyse par spectrométrie de masse.

Au cours de cette étude nous avons identifié également que l’association d’HSC70 avec le domaine TALIN d’HIP1R, compromet sa sédimentation avec les filaments d’actine.

HIP1R est une composante du manteau de clathrine, son interaction avec HSC70 l’a impliquée dans le démantèlement des vésicules. Dans cette étude, nous avons vérifié l’intervention d’HIP1R dans le démantèlement de la clathrine suite à son interaction avec HSC70 et la relation de ce mécanisme avec la perte d’interaction avec l’actine.
Remerciements

Je dédie cet ouvrage à mon époux et à mes chers parents qui sont la source de ma détermination et à qui je dois d'être ce que je suis.

Je tiens d'abord à exprimer ma sincère gratitude à ma directrice de maîtrise, le docteur Valérie Legendre-Guillemin, sans qui je n'aurais pu mener à terme ce travail. Je lui suis reconnaissante de m'avoir si bien dirigée tout au long de cette recherche, avec rigueur en même temps que souplesse. Sa patience, sa grande disponibilité furent pour moi à la fois une aide précieuse et un modèle.

Je désire également exprimer mes remerciements au Docteur Catherine Laprise de m'avoir accueillie dans son laboratoire.

Je remercie également les professeurs Docteur Annie Angers et Docteur Sébastien Carreno d'avoir accepter de réviser ce travail.

J'aimerais aussi remercier les autres professeur-e-s du programme de maîtrise en médecine expérimentale pour leur enseignement de qualité.

Je ne saurais garder sous silence l'apport intellectuel et personnel de toute la communauté laborantine Géronimo.

Finalement, une reconnaissance particulière aux membres de ma famille, surtout à mon compagnon de vie, qui m'ont, en tout temps, apporté soutien et encouragement et ont supporté ma longue absence.

Je remercie bien évidemment la famille Rebaine qui m'a ouvert grand sa porte et qui m'a soutenue dans l'accomplissement de ce travail, un grand merci à mes compatriotes algériens ici au Québec.

Que tous ceux-là sachent que ma reconnaissance va bien au-delà de ces quelques lignes!
TABLE DES MATIÈRES

RÉSUMÉ ........................................................................................................................................... ii
TABLE DES MATIÈRES ................................................................................................................ iv
LISTE DES FIGURES ................................................................................................................... vii
LISTE DES TABLEAUX .................................................................................................................. ix
LISTE DES ABRÉVIATIONS .......................................................................................................... x
INTRODUCTION ............................................................................................................................. 1
PERTINENCE ET OBJECTIFS DE L’ÉTUDE .................................................................................. 1
CHAPITRE 1 .......................................................................................................................................3
LES VOIES D’ENDOCYTOSE ..........................................................................................................3
1.1 Définition et rôles de l’endocytose ............................................................................................... 3
1.2. Différents types d’endocytose ................................................................................................... 4
1.2.1 Les voies d’endocytose indépendantes de la clathrine ............................................................ 5
1.2.2 Endocytose médiée par la clathrine ....................................................................................... 6
1.3 Étapes de l’endocytose médiée par la clathrine ............................................................................. 6
1.4 Protéines de l’endocytose médiée par la clathrine ....................................................................... 7
1.4.1 La clathrine ............................................................................................................................. 9
1.4.2 Les complexes protéiques AP .................................................................................................. 11
1.4.3 Le complexe AP-2 ................................................................................................................ 12
1.4.4 La dynamine .......................................................................................................................... 14
1.4.5 Le cytosquelette d’actine....................................................................................................... 15
1.4.5.1 Structure et fonctions ................................................................................................... 15
1.4.5.2 Endocytose et cytosquelette d’actine ........................................................................... 16
1.4.6 L’auxilîne .............................................................................................................................. 18
1.4.7 L’HSC70 ............................................................................................................................... 19
1.4.7.1 Origine et structure ....................................................................................................... 19
1.4.7.2 HSC70, l’auxilîne et l’endocytose ............................................................................. 19
1.4.8 La cortactine .......................................................................................................................... 20
1.4.9 HIP1, HIP1R et Sla2p ......................................................................................................... 22
CHAPITRE 2 .....................................................................................................................................23
STRUCTURE ET FONCTIONS D'H1P1 ET H1P1R ........................................................................23
2.1 Structure et localisation cellulaire d'H1P1 et H1P1R .............................................................. 23
2.2 Implication d'H1P1 et d'H1P1R dans l'endocytose médiée par la clathrine .............................. 25
2.3 Récépteurs régulés par H1P1 ou par H1P1R ........................................................................... 27
2.4 Autres rôles d'H1P1 et H1P1R dans la cellule ......................................................................... 27
CHAPITRE 3 .....................................................................................................................................29
MÉTHODOLOGIE DE LA RECHERCHE ....................................................................................29
3. 1 Synthèse des domaines d'H1P1R nécessaires à l'étude .......................................................... 29
    3.1.1 Technique du clonage moléculaire ................................................................................. 30
3.2 Protéines de fusion GST-H1P1/R -domaine X ...................................................................... 32
3.3 Technique du pull-down ........................................................................................................ 33
    3.3.1 Production d'extrait protéique ....................................................................................... 34
    3.3.2 Quantification des protéines par la méthode de Bradford ............................................. 35
3.4 Technique de l'immunoblot .................................................................................................... 37
3.5 Technique de l'overlay .......................................................................................................... 38
3.6 Cosédimentation avec l'actine ............................................................................................... 39
3.7 Démantèlement des vésicules de clathrine ............................................................................ 40
    3.7.1 Purification de vésicules de clathrine ............................................................................ 40
    3.7.2 Technique du démantèlement ....................................................................................... 43
3.8 Analyse statistique des résultats .............................................................................................. 43
CHAPITRE 4 .....................................................................................................................................44
RÉSULTATS ET INTERPRÉTATIONS ..........................................................................................44
4.1 Synthèse des domaines à l'étude .............................................................................................. 44
    4.1.1 Clonage des domaines GST-H1P1R C-terminaux ....................................................... 44
    4.1.2 Expression des protéines de fusion des domaines GST-H1P1R domaine X ................. 46
4.2 Résultat de la recherche de nouveaux partenaires d'interaction ........................................... 47
    4.2.1 Identification de nouveaux partenaires .......................................................................... 47
    4.2.2 Vérification, par immunoblot, de l'interaction directe : HSC70-H1P1R ......................... 50
    4.2.3 Identification du site de liaison de HSC70 sur H1P1R-TALIN .................................... 51
4.3 Essai de sédimentation avec l’actine ........................................................................................... 54
4.4 Essai de liaison du domaine TALIN KVK/DDD avec HSC70 ................................................... 59
4.5 Essai de dimérisation de deux domaines HIP1R-TALIN ........................................................... 60
  4.5.1 Co-sédimentation du dimère THATCH d’HIP1R avec l’actine en présence d’HSC70 .... 60
  4.5.2 Essai de dimérisation des domaines C-terminaux de deux protéines HIP1R ................. 62
4.6 HIP1R et le démantèlement des vésicules recouvertes de clathrine ........................................ 63

CHAPITRE 5 .................................................................................................................................... 68
DISCUSSION GÉNÉRALE DES RÉSULTATS ............................................................................. 68
CONCLUSION ................................................................................................................................. 76
PERSPECTIVES ............................................................................................................................. 78
RÉFÉRENCES BIBLIOGRAPHIQUES ........................................................................................... 81
ANNEXE A ...................................................................................................................................... 93
I. Clonage des protéines à l’étude ..................................................................................................... 93
ANNEXE B ...................................................................................................................................... 99
II. Production de protéines de fusion GST sous différentes formes ........................................... 99
ANNEXE C .................................................................................................................................. 101
III. Protocole de production d’extrait de cerveau ......................................................................... 101
ANNEXE D ................................................................................................................................... 102
IV. Protocole de sédimentation avec l’actine .............................................................................. 102
ANNEXE E .................................................................................................................................. 103
V. Protocole de démantèlement de vésicules de clathrine ........................................................... 103
ANNEXE F .................................................................................................................................... 104
VI. Présentation des sites d’HIP1R TALIN potentiels à l’interaction avec HSC70 ................. 104
LISTE DES FIGURES

Figure 1 : Les différentes voies d’endocytose (Mayor and Pagano 2007) ........................................ 4
Figure 2 : Exemple de classification des voies d’endocytose (Mayor and Pagano 2007) ............. 6
Figure 3 : Régulation spatiale et temporelle de l’endocytose (Conner and Schmid 2003) ........ 7
Figure 4 : Représentation schématique du réseau d’interactions protéiques impliquées dans la formation des vésicules de clathrine (Schmid and McMahon 2007) ......................... 9
Figure 5 : Représentation schématique d’une triskèle et de la cage de clathrine A) Structure de la triskèle B) revêtement d’une vésicule à clathrine (Puertollano 2004) ........................................ 11
Figure 6 : Recrutement de la clathrine à la membrane via AP-2 (Puertollano 2004) .................. 12
Figure 7 : Structure de l’adaptateur AP-2 (Benmerah 2002) ....................................................... 12
Figure 8 : Structure de la dynamine (Mettlen et al. 2009) ......................................................... 15
Figure 9 : Implication de l’actine dans l’endocytose (Robertson et al. 2009) .......................... 16
Figure 10 : Représentation schématique des protéines de jonction entre l’actine et la machinerie de l’endocytose (Schafer 2002) ................................................................. 17
Figure 11 : Domaines et fonctions de l’auxiline (Xing et al. 2010) ........................................... 18
Figure 12 : Représentation schématique des différents domaines de la cortactine ....................... 21
Figure 13 : Schématisation de la structure de la protéine HIP1 ..................................................... 24
Figure 14 : Schématisation de la structure de la protéine HIP1R .................................................. 24
Figure 15 : Représentation schématique des domaines d’interactions de HIP1/R avec les différentes protéines impliquées dans l’endocytose médidée par les vésicules de clathrine (Brett et al. 2006) ................................................................. 26
Figure 16 : Domaines de la partie C-terminale d’HIP1/R (domaine TALIN) ................................. 30
Figure 17 : Technique du pull-down avec les domaines d’HIP1/R ............................................ 36
Figure 18 : Identification d’une nouvelle interaction ................................................................. 37
Figure 19 : Schéma d’éluion des protéines de fusion ................................................................. 39
Figure 20 : Co-sédimentation du domaine TALIN d’HIP1/R avec les filaments d’actine .......... 40
Figure 21 : Protocole modifié de purification des vésicules de clathrine à partir de cerveaux de rat (Girard et al, 2005) .................................................................................................................. 42
Figure 22 : Localisation de l’insert et des sites des enzymes de restrictions sur le vecteur pGEX4T1 ................................................................. 44
Figure 23 : Analyse des clones pour la construction GST-hip1R (1015-1068) ............................ 45
Figure 24 : Résultat d’expression des différents domaines sous forme de protéines de fusion GST-hip1R domaine X ................................................................. 46
Figure 25 : Identification d’un nouveau partenaire pour la protéine GST-hip1R TALIN ............. 48
Figure 26 : Représentation schématique des domaines de la protéine HSC70 ............................. 49
Figure 27 : Validation par immunoblot de la nouvelle interaction HIP1/R-HSC70 .................... 49
Figure 28 : Validation par immunoblot, de l’interaction directe HIP1R-HSC70 ......................... 50
Figure 29 : Révélation par immunoblot de l’interaction d’HSC70 avec les sous-domaines (THATCH et Cter) d’HIP1R ................................................................. 51
Figure 30: Séquence en acides aminés du domaine TALIN de la protéine HIP1R. ............................... 52
Figure 31: Révélation par immunoblot des sous domaine de la protéine HIP1R avec HSC70 du cerveau et purifiée. .......................................................................................................................... 54
Figure 32: Blocage, par HSC70, de la sédimentation d'HIP1R avec l'actine. .............................. 55
Figure 33: Organigramme représentatif du taux de cosédimentation des protéines HIP1R et actine mesuré par Image J en fonction de HSC70. ........................................................................ 57
Figure 34: Représentation schématique de l'interaction d'HSC70 et actine avec la protéine HIP1R sous forme de dimères. ........................................................................................................ 58
Figure 35: Révélation par immunoblot de l'interaction d'HSC70 avec le domaine GST-HIP1R- TALIN (KVK/DDD). ........................................................................................................ 59
Figure 36: Blocage, par HSC70, de la sédimentation du domaine THATCH avec l'actine. ....... 61
Figure 37: Révélation des domaines de dimérisation des protéines HIP1R par ................. 62
Figure 38: Localisation des différentes protéines d'endocytose au niveau d'une vésicule de clathrine (Engqvist-Goldstein et al. 2001). ................................................................. 64
Figure 39: Régulation du démantèlement de la clathrine par HIP1R. ................................. 65
Figure 40: Organigramme représentatif du taux de démantèlement, mesuré par Image J en fonction de : Tris, HSC70 et d'HIP1R ................................................................. 66
Figure 41: Démantèlement des vésicules de clathrine en présence d'HIP1R seule. ......... 67
Figure 42: Représentation schématique de la localisation d'HIP1R, clathrine et actine lors des différentes étapes de l'endocytose médieé par la clathrine. ............................. 74
LISTE DES TABLEAUX

Tableau 1: Les différents domaines d' HIP1 et d' HIP1R et leurs fonctions dans la cellule ............ 33
Tableau 2: Résultats des clonages des différentes constructions à l'étude. ........................................ 46
Tableau 3: Identification des sites potentiels à la liaison avec HSC70 au niveau des sous-domaines d'HIP1R. .................................................................................................................. 53
Tableau 4: Protéines de fusion et leurs amorces .............................................................................. 97
Tableau 5: Emplacement des acides aminés Q et L potentiels à l'interaction avec HSC70 au niveau de la séquence du domaine HIP1R-TALIN (représentés en rouge). ................................................. 104
LISTE DES ABRÉVIATIONS

HIP1: Huntingtin interacting protein 1
HIP1R: Huntingtin interacting protein 1 related
RTG: Réseau trans-golgien
Eps15: Epidermal growth factor receptor substrate 15
AP2 : Adaptateur protéique 2
GTP: Guanosine tri-phosphate
HSC70: heat-shock cognate protein 70
AP180/CALM: Clathrin-assembly lymphoid myeloid leukaemia protein
CHCR: Clathrin Heavy Chain Repeat
PH: Pleckstrin Homology,
GED: GTPase effector domain
PRD: Proline/Arginin rich domain
SH3: Src homology 3
Arp 2/3: Actin related protein 2/3
Hsp: heat-shock protein
ATP: Adenosine tri-phosphate
ANTH: AP180 NH2-terminal homology
THATCH: Talin-HIP1/R/Sla2p-Actin-Tethering C-terminal Homology
EGF: Epidermal growth factor
PDGF: Platelet-derived growth factor
AMPA : Récepteurs ionotropes spécifiquement activés par le α-amino-3-hydroxy-5 méthylisoazol-4 propionate
NMDA : Récepteurs ionotropes spécifiquement activés par le Nméthyl- D-aspartate
NLS : Signal de localisation nucléaire
BCL2L10 : Bcl-2-like protein 10
LDL: Low density lipoprotein
ARF6: ADP Ribosylation Factor 6
RhoA: Ras homolog gene family, member A
TRP: tetratricopeptide repeat protein
HOP: Hsc70-Hsp90-organizing protein
Hip: HSC70-interacting protein
CHIP: Carboxy terminus of Hsc70 Interacting Protein
CIN85: Cbl-interacting protein of 85 kDa
HPD: Histidine, Proline et Acide aspartique
Clavesin : Clathrin-vesicle-associated Sec14 protein
Calpain : Calcium-dependent cysteine protease
FCHo1/2: Fc Fer/Cip4 homology domain-only proteins 1 and 2
Necap: Actin ear-binding coat-associated protein
PMSF : phenylmethanesulfonylfluoride or phenylmethylsulfonyl fluoride
ARH: Autosomal recessive hypercholesterolemia
INTRODUCTION
PERTINENCE ET OBJECTIFS DE L’ÉTUDE

Les cellules vivantes peuvent absorber des substances ou des particules extracellulaires en mettant en œuvre un mouvement membranaire et un mécanisme de transport.

L’endocytose médiée par la clathrine constitue une voie de transport et d’entrée de particules vers l’intérieur de la cellule suite à une invagination de la membrane plasmique. Elle représente un mécanisme crucial à la vie d’une cellule et également un des moyens empruntés par les microorganismes pour leur infection. L’endocytose médiée par la clathrine constitue une voie ciblée lors de nouvelles thérapies (Doherty and McMahon 2009).

Plusieurs fonctions sont attribuées à HIP1 et HIP1R dans d'autres mécanismes cellulaires, toutefois leur implication dans l'endocytose médiée par la clathrine est la plus caractérisée. Notre étude vient compléter la compréhension des rôles de ces deux protéines dans la machinerie de l'endocytose. Elle s'inscrit dans les objectifs suivants : L'objectif ultime de cette étude vise à déterminer les différentes interventions des deux protéines dans ce mécanisme d'échange pour aboutir à une meilleure compréhension de ce phénomène membranaire. Les approches suivies sont comme suit:

1- Détermination des partenaires d’interaction des protéines HIP1/R;

2- Caractérisation des sites des nouvelles associations;

3- Définition des rôles dans lesquels ces nouvelles interactions s’inscrivent.

Ce travail est divisé en deux parties. La partie bibliographique est constituée de deux chapitres. Le premier traite les voies de l’endocytose de manière générale et aborde les différentes protéines impliquées dans l’endocytose médiée par la clathrine. Le second détaillé, sur le plan structural et fonctionnel, les deux protéines HIP1/R qui font l’objet de cette étude.

La partie expérimentale expose, dans le chapitre 3, le matériel et les méthodes utilisés pour répondre aux objectifs et hypothèses de l’étude. Dans le quatrième chapitre sont discutés et résumés les principaux résultats obtenus. Cette partie présente aussi les perspectives qui ont émané de l’étude.
CHAPITRE 1
LES VOIES D'ENDOCYTOSE

La formation des vésicules de transport est un processus complexe nécessitant une coordination dans le recrutement sélectif des lipides, des protéines transmembranaires et de leurs cargaisons ainsi que dans le mécanisme de tri des particules à transporter et la fusion de ces vésicules avec les compartiments récepteurs (Doherty and McMahon 2009)

1.1 Définition et rôles de l'endocytose

L'endocytose correspond à un mécanisme d'échange entre la cellule et son environnement grâce auquel des molécules et des nutriments peuvent être internalisés dans le cytoplasme cellulaire par le biais de vésicules (Mukherjee et al. 1997). Ce processus est obtenu à partir de la membrane cytoplasmique de laquelle se détache, vers l'intérieur de la cellule, graduellement, une sorte d'invagination renfermant le matériel à internaliser. Les molécules ingérées seront par la suite destinées aux endosomes pour être, selon les besoins de la cellule, soit recyclées à la membrane plasmique, redirigées vers un autre compartiment cellulaire, ou être digérées dans les lysosomes (Clague 1998; Doherty and McMahon 2009). L'endocytose s'avère cruciale au bon fonctionnement de la cellule. Elle intervient, par exemple, lors de la transmission entre les synapses, lors de la présentation des antigènes à la surface cellulaire et lors de la signalisation des facteurs de croissance (Conner and Schmid 2003; Marsh and McMahon 1999).
1.2. Différents types d’endocytose

L’endocytose est un terme général qui regroupe tous les mécanismes responsables de l’internalisation de substances ou de microorganismes extracellulaires (Marsh and Helenius 2006). Elle peut se subdiviser en différentes voies en fonction soit de la nature du matériel ingéré ou du mécanisme d’internalisation (figure 1).

a. **La pinocytose** : implique l’ingestion de liquides et de molécules par l’intermédiaire de petites vésicules;

b. **La phagocytose** : assure l’ingestion de grosses particules, comme les microorganismes ou les débris cellulaires, par l’intermédiaire de grosses vacuoles appelées phagosomes (Doherty and McMahon 2009).

c. **L’endocytose médiée par des vésicules** : permet l’entrée de substrats et de ligands couplés à leurs récepteurs grâce à différents types de vésicules qui diffèrent les unes des autres par la présence ou non d’un revêtement. On distingue les vésicules à clathrine, les vésicules à cavéoline et les vésicules dénudées.

![Figure 1](image-url): Les différentes voies d’endocytose (Mayor and Pagano 2007).
Dans la littérature, l’endocytose est définie par deux principales voies. On distingue les voies d’endocytose dépendantes de la clathrine et les voies d’endocytose indépendantes de la clathrine (Le Roy and Wrana 2005).

1.2.1 Les voies d’endocytose indépendantes de la clathrine

Il a été observé que lors du blocage de l’endocytose médiée par les vésicules de clathrine, certaines molécules continuent à s’internaliser via d’autres voies impliquant des vésicules lisses. Ces voies sans revêtement de clathrine assurent 50% des internalisations cellulaires (Lamaze and Schmid 1995). D’autres études ont montré l’implication de la GTPase dynamine dans certaines voies d’endocytose indépendantes de la clathrine (Damke et al. 1995). Il a été montré également que certaines voies indépendantes de la clathrine peuvent être régulées par d’autres GTPases comme l’ARF6 (ADP-ribosylation factor 6) et RhoA (Ras homolog gene family, member A) (Donaldson and Klausner 1994; Qualmann and Mellor 2003).

La figure suivante résume la classification des voies de l’endocytose proposée par Mayor et al (2007).
1.2.2 Endocytose médiée par la clathrine

Différents types de vésicules de transport ont été décrits dans la littérature; cependant l'endocytose médiée par les vésicules de clathrine est la mieux caractérisée, elle constitue souvent un modèle de transport vésiculaire (Puertollano 2004).

1.3 Étapes de l'endocytose médiée par la clathrine

Ce phénomène membranaire commence par le recrutement de l'adaptateur protéique (AP2) au niveau de la membrane plasmique. Les complexes AP2 assemblés fixent alors la clathrine. Les triskèles s'auto-assemblent en hexagones et pentagones et finissent par former une structure grillagée formant une cage sphérique. L'epsine, l'intersectine, l'amphiphysine et l'endophiline sont recrutées ensuite pour favoriser l'invagination de la membrane plasmique. La fission qui s'ensuit nécessite l'intervention de la GTPase dynamin, qui, en se liant au GTP, se polymérisé pour former un col d'étranglement qui se
resserre pour libérer la vésicule. Peu après son internalisation, la vésicule perd son manteau par l'intervention des protéines HSC70 (membre de la famille des chaperonnes heat-shock), l’auxilaine et la synaptojanine, pour ensuite s’arrimer à l’organite cible pour y déverser son contenu (figure 3) (Conner and Schmid 2003; Kirchhausen 2002; Puertollano 2004; Ungewickell and Hinrichsen 2007; Wakeham et al. 2000).

![Diagram](image.png)

**Figure 3 :** Régulation spatiale et temporelle de l’endocytose (Conner and Schmid 2003).

**1.4 Protéines de l’endocytose dédiée par la clathrine**

La clathrine, l’AP2 et la dynamine constituent les premières protéines mises en évidence et qui sont impliquées dans la formation des puits couverts de clathrine (McNiven et al. 2000a). Dans le but de mieux comprendre ce phénomène membranaire, des études se sont intéressées aux partenaires d’interaction de ces protéines et ont pu caractériser toute une série de protéines nouvelles impliquées dans les différentes étapes de l’endocytose dédiée par les vésicules de clathrine (Puertollano 2004) (Figure 4). Certaines de ces

De nouvelles protéines ont été découvertes récemment comme étant des protéines de l’endocytose (Blondeau et al. 2004; Borner et al. 2006). On distingue, Numb, ARH (Autosomal recessive hypercholesterolemia) et Dab2 (Disabled homolog 2) jouant le rôle d’adaptateur protéique (Schmid and McMahon 2007). La stonine est impliquée dans le recyclage des vésicules synaptiques (Maritzen et al. 2010). Les Necaps (adaptin-ear-binding coat-associated protein) interagissent avec l’amphiphysine et l’AP2 (Ritter et al. 2003). La calpain appartenant à la famille des protéases à cystéine dépendante du calcium, régule l’endocytose médieée par la clathrine par protéolyse de plusieurs protéines endocytaires (Rudinskiy et al. 2009; Wu et al. 2007). Les protéines FCHo1/2 (Fer/Cip4 homology domain-only proteins 1 and 2) interagissent spécifiquement avec la membrane
plasmique et recrutent l’AP2 par l’intermédiaire de l’Eps15 et l’intersectine (Henne et al. 2010). La protéine Sorting nexin9 (SNX9) est impliquée dans la déformation de la membrane via son domaine BAR. Cette protéine est régulée par N-WASP et la dynamine 2 (figure 4) (Shin et al. 2008).

**Figure 4** : Représentation schématique du réseau d’interactions protéiques impliquées dans la formation des vésicules de clathrine (Schmid and McMahon 2007).

### 1.4.1 La clathrine

Découverte par Barbara Pearse (Pearse 1976), la clathrine est une protéine constituée de trois chaînes lourdes associées par leur domaine C-terminal, chacune d’elle associée à une chaîne légère. Cet assemblage est appelé « triskèle » (figure 5A). Grâce au domaine Hub, les branches des triskèles s’assemblent pour former une structure polyhédrale sous forme de cage (figure 4B) (Liu et al. 1995). La chaîne lourde du triskèle est constituée d’un
alignement de sept domaines répétitifs CHCR (Clathrin Heavy Chain Repeat), chacun d'eux est composé de 146 résidus (Ybe et al. 1998). Le domaine N-terminal du triskèle, correspondant au domaine N-terminal de la chaîne lourde, interagit avec plusieurs protéines dont AP1, AP2 et amphiphysine par le biais d'un motif consensus appelé « boîte clathrine » (Benmerah 2002; Miele et al. 2004; ter Haar et al. 1998). Il existe deux formes de chaînes légères chez les mammifères, la chaîne légère a et la chaîne légère b (CLa et CLb) tandis que chez la levure, une seule chaîne a été mise en évidence (Silveira et al. 1990). Les CLa et CLb se lient aux ions calcium et à la calmoduline (Lisanti et al. 1982; Mooibroek et al. 1987; Nathke et al. 1990). Les deux formes se lient aux domaines hub des triskèles et exercent une compétition pour le site de liaison à la chaîne lourde. Elles régulent ainsi l'assemblage des triskèles (Kirchhausen et al. 1983; Ungewickell 1983; Ungewickell and Ungewickell 1991). La CLb peut être phosphorylée par la caséine kinase II (Bar-Zvi and Branton 1986; Hill et al. 1988). La chaîne légère n'est pas nécessaire à la formation des cages de clathrine, toutefois elle stimule l'hydrolyse de l'ATP grâce à son interaction avec HSC70 lors du démantèlement de la clathrine (DeLuca-Flaherty et al. 1990; Schmid et al. 1984; Schmid et al. 1982).
**Figure 5 :** Représentation schématique d’une triskèle et de la cage de clathrine
A) Structure de la triskèle B) revêtement d’une vésicule à clathrine (Puertollano 2004).

1.4.2 Les complexes protéiques AP

1.4.3 Le complexe AP-2

Le complexe AP-2 représente l’adaptateur protéique présent à la membrane plasmique, constitué de deux grandes sous-unités d’environ 100 KDa, α et β2, et deux petites-sous-unités μ2 et σ2 de 50KDa et 16KDa respectivement (Heuser and Keen 1988; Keen 1987) (figure 7).
L'AP-2 fixe les récepteurs à internaliser, via la sous-unité μ2, par reconnaissance de séquences spécifiques dans leurs domaines cytoplasmatiques. Ces déterminants constituent les signaux d'endocytose. Les plus communs sont les motifs tyrosine YxxΦ (Φ : résidus hydrophobe) qui se lient directement à la sous-unité μ2 (Collins et al. 2002; Ohno et al. 1995). Des études suggèrent que les motifs DExxxLL se lient aux sous-unités β1 ou β2 des complexes AP-1 ou AP-2 pour le recrutement des autres protéines de l'endocytose (Bresnahan et al. 1998; Dietrich et al. 1997; Greenberg et al. 1998; Rapoport et al. 1998). L'implication des motifs tyrosine NPxY ont été observés lors de l'internalisation des molécules LDL. Une simple mutation de la tyrosine au niveau de ces récepteurs entraîne le blocage de l'internalisation des molécules LDL, ce qui engendre le syndrome de l'hypercholestérolémie familiale (Davis et al. 1986). Toutefois, il existe un bon nombre de récepteurs qui peuvent être internalisés par l'intermédiaire d'adaptateurs autres que l'AP-2 tels les récepteurs couplés aux protéines G internalisés par l'adaptateur β-arrestine (Ferguson et al. 1996; Pierce and Lefkowitz 2001).

L'AP-2 recrute la clathrine à la membrane plasmique et stimule l'assemblage des triskèles via la sous-unité β2. Ce complexe recrute également, par les sous-unités α2 et β2, des protéines accessoires nécessaires à la formation des vésicules (Gallusser and Kirchhausen 1993; Kirchhausen 2002; Schroder and Ungewickell 1991; Shih et al. 1995) (figure 7).

Suite à fixation du complexe AP-2 à la membrane plasmique, la sous-unité μ2 subit un changement de conformation afin d'exposer son site d'interaction au récepteur à internaliser. Ce changement de conformation serait dû à une phosphorylation de la sous-
unité μ2 au niveau de la thréonine 156 (Thr-156) par la kinase AAK1 associée à l’adaptateur. La clathrine constitue le facteur d’activation de cette kinase. Il a été montré que l’AP2, dont la sous-unité μ2 est phosphorylée, interagit spécifiquement avec la clathrine. Le degré de phosphorylation de ces sous-unités se trouve très réduit dans un modèle cellulaire où l’expression de la clathrine est réprimée (Jackson et al. 2003; Ricotta et al. 2002).

L’AP2 est un élément essentiel à la formation des vésicules de clathrine, la suppression de son expression par des ARN interférents conduit à une baisse du nombre de vésicules de clathrine (Motley et al. 2003). Une perturbation de l’intégration des molécules LDL et un blocage d’autres molécules dépendantes de la clathrine ont été également observés (Boucrot et al. 2010).

1.4.4 La dynamine

La dynamine est une protéine d’environ 100 KDa, elle est constituée de plusieurs domaines qui lui confèrent plusieurs rôles. Avec le domaine N-terminal, la dynamine fixe et hydrolyse le GTP, le domaine intermédiaire intervient dans l’auto-assemblage, l’inositol phosphate est fixé par le domaine PH (Pleckstrin Homology), le domaine GED (GTPase effector domain) régule la fonction de la GTPase et enfin le domaine C-terminal nommé domaine PRD (Proline/Arginin rich domain) a la capacité d’interagir avec les protéines à domaines SH3 (Src homology 3) (Hinshaw and Schmid 1995; Muhlberg et al. 1997; Obar et al. 1990; Salim et al. 1996; Shaw 1996) (Figure 8).
La dynamine effectue un rôle essentiel dans l'endocytose médiée par la clathrine, où elle est recrutée par l'amphiphysine et régulée par l'intersectine pour détacher la vésicule formée de la membrane plasmique. Elle s'enroule en spirale sur l'invagination membranaire et libère ainsi la vésicule grâce à son activité d'hydrolyse du GTP (Chen et al. 2004; Evergren et al. 2007; Takei et al. 1999; Yamabhai et al. 1998). L'inhibition de la formation des vésicules recouvertes de clathrine a été observée dans un modèle cellulaire en utilisant le GTP gamma S ou un mutant K44A dynamine incapable de lier ou d'hydrolyser le GTP (Damke et al. 1994; Herskovits et al. 1993; van der Bliek et al. 1993). Trois formes de dynamine ont été identifiées : la dynamine 1 est spécifique aux neurones, la dynamine 2 est ubiquitaire et la forme 3 est exprimée en abondance dans les testicules (Cook et al. 1996; Cook et al. 1994; Nakata et al. 1991; Nakata et al. 1993; Scaife and Margolis 1990).

1.4.5 Le cytosquelette d'actine

1.4.5.1 Structure et fonctions

Le cytosquelette d'actine est impliqué dans plusieurs fonctions cellulaires incluant le transport, le mouvement et l'adhésion cellulaire, la division et la séparation des chromosomes, l'endocytose et l'exocytose. L'organisation en faisceaux, dans le cytosol,
des filaments d’actine confère une forme et une bonne stabilité à la cellule (Dominguez 2009).

1.4.5.2 Endocytose et cytosquelette d’actine


\[ \text{Figure 9: Implication de l’actine dans l’endocytose (Robertson et al. 2009).} \]

Plusieurs protéines constituent une jonction entre les filaments d’actine et le mécanisme de l’endocytose. On trouve entre autre l’Abp1p, Sla2p isolée chez Saccharomyces cerevisiae et la cortactine. Ces protéines stimulent la polymérisation de l’actine via le complexe Arp
2/3 (Actin related protein 2/3) (Olazabal and Machesky 2001). L’intersectine et la syndapine favorisent indirectement cet assemblage par leur interaction avec WASP (Wiskott–Aldrich syndrome protein), un activateur efficace de la polymérisation des filaments d’actine, par association au complexe Arp 2/3 (Hussain et al. 2001; Qualmann et al. 1999).


**Figure 10:** Représentation schématique des protéines de jonction entre l’actine et la machinerie de l’endocytose (Schafer 2002).
1.4.6 L’auxiliné

L’auxiliné est une protéine spécifique du cerveau, elle se trouve enrichie au niveau des terminaisons nerveuses (Ahle et Ungewickell 1990). Cette protéine est constituée de plusieurs domaines (figure 11). Elle appartient à la famille des protéines à domaine J qui sont caractérisées par la présence d’un ensemble d’acides aminés (HPD : Histidine, Proline et Acide aspartique) constituant le site de liaison à HSC70 (Eisenberg et Greene 2007). L’auxiliné s’associe également au complexe AP2 et à la vésicule de clathrine peu avant sa séparation de la membrane par l’intermédiaire de la dynamine et par cette interaction elle recrute HSC70 au niveau de la vésicule de clathrine (Lee et al. 2006). En absence d’auxiliné, le recyclage des vésicules synaptiques est altéré. Une accumulation des vésicules/puifs de clathrine au niveau des terminaisons a été également observée. Cette dernière est causée par le non démantèlement des vésicules formées suite à l’absence d’auxiliné (Yim et al. 2010). Dans les autres types cellulaires, le démantèlement s’opère grâce à la protéine GAK (Cyclin G-associated kinase) qui est l’homologue de l’auxiliné (Greener et al. 2000).

**Figure 11** : Domaines et fonctions de l’auxiliné (Xing et al. 2010).
1.4.7 L’HSC70

1.4.7.1 Origine et structure

Les Hsp (heat-shock protein) forment une famille de protéine de choc thermique. Elles exercent des fonctions essentielles à la vie cellulaire et plus encore à la survie lors de stress d'origine chimique, physique ou métabolique. Les Hsp agissent comme des protéines chaperonnes, elles permettent un repliement correct des protéines synthétisées et leur translocation dans les compartiments subcellulaires appropriés (Gething and Sambrook 1992; Parsell and Lindquist 1993).

HSC70 appartient à la famille des Hsp. La digestion de cette protéine par la chymotrypsine génère deux domaines, un domaine N-terminal de 44KDa qui a la capacité de fixer et d'hydrolyser l’ATP, et un domaine C-terminal de 30KDa constituant le domaine de liaison aux autres protéines (Chappell et al. 1987).

1.4.7.2 HSC70, l’auxiline et l’endocytose

HSC70 est décrite comme étant une protéine de 70KDa qui est impliquée dans le démantèlement des vésicules de clathrine nécessitant l’hydrolyse de l’ATP (Schlossman et al. 1984). Elle intervient dans l’étape finale du mécanisme d’endocytose, après séparation des vésicules de la membrane. HSC70 est recrutée au manteau de clathrine par le domaine J de l’auxiline (Holstein et al. 1996).

La chaine lourde de clathrine fixe l’HSC70 au niveau des acides aminés QLMLT compris entre les acides aminés 1638 et 1642. La mutation de ce site n’affecte pas l’assemblage des triskèles de clathrine mais rend la vésicule résistante au recrutement de l’auxiline et de
l’HSC70 ce qui empêche le démantèlement du manteau (Rapoport et al. 2008). Une autre étude suggère que la fixation de HSC70 au domaine J de l’auxilin, engendre une distorsion des triskèles ce qui induit le démantèlement de la clathrine (Xing et al. 2010).

1.4.8 La cortactine

Découverte par Thomas Parsons, la cortactine est définie comme une protéine filamentuse d’environ 80KDa interagissant avec l’actine et constituant un substrat pour les tyrosine kinases (Wu and Parsons 1993). Cette protéine est constituée de plusieurs domaines (figure 11). L’extrémité N-terminale acide (NTA) permet l’activation du complexe Arp 2/3, avec son domaine de liaison à l’actine (F-actin-BD), la cortactine s’associe aux filaments d’actine et stimule ainsi sa polymérisation. Le domaine riche en proline permet la régulation de la cortactine par les tyrosine kinases en réponse à des stimuli. L’extrémité SH3 lie la cortactine à d’autres protéines impliquées dans la réorganisation du cytosquelette d’actine (Selbach and Backert 2005).
La cortactine est la protéine par excellence impliquée dans le remodelage du cytosquelette d’actine et dans la dynamique de la membrane plasmique (Schafer 2002). En effet, elle est présente au niveau des jonctions cellulaires (Helwani et al. 2004), comme composante des vésicules de clathrine (Cao et al. 2003), au niveau des sites d’entrée des pathogènes qui font appel aux filaments d’actine pour leur propulsion vers l’intérieur de la cellule (Selbach and Backert 2005). En plus de tous ses rôles, la cortactine intervient dans la machinerie de l’endocytose où elle interagit avec le domaine riche en proline (PRD) de la dynamine (McNiven et al. 2000b). La cortactine est recrutée aux stades précoces de l’endocytose. Sa localisation au niveau des puits de clathrine coïncide avec l’invagination et la scission de la
vésicule (Chen et al. 2006). Le complexe cortactine-dynamine 2 régulé par le cytosquelette d’actine permet la séparation de la vésicule de la membrane (Zhu et al. 2005).

1.4.9 HIP1, HIP1R et Sla2p

HIP1, HIP1R et Sla2p, chez la levure, appartiennent à la famille des protéines HIP (Huntingtin interacting protein). Les trois protéines participent à l’endocytose médicée par la clathrine et partagent des domaines conservés donc probablement des fonctions communes (Gottfried et al. 2010). Sla2p, homologue d’HIP1R chez la levure Saccharomyces cerevisiae et également appelée End4p ou Mop2p, est une protéine membranaire à plusieurs domaines qui intervient dans la réorganisation du cytosquelette d’actine et dans l’organisation de la membrane plasmique. Sla2p interagit grâce à son domaine TALIN avec les filaments d’actine (Engqvist-Goldstein et al. 1999; Holtzman et al. 1993; McCann and Craig 1997; Na et al. 1995; Raths et al. 1993; Yang et al. 1999). Chez un mutant de la levure Saccharomyces cerevisiae où la chaine lourde de clathrine est présente en très faible quantité, l’endocytose s’opère grâce à la chaine légère de clathrine régulée par la protéine Sla2p. En effet, un mutant de Sla2p, exempt du domaine coiled-coil d’interaction avec la chaine légère de clathrine, n’empêche pas le recrutement de la chaine légère ou de la protéine Abp1p, en revanche, ce mutant affecte la chronologie de leur progression dans l’endocytose (Newpher and Lemmon 2006).
CHAPITRE 2
STRUCTURE ET FONCTIONS D'HIP1 ET HIP1R

2.1 Structure et localisation cellulaire d'HIP1 et HIP1R

HIP1, principalement exprimée dans le cerveau, a été identifiée pour la première fois comme partenaire d'interaction de la huntingtine, protéine impliquée dans la chorée de Huntington (Kalchman et al. 1997). HIP1R aussi appelée HIP12 a été identifiée par la suite par homologie de structure avec HIP1, toutefois HIP1R ne se lie pas à la huntingtine (Chopra et al. 2000; Seki et al. 1998).

Ce sont deux protéines de 115KDa environ, qui sont enrichies dans les puits recouverts de clathrine et qui interagissent entre elles au niveau du domaine central pour former un hétérodimère ou un homodimère. La forme homodimère est plus stable que la forme hétérodimère (Engqvist-Goldstein et al. 1999; Legendre-Guillemin et al. 2002; Wilbur et al. 2008).

Le gène codant pour la protéine HIP1 se trouve sur le chromosome 7, à la position 7q.11.23. Il est constitué de 32 exons représentant deux isoformes HIP1-1 et HIP1-2 constituées de 1034 acides aminés et 1003 acides aminés respectivement (figure 13) (Chopra et al. 2000). Les deux protéines diffèrent au niveau de leur extrémité N-terminale.
Figure 13: Schématisation de la structure de la protéine HIP1.

Légende : CHC : chaîne lourde de clathrine; CLC : chaîne légère de clathrine; AP2 : adaptateur protéique 2; LMDLD : site de liaison à la clathrine; FXDXF, DPF : sites de liaison à l'AP2.

Le gène codant pour la protéine HIP1R se situe sur le chromosome 12, à la position 12q.24.31. Il est constitué de 1068 acides aminés (figure 14) (Chopra et al. 2000; Seki et al. 1998).

Figure 14: Schématisation de la structure de la protéine HIP1R.

Légende : LIEIS : site de liaison à la clathrine
2.2 Implication d’HIP1 et d’HIP1R dans l’endocytose médiée par la clathrine

HIP1 se lie aux chaînes lourdes de clathrine et à l’AP2 (Metzler et al. 2001; Mishra et al. 2001; Waelter et al. 2001). HIP1 et HIP1R stimulent l’assemblage de la clathrine en se liant à travers leur domaine central aux chaînes légères de clathrine (Chen and Brodsky 2005; Legendre-Guillemin et al. 2005). HIP1 et HIP1R se lient aux phospholipides membranaires par le biais du domaine AP180 NH2-terminal homology (ANTH) (Hyun et al. 2004b; Legendre-Guillemin et al. 2004). Par sa liaison à la clathrine avec le domaine central et à l’actine avec le domaine THATCH (Talin-HIP1/R/Sla2p-Actin-Tethering C-terminal Homology) (Brett et al. 2006), HIP1R constitue une jonction entre la machinerie de l’endocytose et le cytosquelette d’actine (Figure 15). Une récente étude chez Dictyostelium a démontré que l’epsine phosphoryle HIP1R et aide dans la régulation du recrutement des filaments d’actine au niveau des vésicules de clathrine (Brady et al. 2010). L’actine joue un rôle crucial dans l’endocytose médiée par la clathrine. HIP1R peut se lier, grâce à son extrémité C-terminale riche en proline, avec le domaine SH3 de la cortactine et forme ainsi un complexe qui bloque l’assemblage et l’élongation des filaments d’actine (Le Clainche 2007). En absence d’HIP1R, la dynamine, l’actine et la cortactine ont été observées en accumulation au niveau des puits, ce qui suggère qu’HIP1R module le recrutement de l’actine à la machinerie de l’endocytose (Engqvist-Goldstein et al. 2004). D’autres études ont montré que l’interaction d’HIP1R avec la chaîne légère de clathrine réduit son affinité à l’actine, sans perturber l’association d’HIP1R avec la cortactine (Wilbur et al. 2008). HIP1R régule également le recrutement de l’actine et son implication
dans le trafic vésiculaire entre le réseau trans golgien et les lysosomes (Carreno et al. 2004).

A l’inverse d’HIP1R, il n’existe aucune interaction entre HIP1 et l’actine bien que HIP1 partage le domaine, THATCH, de liaison à l’actine avec HIP1R (Brett et al. 2006; Legendre-Guillemin et al. 2002). Toutefois d’autres auteurs affirment que HIP1 interagit avec l’actine via le même domaine, et que cette interaction est régulée par la liaison de HIP1 à la chaîne légère de clathrine (Senetar et al. 2004; Wilbur et al. 2008).

**Figure 15:** Représentation schématique des domaines d’interactions de HIP1/R avec les différentes protéines impliquées dans l’endocytose médiée par les vésicules de clathrine (Brett et al. 2006).

Des études ont rapporté que l’endocytose des récepteurs à EGF et transferrine n’est aucunement affectée dans des fibroblastes de souris embryonnaires dont l’expression d’HIP1 ou d’HIP1R séparément a été réprimée (Hyun et al. 2004a). Les mêmes résultats ont été observés dans le même type cellulaire où les deux protéines HIP1 et HIP1R ne sont

2.3 Récepteurs régulés par HIP1 ou par HIP1R

HIP1 et HIP1R stabilisent le récepteur tyrosine kinase de l’EGF et du PDGF (platelet-derived growth factor) (Hyun et al. 2004b). HIP1 est un adaptateur protéique des récepteurs glutamate de type AMPA et interagit également avec les récepteurs NMDA (récepteurs ionotropes spécifiquement activés par le N-méthyl-D-aspartate) (Metzler et al. 2007; Metzler et al. 2003).

2.4 Autres rôles d’HIP1 et HIP1R dans la cellule

Le rôle de ces protéines ne se résume pas uniquement à l’endocytose. Elles peuvent avoir d’autres rôles dans la cellule. Rao et al. (2002) affirment qu’HIP1 est surexprimée dans les cancers du colon et de la prostate où elle joue un rôle de facteur de survie cellulaire. Les mêmes auteurs ont remarqué des dysfonctionnements dans un modèle de souris n’exprimant pas HIP1 (HIP1-/-). En effet, l’absence d’HIP1 cause une dégénérescence testiculaire suite à une augmentation de l’apoptose des spermatides, ceci conduit à une baisse de la fertilité chez les males déficient en HIP1 (Oravecz-Wilson et al.
Les mêmes individus présentent des déficits neurologiques : ataxie et cyphose thoraco-lombaire (Metzler et al. 2003), cataracte et microptalmie (Oravecze-Wilson et al. 2004). HIP1 a un rôle aussi dans la transcription, elle interagit avec les récepteurs de l'androgène et subit ainsi une translocation vers le noyau sous l'induction de l'androgène grâce à sa séquence NLS (signal de localisation nucléaire) (Mills et al. 2005). Récemment, une équipe de chercheurs à Séoul a découvert qu'HIP1R joue un rôle dans l'apoptose. Suite à son interaction avec le régulateur apoptotique BCL2L10, elle favorise l'apoptose cellulaire en activant la caspase 9 (Kim et al. 2009). Ce rôle apoptotique est également associé à HIP1, en effet il a été démontré qu'une surexpression d'HIP1 induit la mort cellulaire par la voie de la caspase 3 (Hackam et al. 2000). Un nouveau rôle a été attribué à HIP1R dans la mitose. Cette protéine est détectée au niveau du fuseau mitotique interagissant avec les microtubules. Suite à son blocage, par des ARNs interférants dans les cellules HeLa, HIP1R cause un désordre dans l'alignement des chromosomes au niveau de la plaque équatoriale ce qui conduit à une prolongation de la mitose et donc une perturbation de la prolifération des cellules. Les auteurs suggèrent qu'HIP1R constitue le point d'attache entre les microtubules du fuseau de division et les chromatides à séparer (Park 2010). L’interaction pourrait se faire par le domaine ANTH car il est capable de se lier à la tubuline (Hussain et al. 2003).
3. Synthèse des domaines d'HIP1R nécessaires à l'étude

HIP1 et HIP1R sont deux protéines qui sont constituées de plusieurs domaines. Nous disposons au laboratoire d'un ensemble de protéines de fusion des différents domaines de ces deux protéines. Toutefois pour la recherche de partenaires d'interactions de nos deux protéines, d'autres protéines de fusion avec des domaines plus spécifiques devaient être produites.

Notre étude portait principalement sur la compréhension des différences qui existent entre HIP1 et HIP1R par rapport à leurs interactions avec d'autres protéines, notamment celles de l'endocytose médiée par les vésicules de clathrine et plus particulièrement leurs liaisons au cytosquelette d'actine.

Au cours de nos expériences, nous nous sommes concentrés sur le domaine TALIN des deux protéines (figure 16). Le domaine C-terminal (1015-1068) de la protéine HIP1R ainsi que ses sous-domaines (1015-1049), (1015-1031), (1050-1068) et le domaine (1050-1068) dont les lysines (KK) à la position 1056 et 1057 ont été remplacées par deux alanines (AA), ont été produits par clonage moléculaire sous forme de protéines de fusion GST.
3.1.1 Technique du clonage moléculaire

Par définition, le clonage moléculaire est une technique de biologie moléculaire dont le but est l'amplification d'un gène d'intérêt afin de pouvoir l'étudier. Le principe du clonage repose sur l'isolement de ce gène et son introduction dans un organisme unicellulaire (bactérie ou levure) grâce à un vecteur. Le vecteur permettra à ce fragment d'ADN de se multiplier et de passer aux cellules filles après la division cellulaire.

A Étapes du clonage moléculaire

A.1 Amplification par la réaction de polymérisation en chaîne (PCR)

Le clonage moléculaire se déroule en plusieurs étapes, tout d'abord le gène qui code pour la protéine d'intérêt (domaines à synthétiser) est amplifié par PCR, c'est une technique développée en 1986 par Kary Mullis, dont le principe est une répétition de réactions d'élongation en présence d'amorces nucléotidiques spécifiques et d'une ADN polymérase (Mullis et al. 1992).
A.2 Digestion enzymatique

Le gène amplifié est digéré avec deux enzymes de restriction choisies en fonction de la carte de restriction de notre matrice d’ADN et du vecteur de clonage pGEX4T1 (voir annexe A).

A.3 Ligation

Les ADN digérés sont soumis à l’action de l’ADN ligase qui a pour rôle la production de plasmides recombinants par association des extrémités cohésives, des inserts et des vecteurs, générees par les enzymes de restriction. Ce produit de ligation sert d’inoculant pour la souche DH5α des bactéries Escherichia coli afin de multiplier les vecteurs (recombinants ou non) dans la bactérie réceptrice.

A.4 Transformation de bactéries compétentes

Le principe de cette transformation bactérienne consiste à faire subir aux bactéries compétentes (bactérie dont la paroi est fragilisée par un traitement au calcium ou autres traitements) un choc thermique permettant l’ouverture des pores au niveau de la paroi. Les pores ainsi formés faciliteront l’introduction du produit de ligation dans la cellule. Ces bactéries sont revivifiées dans un milieu nutritif LB (Milieu Luria-Bertani) afin de stimuler leur prolifération.

À partir de cette culture bactérienne, des géloses du milieu LB sélectif avec un antibiotique sont ensemencées et incubées à 37°C pendant 24h pour favoriser la prolifération des bactéries transformées.
A.5 Extraction de l'ADN

L'ADN des clones sélectionnés est isolé suite à une série de purifications avec un ensemble de réactifs et grâce à des colonnes à filtre suivant le protocole d'extraction d'ADN proposé par la trousse (EZ10 spin column BIOBASIC).

A.6 Vérification des clones

Les différents ADN des clones purifiés sont digérés de nouveau, soit avec les mêmes enzymes du clonage ou avec d'autres enzymes afin de vérifier si l'ADN codant pour le domaine d'intérêt est introduit ou pas dans le vecteur pGEX4T1. Cette vérification se fait par migration des produits de digestion sur un gel d'agarose à côté d'une échelle moléculaire. Les bandes d'ADN seront révélées grâce à un agent intercalant contenu dans le gel qui a la capacité d'émettre des photons sous un rayon UV. L'ADN est ensuite séquencé afin de vérifier l'intégrité de la séquence.

A.7 Conservation des clones positifs et expression des protéines

Les clones contenant l'insert sont stockés à -80°C dans du glycérol, d'autres clones de la protéine de fusion sont produits dans la souche BL21 qui est plus efficace pour la production de protéines recombinantes. Ces bactéries constituent désormais une source inépuisable de la protéine d'intérêt.

Les détails du clonage spécifique à cette étude sont présentés à l'annexe A.

3.2 Protéines de fusion GST-HIP1/R -domaine X

Le tableau 1 regroupe tous les domaines des deux protéines dont nous disposons au laboratoire et qui ont été produits par clonage moléculaire tel que décrit auparavant.
### Tableau 1: Les différents domaines d'HIP1 et d'HIP1R et leurs fonctions dans la cellule

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Acides aminés Ciblés</th>
<th>Interaction</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-HIP1/R TALIN</td>
<td>HIP1 737-1003, HIP1R 771-1068</td>
<td>Dimérisation des deux domaines</td>
<td>(Brett et al. 2006)</td>
</tr>
<tr>
<td>GST-HIP1R THATCH</td>
<td>771-1014</td>
<td>Dimérisation</td>
<td>(Brett et al. 2006)</td>
</tr>
<tr>
<td>GST-HIP1R CORE</td>
<td>771-971</td>
<td>Site de liaison à l'actine</td>
<td>(Brett et al. 2006)</td>
</tr>
<tr>
<td>GST-HIP1R LATCH</td>
<td>972-1014</td>
<td>/</td>
<td>(Brett et al. 2006)</td>
</tr>
<tr>
<td>GST-HIP1R C-TER</td>
<td>1015-1068</td>
<td>/</td>
<td>(Cette étude)</td>
</tr>
<tr>
<td></td>
<td>1015-1049</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1015-1031</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1050-1068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST-HIP1R C-TER muté aux lysines 1056/1057</td>
<td>1050-1068</td>
<td>/</td>
<td>(Cette étude)</td>
</tr>
</tbody>
</table>

À partir de ces clones positifs, des protéines de fusion sont purifiées pour l'étude des interactions protéine-protéine en utilisant la technique du pull-down. Les détails du protocole de purification sont présentés dans l'annexe B.

#### 3.3 Technique du pull-down

Il s'agit d'une technique utilisée dans le but de caractériser toute interaction possible, directe ou indirecte, entre deux protéines. Le principe consiste en une production de protéines de fusion GST-domaine X et de les lier avec les billes de glutathion-Sepharose pour ensuite les incuber avec un extrait de cerveau. Grâce à cette expérience, on peut savoir
si une protéine Y présente dans l'extrait protéique possède une affinité avec notre domaine X qui sera révélée après migration sur gel SDS-PAGE et coloration au bleu de Coomassie. Ces nouvelles protéines seront identifiées par spectrométrie de masse. La technique est utilisée telle que dans les expériences de Legendre-Guillemin et al. (2002).

Notre objectif tend vers la compréhension de la différence de liaison des deux protéines au cytosquelette d'actine. Nos travaux se sont concentrés sur les domaines TALIN des deux protéines. La recherche de partenaire d'interaction d'HIP1 et d'HIP1R au niveau des domaines TALIN nous permettra de mieux comprendre l'intervention des deux protéines dans la machinerie de l'endocytose et leur implication avec le cytosquelette d'actine.

3.3.1 Production d'extrait protéique

À partir d’un cerveau de rat, on produit un extrait protéique par broyage de ce tissu, dans un tampon de lyse (10mM Hepes pH=7,4, inhibiteurs de protéases : leupeptine, aprotinine, benzamidine et PMSF : phenylmethanesulfonylefluoride or phenylmethylsulfonyl fluoride) à l’aide d’un polytron. Ce mélange subira une première centrifugation (800g/15min) qui permettra de séparer le noyau et d’isoler le contenu membranaire et cytosolique des cellules. Une deuxième centrifugation (46000rpm/30min, rotor MLA55) du surnageant sera effectuée après une incubation dans une solution de TritonX100 (1% final) pour solubiliser les protéines des différents constituants de la cellule. Les détails du protocole sont présentés en annexe C. Une fois produit, cet extrait protéique sera quantifié grâce à un dosage colorimétrique.
3.3.2 Quantification des protéines par la méthode de Bradford

Le réactif de Bradford est constitué du bleu de Coomassie, d’éthanol, et d’acide phosphorique, le tout dilué dans de l’eau distillée. Le bleu de Coomassie se complexe avec les chaînes latérales des acides aminés basiques (lysine, arginine, histidine) et sur les fonctions amines libres de la chaîne polypeptidique en formant un complexe chromogène présentant un maximum d’absorption à 595nm. Il y a donc une corrélation entre la quantité de complexe formé dans une solution et la quantité de protéines. Le dosage des échantillons se fait par comparaison à une gamme étalon de BSA (sérum albumine bovine) de 0µg à 20µg.

3.3.3 Recherche de nouveaux partenaires d’interaction

La recherche de nouvelles interactions pour HIP1/R repose sur l’incubation des différents domaines, des deux protéines, produits sous forme de protéines de fusion, avec un extrait protéique quantifié auparavant. Une série des domaines des deux protéines sera incubée avec l’extrait de cerveau, et une autre série des mêmes domaines sera incubée juste avec un tampon de lyse sans protéine, cette série constituera notre contrôle négatif. Aux différents domaines se rajoutera la protéine GST seule qui constituera également un autre contrôle (figure 17).
L’incubation des domaines d’HIP1/R avec ou sans l’extrait protéique se fait toute la nuit à 4° C avec agitation pour permettre une bonne homogénéisation du mélange et ainsi mettre les billes contenant un des domaines d’HIP1 ou HIP1R en contact avec les protéines de l’extrait de cerveau. S’il existe une protéine Y dans l’extrait de cerveau qui présente une affinité avec un domaine X de nos protéines, l’interaction se fera entre les deux protéines en

Figure 17: Technique du pull-down avec les domaines d’HIP1/R.
question. Le contrôle GST seule nous permettra de vérifier si cette interaction concerne notre domaine où si elle se fait avec l’étiquette GST (figure 18). La vérification de cette éventuelle interaction se fait par migration des échantillons sur un gel SDS-PAGE suivie d’une coloration au bleu de Coomassie.

Figure 18: Identification d’une nouvelle interaction.

Légende : 1 : mise en contact de la protéine de fusion avec l’extrait protéique.
2 : interaction de la protéine Y avec le domaine X d’HIP1/R;
3 : contrôle GST
B : bille, Y : une des protéines d’extrait de cerveau.

3.4 Technique de l’immunoblot

L’immunoblot est une technique utilisée également pour mettre en évidence des interactions protéiques très spécifiques à l’aide des anticorps désignés contre une partie (épitope) de la protéine à l’étude. Le principe consiste en un transfert du gel de migration sur une membrane de nitrocellulose, pour ensuite l’incuber avec un anticorps primaire dirigé contre la protéine à l’étude et un anticorps secondaire, dirigé contre le premier anticorps. Ce dernier est doté d’une activité enzymatique. Le complexe sera révélé par
chimioluminescence. Cette technique conduit à l’émission de photons suite à la dégradation du substrat de la peroxydase. Ces photons formeront des taches noires sur un film autoradiographique posé contre la membrane. Cette technique nous permet de savoir spécifiquement si la protéine Y de l’extrait protéique interagit avec GST-HIP1/R domaine X.

3.5 Technique de l’overlay

La technique de l’overlay, appelée également le Far western blot, est une autre technique de détection d’interactions protéiques. Elle permet de mettre en évidence des interactions directes entre protéines. Les protéines de fusion incubées auparavant sur les billes seront éluées pour être ensuite incubées avec les protéines d’extrait de cerveau préalablement transférées sur une membrane de nitrocellulose dans le tampon overlay (BSA : 3%, Tween-20 : 0,1%, DTT : 1mM, TBS). La révélation se fera par immunoblot avec des anticorps anti-GST, telle qu’utilisée dans les expériences de Legendre-Guillemin et al (2005). L’éluition des protéines de fusion nous permet de récupérer les protéines de fusion sans les billes grâce à un phénomène de compétition avec la glutathione présente dans le tampon d’éluition. Les micropores de la membrane de la colonne laissent passer les protéines sans les billes (figure 19) (annexe B.II.2).
3.6 Cosédimentation avec l’actine

Les protéines de haut poids moléculaire sédimentent sous l’influence d’une force centrifuge, en effet quand deux protéines interagissent entre elles et qu’une des deux sédimente suite à la centrifugation, elle entraîne l’autre automatiquement au fond du tube s’il y a interaction entre les deux. C’est ce qu’on appelle la co-sédimentation.

Plusieurs études rapportent qu’HIP1R et même HIP1 constituent une jonction entre le mécanisme d’endocytose et le cytosquelette d’actine. Brett et al (2006) ont démontré que le domaine TALIN d’HIP1R se lie et sédimente avec les filaments d’actine sous certaines conditions. La présence d’une nouvelle interaction avec les protéines HIP1/R au niveau du domaine TALIN pourrait perturber, voire compromettre, la liaison à l’actine. Pour vérifier cette hypothèse, on utilise la technique de co-sédimentation où les protéines HIP1/R, l’actine et la protéine Y seront incubées ensemble (figure 20). Pour vérifier et valider que l’interaction de la protéine Y avec HIP1/R change leur co-sédimentation avec l’actine, une
expérience contrôle sera effectuée, il s'agit de la co-sédimentation d'HIP1/R avec le cytosquelette d'actine en absence de la protéine Y (annexe D).

Figure 20 : Co-sédimentation du domaine TALIN d'HIP1/R avec les filaments d’actine.

Avant leur utilisation pour l’essai de co-sédimentation, les protéines de fusion éluées sont clivées à la thrombine pour enlever la fraction GST qui risque de dimériser et ainsi de sédimerter sans être liée à l’actine. Le clivage se fait avec la thrombine, une enzyme dont le site est présent entre l’étiquette GST et la protéine d’intérêt (annexe B.II.3).

3.7 Démantèlement des vésicules de clathrine

Les vésicules de clathrine, après leur internalisation, perdent leur revêtement pour s’arrimer à la membrane de l’organite cible. HIP1R est une protéine du manteau, l’actine est aussi recrutée au moment de la scission et de la migration des vésicules. L’étude du démantèlement nous permettra de savoir si cette protéine est impliquée dans ce processus au cours de l’endocytose.

3.7.1 Purification de vésicules de clathrine

Les vésicules de clathrine seront purifiées à partir de cerveaux de rat, dans le tampon A (MES 1M pH=6,5, EGTA 10mM, MgCl2 5mM) favorisant l’assemblage de la clathrine sur les vésicules. L’extraction se fait par fractionnement subcellulaire impliquant une série
d'homogénisations (avec les homogénéisateurs de type Glass-téflon) et de centrifugations à différentes vitesses avec différents rotors suite à des gradients de ficoll-sucrose et sucrose–D$_2$O (figure 21) (Girard et al. 2005). Les vésicules ainsi obtenues seront quantifiées par la méthode de Bradford (courbe BSA) puis conservées à -20°C. À partir de 5 cerveaux de rat, on obtient environ 450 µg de vésicules purifiées.
Figure 21: Protocole modifié de purification des vésicules de clathrine à partir de cerveaux de rat (Girard et al, 2005).
3.7.2 Technique du démantèlement

Le protocole de dissociation du manteau de clathrine est basé sur la technique de Hannan et al. (Hannan et al. 1998) qui consiste en une incubation des vésicules purifiées dans un tampon AK (Sulfate d’ammonium 10mM, Hapes pH=7 20mM, Magnésium acétate 0,2mM, KCl 25mM et PMSF 1mM) en présence de la protéine HSC70 et d’un mélange de régénération d’ATP pendant un temps déterminé (annexe E). Un de nos objectifs est de tester si nos protéines ont un rôle dans ce processus en sachant qu’elles sont associées au manteau de clathrine et elles favorisent l’association des triskèles. Pour vérifier cette hypothèse, on effectue des essais de démantèlement en présence de quantités graduelles de nos protéines. Si le démantèlement a lieu, après centrifugation la clathrine dissociée se trouvera dans le surnageant. La révélation est faite par migration des protéines sur un gel SDS-PAGE après une coloration au bleu de Coomassie et le taux de démantèlement a été quantifié par le logiciel image J.

3.8 Analyse statistique des résultats

Pour valider les résultats de toutes les expériences, chaque essai a été reproduit au moins 3 fois dans les mêmes conditions expérimentales. Les résultats obtenus sont quantifiés par le logiciel image J et regroupés en un organigramme. Un test de Student est appliqué à toutes les expériences avec une erreur $\alpha$ de 0,05.
CHAPITRE 4
RÉSULTATS ET INTERPRÉTATIONS

4.1 Synthèse des domaines à l’étude

4.1.1 Clonage des domaines GST-HIP1R C-terminaux

Les bactéries transformées avec le vecteur recombinant pGEX4T1 renfermant l’ADN d’HIP1R sont mises en culture sur des boites Pétri. L’ADN des clones repiqués est digéré avec deux enzymes de restriction autre que les enzymes du clonage. Le vecteur pGEX4T1 présente un site de restriction pour chacune des deux enzymes utilisées : Smal et BsaI. Les enzymes Smal et BsaI digèrent le vecteur en deux fragments de 1000pb et de 3900pb. Seul le site de l’enzyme Smal est localisé dans le segment de multi-clonage du vecteur.

Figure 22: Localisation de l’insert et des sites des enzymes de restrictions sur le vecteur pGEX4T1
Cette propriété est utilisée justement pour vérifier si l'ADN d'intérêt est inséré dans le vecteur pGEX4T1. Dans ce dernier cas, le site de l'enzyme SmaI sera absent à cause de l'insert donc SmaI ne pourra pas couper le vecteur, tandis que l'enzyme Bsai le clivera après reconnaissance de son site, alors le vecteur sera ouvert et après migration sur gel d'agarose, il formera un seul fragment à une taille avoisinant 4900pb (figure 22).

L'analyse des résultats représentés sur la figure 23 nous montre que parmi les 12 clones repiqués, les clones 1, 2, 7 et 11 (indiqués en gras) semblent être positifs.

**Figure 23:** Analyse des clones pour la construction GST-HIP1R (1015-1068).

Le même principe de vérification des clones utilisé pour le domaine GST-HIP1R (1015-1068) a été appliqué pour les quatre autres domaines GST-HIP1R C-terminal (1015-1049), (1056/1057KK/AA), (1050-1068), (1015-1031). Les détails du clonage sont résumés dans le tableau 2.
**Tableau 2:** Résultats des clonages des différentes constructions à l’étude.

<table>
<thead>
<tr>
<th>Domaines</th>
<th>Enzymes de clonage</th>
<th>Enzymes de vérification des clones</th>
<th>Résultats attendus</th>
<th>Clones positifs obtenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-HIP1R (1015-1068)</td>
<td>BamH I et Xhol</td>
<td>Smal et Bsa I</td>
<td>1 bande 2 bandes</td>
<td>4</td>
</tr>
<tr>
<td>GST-HIP1R (1015-1049)</td>
<td>BamH I et Xhol</td>
<td>Smal et Bsa I</td>
<td>1 bande 2 bandes</td>
<td>11</td>
</tr>
<tr>
<td>GST-HIP1R (1056/1057KK/AA)</td>
<td>BamH I et Xhol</td>
<td>Smal et Bsa I</td>
<td>1 bande 2 bandes</td>
<td>4</td>
</tr>
<tr>
<td>GST-HIP1R (1050-1068) (normal)</td>
<td>BamH I et Xhol</td>
<td>Smal et Bsa I</td>
<td>1 bande 2 bandes</td>
<td>2</td>
</tr>
<tr>
<td>GST-HIP1R (1015-1031)</td>
<td>BamH I et Xhol</td>
<td>Smal et Bsa I</td>
<td>1 bande 2 bandes</td>
<td>1</td>
</tr>
</tbody>
</table>

### 4.1.2 Expression des protéines de fusion des domaines GST-HIP1R domaine X

Les clones positifs obtenus des différentes constructions générées par clonage, ont été d’abord confirmés par séquençage, remis en culture et stockés dans 50% de glycérol à moins 80°C après avoir vérifié leur expression sur gel SDS-PAGE. La figure 24 représente l’expression des différents domaines d’HIP1R utilisés lors de cette étude.

**Figure 24:** Résultat d’expression des différents domaines sous forme de protéines de fusion GST-HIP1R domaine X.
Tous les domaines de la protéine HIP1R à l’exception du domaine GST-HIP1R THATCH, sont bien exprimés. Le volume chargé sur gel est de 40ul de chaque échantillon. Ces volumes sont ajustés lors des différentes expériences pour palier à cette différence d’expression.

4.2 Résultat de la recherche de nouveaux partenaires d’interaction

4.2.1 Identification de nouveaux partenaires

L’extrait protéique utilisé est l’extrait de cerveau de rat, vu que les protéines HIP1/R sont enrichies dans ce tissu, la probabilité d’avoir des partenaires d’interaction est plus élevée. Deux séries d’incubation sont faites dans cette expérience. Une série, des protéines GST et GST-HIP1R-TALIN, est incubée avec 4mg d’extrait de cerveau représentée en positif (+) sur la figure 25, l’autre série de ces mêmes protéines est incubée avec un tampon de lyse. Cette série, représentée en négatif (-) dans la même figure, constitue notre contrôle négatif.
Figure 25: Identification d’un nouveau partenaire pour la protéine GST-HIP1R TALIN.

Ce résultat est obtenu après migration des protéines sur un gel SDS-PAGE gradient (5%-16%), suivie d’une coloration au bleu de Coomassie.

Le premier échantillon, après l’échelle moléculaire, constitue le matériel de départ correspondant au 1/10ème d’extrait de cerveau déposé sur les protéines de fusion GST, GST-HIP1R-TALIN. Suite à cette expérience, nous avons remarqué deux nouvelles protéines interagissant avec la protéine HIP1R. Une à 35KDa et l’autre à 70KDa identifiées par spectrométrie de masse comme étant GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) et HSC70. Après vérification par immunoblot, GAPDH semble aussi
interagir avec GST alors que HSC70 est spécifique à HIP1R. Les autres protéines détectées à l’œil nu (exemple de la protéine à 31KDa) sont également présentes avec l’étiquette GST ou viennent avec les protéines de fusion. La structure de la protéine HSC70, nouveau partenaire d’HIP1R, est présentée dans la figure 26.

**Figure 26:** Représentation schématique des domaines de la protéine HSC70.

Nous avons testé cette interaction avec HIP1 et HIP1R par un immunoblot anti-HSC70 (figure 27). Le matériel de départ (SM) correspond au dixième d’extrait de cerveau déposé sur les protéines de fusion. L’immunoblot anti-HSC70 nous indique qu’il existe bel et bien une interaction avec le domaine TALIN d’HIP1/R comparés au contrôle GST.

**Figure 27 :** Validation par immunoblot de la nouvelle interaction HIP1/R-HSC70.
Vu que HSC70 est un partenaire commun entre HIP1 et HIP1R, ce résultat ne nous explique pas la différence entre les deux homologues par rapport à l’actine. Nous nous sommes donc concentrés pour la suite de cette étude sur l’interaction d’HIP1R avec HSC70, pour mieux comprendre son implication dans l’endocytose sachant qu’HSC70 est une protéine du démantèlement des vésicules de clathrine et HIP1R interagit avec les filaments d’actine. Notre nouvel objectif tend vers la compréhension du rôle d’HIP1R entre le démantèlement des vésicules et la réorganisation du cytosquelette d’actine.

4.2.2 Vérification, par immunoblot, de l’interaction directe : HSC70-HIP1R

Dans le but de déterminer si la nouvelle association est directe ou indirecte, la même expérience a été refaite où l’extrait de cerveau a été remplacé par la protéine HIS-HSC70 purifiée. Une quantité de 10ug de cette protéine a été incubée toute la nuit avec les protéines de fusion. Après les différents traitements, les protéines ont été migrées sur un gel SDS-PAGE puis transférées sur une membrane de nitrocellulose, pour être ensuite incubées avec l’anticorps anti-HIS.

![Figure 28: Validation par immunoblot, de l’interaction directe HIP1R-HSC70.](image)
L’association de la protéine HSC70 représentée par la bande noire (figure 28) est bien spécifique au domaine TALIN d’HIP1R. HSC70 interagit directement avec le domaine TALIN de la protéine HIP1R.

4.2.3 Identification du site de liaison de HSC70 sur HIP1R-TALIN

Afin de déterminer le site exact de cette nouvelle liaison, les mêmes expériences d’association de la protéine HSC70 à partir d’extrait de cerveau ou de protéine purifiée avec les sous-domaines du domaine TALIN d’HIP1R, ont été réalisées.

Comme nous l’avons déjà défini, le domaine HIP1R-TALIN est subdivisé en sous-domaines : THATCH et C-terminal. Le résultat de l’interaction de la protéine HSC70 à partir d’extrait de cerveau avec les différentes parties d’HIP1R est résumé dans la figure 29.

![Figure 29: Révélation par immunoblot de l’interaction d’HSC70 avec les sous-domaines (THATCH et Cter) d’HIP1R.](image)

Après les différents traitements, la protéine HSC70 est révélée avec l’anticorps approprié. Par comparaison des différents profils, nous constatons que, la protéine HIP1R présente deux sites de liaisons pour son nouveau partenaire : un site au niveau du C-terminal et un site au niveau du THATCH.
Selon la littérature, la protéine HSC70 présente une affinité pour certains motifs tels FYQLATL, QLMTL, NIVRKKK ainsi qu'à certains acides aminés, comme une succession de lysine et d'arginine suivie d'acides aminés hydrophobes (Rapoport et al. 2008; Takenaka et al. 1995; Wu and Wang 1999). La séquence protéique du domaine HIP1R-TALIN, représentée par la figure 30, renferme justement quatre sites potentiels contenant les acides aminés en question représentés en rouge.

Figure 30: Séquence en acides aminés du domaine TALIN de la protéine HIP1R.

Les sites potentiels à la liaison à HSC70 sont distribués comme suit : deux sites (RR et KK) au niveau du domaine THATCH répartis entre le CORE et le LATCH. Deux autres sites (KK) au niveau du domaine C-terminal (1015-1068) (voir tableau 3).

Dans le but de vérifier cette hypothèse, nous avons effectué l’essai de liaison de la protéine HSC70, purifiée ou d’extrait de cerveau, avec les domaines CORE, LATCH et tous les sous-domaines C-terminaux : (1015-1068), (1015-1031), (1015-1049), (1050-1068) et (1056/1057KK/AA) de la protéine HIP1R. Par clonage moléculaire, plusieurs fragments du
domaine C-terminal ont été produits en tenant compte des acides aminés potentiels (voir tableau 3).

Tableau 3: Identification des sites potentiels à la liaison avec HSC70 au niveau des sous-domaines d’HIP1R.

<table>
<thead>
<tr>
<th>Domaines</th>
<th>Caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE (771-971)</td>
<td>Présence d’un site RR</td>
</tr>
<tr>
<td>LATCH (972-1014)</td>
<td>Présence d’un site KK</td>
</tr>
<tr>
<td>C-terminal (1015-1068)</td>
<td>Présence de deux sites KK</td>
</tr>
<tr>
<td>C-terminal (1015-1031)</td>
<td>Absence de sites potentiels</td>
</tr>
<tr>
<td>C-terminal (1015-1049)</td>
<td>Présence d’un site KK</td>
</tr>
<tr>
<td>C-terminal (1056/1057KK/AA)</td>
<td>Site KK muté en AA</td>
</tr>
<tr>
<td>C-terminal (1050-1068)</td>
<td>Présence d’un site KK</td>
</tr>
</tbody>
</table>

Après les différents traitements, les membranes de nitrocellulose sont incubées avec les anticorps appropriés.

Les résultats représentés par la figure 31 nous renseignent sur la non-implication des acides aminés, lysine ou arginine, dans le site d’interaction d’HIP1R avec HSC70. En effet, on constate une interaction au niveau de tous les sous domaines C-terminaux, y compris le domaine muté (1056/1057KK/AA) et le domaine (1015-1031) exempts de sites potentiels. Nous remarquons également que l’interaction entre les deux protéines impliquant le site THATCH disparaît lorsque ce domaine est dissocié en CORE et LATCH, ce qui nous laisse
suggérer que l’interaction HSC70 avec le domaine THATCH se fait à l’interface des deux sous-domaines CORE et LATCH.

![Image](image_url)

**Figure 31**: Révélation par immunoblot des sous domaine de la protéine HIP1R avec HSC70 du cerveau et purifiée.

Le résultat de l’interaction des différents domaines d’HIP1R avec HSC70 d’extrait de cerveau présente un léger bruit de fond avec la GST. L’interaction de ce nouveau partenaire avec CORE et LATCH est semblable à la GST par comparaison aux autres domaines, ce qui nous laisse supposer que ces deux domaines séparément ne renferment pas de sites pour HSC70. Le bruit de fond pourrait se justifier par l’interaction de l’étiquette GST avec HSC70 de manière indirecte vu que l’extrait de cerveau est riche en protéines.

4.3 **Essai de sédimentation avec l’actine**

domaine, la protéine HIP1R renferme deux sites pour la protéine HSC70. A partir de ces données, nous avons refait la même expérience de sédimentation de la protéine HIP1R avec les filaments d’actine en présence ou non d’une dose graduelle d’HSC70.

L’expérience de sédimentation se résume à incuber la protéine HIP1R avec l’actine filamentuse. Après centrifugation, les surnageants et les culots sont migrés séparément sur un gel SDS-PAGE puis les protéines sont colorées au bleu de Coomassie.

Figure 32: Blocage, par HSC70, de la sédimentation d’HIP1R avec l’actine.

La protéine HIP1R-TALIN, dans le tube « 1 » (figure 32), après centrifugation reste entièrement dans le surnageant désigné par « S » comparativement au culot « C » ce qui veut dire que la protéine HIP1R-TALIN ne sédimente pas toute seule. Ce tube constitue un contrôle négatif. Dans les autres tubes « 2-5 » une quantité fixe de 20μg d’actine a été
rajoutée, et dans les tubes « 3-5 » des doses graduelles (de 0,25 µg à 1 µg) d'HSC70 sont additionnées au mélange tel indiqué dans la figure 32.

Par comparaison du tube « 2 » avec le tube « 1 » (figure 32), nous constatons que la protéine HIP1R passe du surnageant « S1 » au culot « C2 » en présence d'actine, en effet comme les deux protéines interagissent, la sédimentation des filaments d'actine entrainent HIP1R dans le culot. La présence d'HSC70 dans le tube « 3 » en faible quantité (0,25 µg) ne perturbe pas cette sédimentation commune. Toutefois dans le tube « 4 » à 0,5 µg, HSC70 perturbe la liaison du domaine TALIN avec l'actine, cette perturbation s'accentue en présence d'HSC70 à 1 µg (tube « 5 »). Ce phénomène peut s'expliquer par l'interaction d'HSC70 avec HIP1R-TALIN ce qui décroche les molécules d'HIP1R de l'actine, alors la protéine HIP1R se trouve de nouveau dans le surnageant (passage du « C4 » à « S4 », et du « C5 » à « S5 »). L'interaction d'HSC70 avec HIP1R-TALIN compromet sa sédimentation avec le cytosquelette d'actine.

Validation statistique

La quantification par image J des différents résultats obtenus est représentée par la figure 33.
Figure 33: Organigramme représentatif du taux de cosédimentation des protéines HIP1R et actine mesuré par Image J en fonction de HSC70.

Les valeurs quantifiées par image J correspondent au rapport (culot/surnageant+culot) x100. La première colonne représentée sur la figure 33, correspond à la protéine HIP1R seule. Son taux de sédimentation avoisine les 20% ceci peut être justifié par la dimérisation des domaines TALIN. Cette sédimentation reste faible par comparaison au résultat avec l’actine qui est au alentour de 55%. L’interaction d’HIP1R avec l’actine est attendue, dans cette expérience, elle nous sert de contrôle positif. Le test de Student est significatif (p=0.0005<α avec α=0.05) donc il existe une différence entre la sédimentation d’HIP1R seule ou avec l’actine. La dernière colonne nous montre la sédimentation d’HIP1R avec l’actine en présence d’HSC70. L’interaction d’HIP1R avec son nouveau partenaire a réduit son interaction avec l’actine d’environ 50%. HIP1R-TALIN interagit avec HSC70 au niveau de deux domaines sous forme monomère tandis que sa liaison avec l’actine nécessite la dimérisation des domaines THATCH. Cette différence pourrait justifier
l'affinité d'HIP1R pour HSC70 par comparaison à l'actine. La comparaison entre la sédimentation d'HIP1R avec l'actine et HIP1R-actine avec HSC70 donne une valeur de \( p=0.001 \) ce qui signifie que le taux de sédimentation est très différent. L'interaction d'HIP1R avec l'actine est réduite en présence d'HSC70.

Une des conditions de la sédimentation d'HIP1R avec l'actine est la dimérisation de deux domaines THATCH (Brett et al. 2006) (figure 34). Suite à l'expérience précédente, nous avons conclu qu'HSC70 empêche l'interaction d'HIP1R avec l'actine. Dans le but de comprendre le mécanisme de ces interactions et en nous basant sur ces données, nous avons émis deux nouvelles hypothèses.

La première hypothèse porte sur la possibilité qu'HSC70 partage le même site de liaison que l'actine pour HIP1R, ce qui compromet la sédimentation d'HIP1R.

La seconde suggère qu'HSC70 empêche la dimérisation des deux domaines TALIN ce qui perturbe la co-sédimentation d'HIP1R avec les filaments d'actine.

**Figure 34:** Représentation schématique de l'interaction d'HSC70 et actine avec la protéine HIP1R sous forme de dimères.
4.4 Essai de liaison du domaine TALIN KVK/DDD avec HSC70

Le site d’interaction de la protéine HIP1R avec les filaments d’actine est constitué de 3 acides aminés KVK (lysine, valine, lysine) situés de la position 922 à 924 de la protéine. La substitution de ces acides aminés en DDD (trois acides aspartiques) empêche la cosédimentation de ces deux protéines (Brett et al. 2006). Afin de vérifier si HSC70 partage le même site pour HIP1R que l’actine, nous avons vérifié l’interaction de ce nouveau partenaire avec le domaine TALIN KVK/DDD en se référant au même protocole utilisé auparavant. Cette expérience est réalisée en présence d’un contrôle GST et d’un contrôle positif HIP1R-TALIN (forme sauvage).

L’expérience a été réalisée avec un extrait de cerveau. La membrane a été incubée avec un anticorps anti-HSC70.

Figure 35: Révélation par immunoblot de l’interaction d’HSC70 avec le domaine GST-HIP1R-TALIN (KVK/DDD).
Comme représenté sur la figure 35, la protéine HSC70 interagit aussi avec le domaine TALIN muté (KVK/DDD). Suite à ce résultat nous constatons que, finalement, HSC70 et l’actine interagissent avec HIP1R au niveau de deux sites différents.

4.5 Essai de dimérisation de deux domaines HIP1R-TALIN

Selon la littérature, les protéines HIP1/R forment des homodimères et des hétérodimères, moins stables, au niveau du domaine hélicoïdal (coiled-coil) et du domaine TALIN, spécialement au niveau du sous-domaine LATCH (Brett et al. 2006; Wilbur et al. 2008). Nous pensons également que le domaine C-terminal est impliqué dans cette dimérisation ce qui expliquerait la perte de la co-sédimentation en présence d’HSC70.

Dans le but de vérifier cette nouvelle hypothèse, nous avons suggéré deux nouvelles approches.

La première tend vers l’essai de co-sédimentation du domaine HIP1R THATCH avec le cytosquelette d’actine, la seconde tend vers le test de dimérisation des sous domaines de deux protéines HIP1R TALIN.

4.5.1 Co-sédimentation du dimère THATCH d’HIP1R avec l’actine en présence d’HSC70

Le même test de co-sédimentation effectué pour le domaine TALIN a été répété pour le domaine THATCH dans les mêmes conditions expérimentales et en présence de 1μg d’HSC70 (quantité permettant le détachement d’HIP1R TALIN des filaments d’actine).
Figure 36 : Blocage, par HSC70, de la sédimentation du domaine THATCH avec l’actine.

Les tubes « 1 » et « 2 » désignés comme contrôle (figure 36), représentent le domaine TALIN seul ou fixé à l’actine respectivement. Les tubes « 3, 4, 5 » représentent le domaine THATCH seul, avec filament d’actine et avec HSC70 plus actine respectivement.

Comme nous le voyons sur cette figure 36, même le domaine THATCH sédimente avec l’actine et la protéine HSC70 influence négativement cette association.

À la lumière de ce résultat, nous pouvons constater que l’interaction d’HIP1R avec HSC70 au niveau du domaine THATCH est fonctionnelle, ce qui empêche sa sédimentation avec l’actine. La protéine HSC70 pourrait s’interposer entre les deux domaines TALIN et ainsi empêcher la dimérisation de ces deux domaines ce qui causerait la perte de la sédimentation avec les filaments d’actine. À notre connaissance, le domaine C-terminal de la protéine HIP1R présente plusieurs sites pour HSC70. Nous avons voulu
vérifier en effet que le domaine C-terminal n’est pas impliqué dans la dimérisation d’HIP1R.

4.5.2 Essai de dimérisation des domaines C-terminaux de deux protéines HIP1R

L’expérience du Far western Blot appelée également Overlay, nous a permis de savoir si effectivement les domaines C-terminaux des protéines HIP1R sont impliqués ou non dans leur dimérisation. Cette technique consiste en une incubation des domaines d’intérêt sous forme de protéines éluées avec un extrait protéique enrichi en HIP1R (telles les vésicules recouvertes de clathrine) et qui est préalablement transféré sur une membrane de nitrocellulose. L’incubation s’est faite dans le tampon Overlay, et la dimérisation est révélée après un immunoblot anti-GST.

La figure 37 montre les domaines d’HIP1R responsables de la dimérisation suite à l’expérience réalisée.

![Figure 37](image)

**Figure 37** : Révélation des domaines de dimérisation des protéines HIP1R par immunoblot.

Comme observé par Brett *et al.*, les domaines TALIN dimérisent au niveau du domaine THATCH. Cette dimérisation n’implique pas le domaine C-terminal. Au niveau du
domaine THATCH, le sous-domaine LATCH semble permettre cette dimérisation. Toutefois, selon l’intensité des bandes, la dimérisation est plus stable lorsque les deux domaines CORE et LATCH sont liés.

4.6 HIP1R et le démantèlement des vésicules recouvertes de clathrine

Plusieurs études ont impliqué HIP1R dans la formation des vésicules de clathrine et dans leur transport entre les compartiments cellulaires via les filaments d’actine (Chen and Brodsky 2005; Engqvist-Goldstein et al. 1999; Engqvist-Goldstein et al. 2001; Legendre-Guillemin et al. 2002; Legendre-Guillemin et al. 2005). Le manteau de ces vésicules se dissocie grâce à un ensemble de protéines dont fait partie HSC70 (Eisenberg and Greene 2007; Hannan et al. 1998; Xing et al. 2010).

Au cours de nos travaux, nous avons identifié HSC70 comme partenaire intéressant de la protéine HIP1R. Cette nouvelle interaction impliquerait-elle HIP1R dans le démantèlement de la clathrine?

Comme indiqué sur la figure 38, la protéine HIP1R se situe à l’interface entre l’actine et la clathrine (Engqvist-Goldstein et al. 2001). La protéine HSC70 quant à elle est recrutée au moment de la séparation de la vésicule de la membrane plasmique (Conner and Schmid 2003). Ce nouveau partenaire d’HIP1R permettrait-il de faire un lien entre le démantèlement de la clathrine et la polymérisation du cytosquelette d’actine?
Afin de répondre à ces différentes questions, nous avons purifié les vésicules de clathrine à partir de cerveaux de rat selon le protocole décrit par Girard et al., (Girard et al. 2005). Différents profils expérimentaux sont testés (figure 39). Comme contrôle positif, nous avons dissocié les vésicules, purifiées auparavant, avec une solution de 0,5M de Tris, et nous avons testé le démantèlement en présence ou non d'HSC70 et d'HIP1R à des doses graduées dans un tampon riche en ATP.

Après une incubation de 5 minutes et une centrifugation de 10 minutes à 48000 rpm, les différents surnageants sont migrés sur un gel SDS-PAGE et colorés au bleu de Coomassie. Comme l’indique la figure 39, le démantèlement est total dans le premier tube (0,5M Tris), ce tube constitue notre contrôle positif. Tandis que le tube 2 correspond au contrôle négatif.
En présence d’HSC70 à 4μg, le démantèlement s’opère (tubes 3-8) néanmoins, ce dernier s’accentue en présence de doses faibles d’HIP1R (dose ≤0,5μg, tubes 4 et 5) et diminue avec augmentation d’HIP1R (dose >0,5μg, tubes 6-8).

<table>
<thead>
<tr>
<th>Tubes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HIP1R-TALIN (ug)</td>
<td>0</td>
<td>0</td>
<td>0,25</td>
<td>0,5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tampon AK</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HSC70 (ug)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

![Clathrine](image1)

**Figure 39 : Régulation du démantèlement de la clathrine par HIP1R.**

**Validation statistique des résultats**

La protéine HSC70 est responsable d’environ 80% de la dissociation des triskèles de clathrine par comparaison au démantèlement du tampon Tris considéré à 100% (figure 40). Cette dernière augmente légèrement (jusqu’à 85%) avec ajout d’HIP1R à petites doses (0,25ug et 0,5ug), la valeur P estimée entre le démantèlement avec 0,5ug d’HIP1R et HSC70 seule est égale à 0,32>α donc la différence de démantèlement n’est pas significative. Le démantèlement diminue (jusqu’à 60%) avec augmentation d’HIP1R (de 1ug à 4ug) pour avoisiner le démantèlement de base causé par le tampon AK seul. La différence de démantèlement dû à HIP1R (4ug) et HSC70 seule est significative, en effet
P=0,04. Le démantèlement de base (bruit de fond) peut être justifié par le fait que les vésicules renferment tous les éléments nécessaires à la dissociation du manteau de clathrine à savoir HSC70 et auxiline. Le tampon AK apporte l’ATP et les autres conditions optimales au démantèlement.

Figure 40: Organigramme représentatif du taux de démantèlement, mesuré par Image J en fonction de : Tris, HSC70 et d’HIP1R.

Le démantèlement des CCV nécessitent en plus de l’HSC70, de l’auxiline. Dans nos expériences nous n’avons pas rajouté l’auxiline recombinante. Le recrutement de l’HSC70 ajoutée se fait par le biais de l’auxiline déjà présente dans les vésicules purifiées. L’influence du démantèlement par HIP1R serait peut être plus visible en présence de cette protéine.
Suite à cette expérience, nous avons vérifié le démantèlement de la clathrine en présence d’HIP1R uniquement, dans un milieu riche en ATP et exempt d’HSC70. Le résultat de cette expérience est résumé dans la figure 41.

**Figure 41:** Démantèlement des vésicules de clathrine en présence d’HIP1R seule.

Les vésicules de clathrine ne se dissocient pas avec la protéine HIP1R seule, même à des doses élevées par comparaison au démantèlement causé par le tampon Tris. Plusieurs études ont impliqué HSC70 et défini les conditions de son opération dans ce phénomène (Chappell et al. 1987; Hannan et al. 1998; Heymann et al. 2005; Rapoport et al. 2008).

A travers notre étude, nous avons inclus HIP1R-TALIN, par son interaction avec la protéine HSC70, dans la régulation de ce processus.
CHAPITRE 5
DISCUSSION GÉNÉRALE DES RÉSULTATS

L’objectif principal de cette étude était de définir la différence de comportement d’HIP1 et d’HIP1R par rapport à leur association au cytosquelette d’actine. En effet, Brett et al (2006), avait défini l’interaction de la protéine HIP1R avec l’actine via son domaine THATCH.

La stratégie que nous avons suivie pour répondre à cet objectif, était de définir les multiples partenaires d’interaction, des domaines TALIN, des deux protéines pour mieux déceler leur différence, et ainsi faire un lien avec l’actine.

Suite aux expériences de pull-down et immunoblot réalisées avec un extrait de cerveau, où les deux protéines se trouvent enrichies, nous avons identifié HSC70 comme nouveau partenaire d’interaction pour les domaines TALIN des deux protéines, qui a été révélée par spectrométrie de masse (figures 25 et 27). Comme HSC70 est un partenaire commun pour HIP1/R, nous nous sommes concentrés uniquement sur l’étude de l’interaction HSC70- HIP1R par rapport au démantèlement des vésicules et l’organisation du cytosquelette d’actine. HSC70 interagit avec HIP1R de manière directe et implique les deux sous-domaines du domaine TALIN à savoir THATCH, et C-terminal. Au niveau du domaine THATCH, l’interaction nécessite la fusion du CORE et du LATCH, probablement le site incriminé se trouve à l’interface de ces deux sous-domaines du THATCH.
HSC70 est définie comme étant une protéine du choc thermique et du stress, elle s'associe aux protéines après leur synthèse (Gething and Sambrook 1992; Parsell and Lindquist 1993). Au niveau de son domaine de liaison aux protéines, HSC70, selon certains chercheurs, présente des affinités à certains motifs. En effet, elle reconnaît le motif QLMLT et interagit ainsi avec la clathrine (Rapoport et al. 2008). Elle s'associe à l'auxilina via son domaine J (Heymann et al. 2005). Elle interagit avec les protéines à domaine TRP (tetratricopeptide repeat protein) comme HOP (HSC70-Hsp90-organizing protein), HIP (HSC70-Interacting Protein) et CHIP (carboxy terminus of HSC70 interacting protein) (Ballinger et al. 1999; Demand et al. 1998; Hohfeld et al. 1995). Elle présente une forte affinité à la succession de certains acides aminés comme KK, KR ou RR suivis d'acides aminés hydrophobes et à des séquences consensus de type NIVRKKK et FYQLALT (Takenaka et al. 1995; Wu and Wang 1999). Au niveau du domaine TALIN, on retrouve les acides aminés KK, KR, ou RR répartis sur tous les sous-domaines du domaine TALIN, toutefois la présence d'interaction entre des fractions du domaine C-terminal (1015-1031) et (1050-1068) portant une mutation au niveau des deux lysines à la position 1056/1057 de la protéine, nous a infirmé cette hypothèse. La comparaison des peptides de liaison à HSC70, FYQLALT et QLMLT, nous laisse supposer que le motif QLXLT (x=acide aminé) pourrait constituer un des sites susceptible à l'interaction avec HSC70. L'alignement de ces peptides de liaison à HSC70 avec la séquence du domaine TALIN nous a révélé l'existence d'autres sites au niveau d'HIP1R pouvant être potentiels à l'interaction avec HSC70 on distingue : QLVEA, QLVAA présents au niveau du domaine
HIP1R-CORE, QVRVL présent au niveau du domaine LATCH et QLDKK, QLVNY au niveau de l’extrémité C-terminale (annexe F). Toutefois HSC70 interagit peu ou pas avec les domaines CORE et LATCH. Il a été rapporté qu’HSC70 interagit avec le domaine compris entre les acides aminés 41 et 71 de la chaine légère de clathrine (forme a). Ce domaine est riche en acides aminés P (proline) et G (glycine) (Schmid et al. 1984). Le domaine C-terminal d’HIP1R est riche en proline et glycine, il pourrait représenter un des sites d’interaction avec HSC70. Finalement HIP1R-TALIN renfermerait différents sites pour l’interaction avec HSC70.

L’actine et HSC70 interagissent avec HIP1R au niveau du même domaine THATCH. Afin de vérifier l’affinité des deux partenaires pour HIP1R nous avons testé sa sédimentation avec les filaments d’actine en présence d’HSC70. A notre surprise, nous avons découvert que la présence d’HSC70 à une dose suffisante compromet la sédimentation des deux protéines. Ce résultat est très intéressant vu qu’il nous laisse supposer que d’une part, l’organisation du cytosquelette d’actine est régulée par l’interaction d’HIP1R avec HSC70 et d’autre part qu’HSC70 et l’actine se disputent le même site de liaison à HIP1R qui serait le site KVK défini par Brett et al. (2006), comme étant le site exact de l’association de l’actine avec le domaine THATCH.

Comme nous disposons du domaine THATCH KVK/DDD, nous avons vérifié son interaction avec le nouveau partenaire d’HIP1R. Le mutant interagit avec HSC70, donc se lie par un autre site que le site de liaison à l’actine.
Dans le but de comprendre le mécanisme d’HSC70 dans la perturbation de la sédimentation d’HIP1R avec les filaments d’actine, nous nous sommes encore une fois appuyés sur une des conditions de cette co-sédimentation définie par Brett et al., à savoir la dimérisation de deux protéines HIP1R. Notre hypothèse de départ tendait vers l’implication du domaine C-terminal dans la dimérisation de deux domaines TALIN. Nous avons procédé pour vérifier cette hypothèse par un essai de dimérisation et un test de co-sédimentation du domaine THATCH exempt de C-terminal, en présence d’HSC70. Cette expérience est faite aussi dans le but de déterminer le domaine fonctionnel de l’interaction HSC70-HIP1R. Les résultats de l’essai de dimérisation révélés par overlay, nous permettaient d’affirmer que seul le domaine THATCH est impliqué dans la dimérisation de deux protéines HIP1R. La dimérisation au niveau du coiled-coil a été également mise en évidence (Engqvist-Goldstein et al. 2001; Legendre-Guillemin et al. 2002; Wilbur et al. 2008) toutefois elle n’a pas été vérifiée dans cette étude par rapport à la sédimentation avec l’actine.

L’essai de co-sédimentation du domaine THATCH avec l’actine en présence d’HSC70, nous a confirmé également la non-implication de l’interaction HSC70-HIP1R C-terminal dans cette inhibition. En effet, même en absence du domaine C-terminal, le domaine THATCH interagit avec l’actine, et cette interaction est compromise en présence d’HSC70. À la lumière de ces résultats, nous pouvons conclure que l’interaction fonctionnelle entre HIP1R et HSC70 se trouve au niveau du domaine THATCH et elle nécessite la présence des deux sous-domaines CORE et LATCH.
La protéine HSC70, en plus de son rôle de chaperonne, intervient dans la machinerie de l'endocytose médiée par les vésicules de clathrine. Elle y exerce un rôle très important à l'étape finale de ce phénomène membranaire, à savoir le démantèlement du manteau de clathrine des vésicules pour fusionner à la membrane du compartiment récepteur (Holstein et al. 1996). Au niveau de ces vésicules se trouve la protéine HIP1R, par association à d'autres protéines elle contribue au bon fonctionnement des vésicules (Puertollano 2004). La protéine HIP1R, intervient dans le recrutement et la réorganisation du cytosquelette d'actine et facilite aussi l'assemblage des triskèles de clathrine (Legendre-Guillemin et al. 2002; Schafer 2002). Engqvist-Goldstein et al ont montré la colocalisation des protéines HIP1R, clathrine et actine à l'interface des vésicules (Engqvist-Goldstein et al. 2001).


Les résultats des différents essais réalisés, ont attribué un nouveau rôle à HIP1R dans le mécanisme de l'endocytose médiée par la clathrine. Par association à l'HSC70, HIP1R à fortes doses (avoisinant les 4ug) réprime le démantèlement. Ces observations ont été vérifiées avec le domaine TALIN et THATCH séparément, ce qui confirme encore une fois que l'interaction fonctionnelle entre HIP1R et HSC70 se trouve au niveau du domaine THATCH. Le test de Student appliqué a validé qu'il existe une différence significative
entre le démantèlement de base (avec HSC70 seule) et en présence de HIP1R (4ug) (P=0,048) mais cette valeur est proche de la valeur α=0,05. Il se pourrait que l’effet d’HIP1R soit plus visible en présence d’auxilnine, ce qui aiderait au recrutement d’HSC70 et permettrait la réduction du bruit de fond. Nous avons également vérifié qu’HIP1R ne déclenche pas le démantèlement de la clathrine, ceci a été observé lors de l’incubation des vésicules seules avec HIP1R.

Le modèle que nous proposons pour expliquer l’implication d’HIP1R dans le démantèlement des vésicules de clathrine est comme suit : au niveau de la cellule (figure 42), HIP1R est un constituant présent dès le début de la formation de la vésicule de clathrine. HIP1R recrute l’actine lors de l’invagination et l’étranglement de la membrane vésiculaire et l’inclut dans la machinerie de l’endocytose. HSC70 se joint à l’étape finale juste avant la libération de la vésicule par l’intermédiaire de l’auxilnine. La vésicule se détache de la membrane plasmique après hydrolyse de GTP par la dynamine, et migre grâce aux filaments d’actine recrutés par HIP1R vers l’endosome. HSC70 hydrolyse l’ATP et dissocie les triskèles de clathrine et ainsi les protéines HIP1R se libèrent. Elles se détachent de l’actine suite à leur liaison à HSC70. Les protéines HIP1R détachéees continuent à interagir avec HSC70 jusqu’à saturation et conduisent à l’arrêt graduel du démantèlement (figure 42). D’autre part, des études antérieures ont mis en évidence que l’interaction d’HSC70 avec la chaîne légère de clathrine régule le démantèlement par stimulation d’hydrolyse de l’ATP (DeLuca-Flaherty et al. 1990; Schmid et al. 1984), d’autres études ont rapporté qu’HIP1R peut interagir avec la chaîne légère de clathrine afin
de stimuler l’assemblage de la clathrine (Chen and Brodsky 2005; Legendre-Guillemin et al. 2005). Ces études nous laissent supposer que l’interaction d’HIP1R avec HSC70 pourrait empêcher son interaction avec la chaine légère ce qui réduirait l’hydrolyse de l’ATP et ainsi le démantèlement de la clathrine.

**Figure 42:** Représentation schématique de la localisation d’HIP1R, clathrine et actine lors des différentes étapes de l’endocytose médiée par la clathrine.

HSC70 est une protéine chaperonne qui peut interagir avec l’extrémité C-terminale de plusieurs protéines. Toutefois, son interaction avec HIP1R-THATCH est fonctionnelle. HIP1R participe à la réorganisation du cytosquelette d’actine et à la régulation du démantèlement des vésicules de clathrine. Afin de valider la spécificité de cette interaction, les essais de démantèlement peuvent être reproduits avec un mutant THATCH incapable de
fixer HSC70. La régulation du démantèlement des vésicules pourrait également être vérifiée avec l’extrémité C-terminale de la protéine HIP1R.

La différence entre HIP1 et HIP1R par rapport aux filaments d’actine reste encore un mystère. Nous avons montré que les deux protéines peuvent interagir avec HSC70. Nous avons également vérifié qu’HIP1 ne sédimente pas avec les filaments d’actine alors qu’elle dimérise comme HIP1R au niveau du domaine LATCH, donc son interaction avec HSC70 ne résout pas le mystère. Toutefois il serait intéressant d’identifier et de comparer les domaines d’interaction d’HIP1 avec HSC70 par rapport à HIP1R. Si l’interaction n’impliquerait pas le domaine HIP1-THATCH, il serait intéressant de comparer la structure tridimensionnelle des deux protéines pour vérifier si au niveau d’HIP1, le domaine THATCH présente un repliement qui cache le site d’interaction à l’actine.
CONCLUSION

Notre étude portait sur les rôles d’HIP1/R dans le mécanisme de l’endocytose médiée par la clathrine. L’objectif principal tournait autour de la compréhension des différences de liaison des deux protéines par rapport au cytosquelette d’actine.

Nous avons procédé par la recherche de partenaire d’interaction des domaines TALIN d’HIP1/R par pull-down, suite à cette expérience, nous avons identifié une nouvelle interaction entre les deux protéines HIP1/R et HSC70. Les deux domaines incriminés dans cette association ont été mis en évidence par immunoblot. Il s’agit des sous-domaines THATCH et C-terminal du domaine TALIN de la protéine HIP1R. Toutefois, les sites exacts et les acides aminés impliqués dans cette interaction ne sont pas identifiés, en revanche nous avons démontré que certains acides aminés présentant une forte affinité à la protéine HSC70 selon la littérature et qui font partie de la séquence d’HIP1R ne constituent pas le siège de cette interaction. L’objectif qui consistait en la caractérisation du rôle de cette nouvelle interaction a également été atteint. En effet, l’association HIP1R-HSC70, perturbe l’interaction d’HIP1R avec les filaments d’actine, une interaction centrale dans le mécanisme d’endocytose via les vésicules de clathrine. Nous avons démontré également que ce nouveau partenaire implique HIP1R dans un autre phénomène à savoir le démantèlement des vésicules de clathrine, où HIP1R après son association à HSC70 réprime, en fonction d’une dose réponse, le démantèlement de la clathrine.

L’endocytose médiée par les vésicules de clathrine est un mécanisme très complexe et crucial au bon fonctionnement de la cellule. L’élucidation de ce phénomène membranaire
reste incomplète. Cette étude nous a permis d'attribuer un nouveau rôle pour une des protéines de cette machinerie.
PERSPECTIVES

Des approches intéressantes ont découlé des résultats obtenus au cours de ma maîtrise concernant l’interaction d’HIP1R avec HSC70 et son implication dans le démantèlement des vésicules.

Il a été déjà montré qu’en absence d’HIP1R, l’actine reste accumulée au niveau des puits de clathrine, ce qui suggère que la protéine module le recrutement des filaments d’actine au mécanisme d’endocytose (Engqvist-Goldstein et al. 2004). Dans le but de valider les différents rôles d’HIP1R dans le mécanisme de l’endocytose au niveau cellulaire, il serait envisageable de suivre la même stratégie de réprimer l’expression d’HIP1R par destruction de son ARN messager grâce à des ARNs interférants (siRNA) pour ensuite réexprimer la protéine sous forme de mutants incapables de se lier soit à l’actine, à la clathrine ou à l’HSC70 séparément. De cette manière, l’importance des interactions d’HIP1R avec ses partenaires dans le mécanisme de l’endocytose sera révélée par comparaison des différents résultats qui seront obtenus.

Bien qu’HIP1R soit principalement une protéine de l’endocytose, son implication dans d’autres mécanismes cellulaires n’est pas à exclure. En effet, une récente étude a impliqué HIP1R dans l’apoptose par son interaction avec un membre de la famille des Bcl2 (Kim et al. 2009). Nous savons grâce à cette étude qu’HIP1R peut induire la mort cellulaire suite à son interaction avec BCL2-L10 en activant la caspase 9. Elle stimule aussi par cette interaction la dégradation de l’ADN cellulaire par BCL2-L10.
Nous savons également maintenant qu’HIP1R interagit fortement avec HSC70 et que ce nouveau partenaire est impliqué aussi dans l’apoptose. En effet, plusieurs études ont rapporté qu’HSC70 joue un rôle protecteur en inhibant l’apoptose induite par plusieurs stimuli (Jaattela 1999; Samali and Cotter 1996). Une récente étude a établi une relation inverse entre le niveau d’expression d’HSC70 et le taux d’activation de la caspase 3. HSC70 prévient l’apoptose des cellules par inactivation de la caspase 3 (Yan et al. 2010).

Il serait intéressant de vérifier si l’interaction HIP1R-HSC70 pourrait avoir un rôle dans l’apoptose. L’interaction d’HIP1R avec BCL2-L10 en présence d’HSC70 pourrait être vérifiée, sachant que les deux partenaires partagent le domaine THATCH de liaison à la protéine d’intérêt, la liaison d’HSC70 à HIP1R réduirait son interaction avec BCL2-L10 ce qui protègerait les cellules de la mort. Il serait intéressant de reproduire l’interaction HIP1R-BCL2-L10 telle que décrite par Kim et al (2009) en stimulant l’expression d’HSC70. Le niveau des caspases pourrait être quantifié et comparé dans tous les profils expérimentaux afin de voir la contribution de l’interaction HIP1R-HSC70 dans l’apoptose.

HIP1R ainsi que de nombreuses protéines de l’endocytose sont impliquées dans la mitose cellulaire. En effet, la clathrine interagit avec les fibres mitotiques et la protéine de contrôle MAD2. Son blocage par des ARN interférants affecte la mitose (Medendorp et al. 2010; Royle et al. 2005; Royle and Lagnado 2006). Toutefois, dans certains modèles, le rôle de la clathrine dans la mitose est moins spécifique (Borlido et al. 2008). L’AP2 également interagit avec la protéine de contrôle BubR1 et l’epsine régule la morphologie des fibres mitotiques (Cayrol et al. 2002; Liu and Zheng 2009). La phosphorylation de
Dab2 pendant le cycle cellulaire réduit l’intégralisation des récepteurs à motif NPXY (Chetrit et al. 2011). La dynamine s’associe au fuseau mitotique avec son domaine PRD et régule ainsi les microtubules pendant le cycle cellulaire. Toutefois la phosphorylation de ce domaine par la kinase cyclin B Cdc-42 régule négativement cette association (Morita et al. 2010).

Il serait intéressant d’étudier la relation entre la mitose et l’endocytose. Que devient l’endocytose pendant le cycle cellulaire? Est-ce que le rôle de ces protéines dans la mitose n’affecte pas leur implication dans l’endocytose? A quel point peut-on dire que ces deux phénomènes cellulaires sont régulés par les mêmes protéines?
RÉFÉRENCES BIBLIOGRAPHIQUES


Benmerah, L.: endocytose chaque voie compte *Medecine science* 18, 2002


Eisenberg, E. and Greene, L. E.: Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic (Copenhagen, Denmark) 8: 640-646, 2007


Newpher, T. M. and Lemmon, S. K.: Clathrin is important for normal actin dynamics and progression of Sla2p-containing patches during endocytosis in yeast. *Traffic (Copenhagen, Denmark)* 7: 574-588, 2006


ANNEXE A

I. Clonage des protéines à l’étude

I.1. Clonage des protéines de fusion GST-HIP1R (1015-1068) et GST-HIP1R (1015-1049)

Taille des constructions : 159pb et 108pb respectivement

Construction 1 : (1015-1068)
Amorce sens : 3’GCGGGATCCTCAGGCAGCCCTGGAGAG5’
Amorces antisens : 3’GCGCTCGAGTCAGTAGTTCACGAGTTGAGC5’

Construction 2 : (1015-1049)
Amorce sens : 3’GCGGGATCCTCAGGCAGCCCTGGAGAG5’
Amorce antisens : 3’GCGCTCGAGCTATCTGGGGGCCACGC5’

3 tubes : 2 tubes pour la construction +1 tube contrôle

Ingrédients

<table>
<thead>
<tr>
<th></th>
<th>8 µl</th>
<th>1,5 µl</th>
<th>1,5 µl</th>
<th>42 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmide pGEX4T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorce sens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorce anti-sens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master mix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total : 50 µl

Master mix (1x)

<table>
<thead>
<tr>
<th>Ingrédient</th>
<th>32,5 µl</th>
<th>5 µl</th>
<th>2 µl</th>
<th>1,5 µl</th>
<th>1 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampon polymérase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dNTPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgSO₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent polymérase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total : 42 µl

Pour le master mix, compter toujours 1 ou 2 tubes de plus pour être sur d'avoir le bon volume pour la PCR.
I.1.1 Programme PCR

![Programme PCR diagram]

Faire migrer sur gel d'agarose 2%, 5μl de produit PCR+Bleu de migration

Purification produit PCR (2 tubes ensemble)

KIT GE PCR DNA and gel band purification (éluition dans 36μl)

I.1.2 Digestion

Recette de digestion

<table>
<thead>
<tr>
<th>Composant</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vecteur pGEX4T1 (4.9 kb)</td>
<td>8 μl</td>
</tr>
<tr>
<td>BamHI</td>
<td>2 μl</td>
</tr>
<tr>
<td>XhoI</td>
<td>2 μl</td>
</tr>
<tr>
<td>BSA (10x)</td>
<td>2 μl</td>
</tr>
<tr>
<td>Tampon#2</td>
<td>5 μl</td>
</tr>
<tr>
<td>H₂O</td>
<td>1 μl</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>20μl</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composant</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert (produit de PCR purifié)</td>
<td>36 μl</td>
</tr>
<tr>
<td>BamHI</td>
<td>2 μl</td>
</tr>
<tr>
<td>XhoI</td>
<td>2 μl</td>
</tr>
<tr>
<td>BSA (10x)</td>
<td>2 μl</td>
</tr>
<tr>
<td>Tampon#2</td>
<td>5 μl</td>
</tr>
<tr>
<td>H₂O</td>
<td>5 μl</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>50μl</strong></td>
</tr>
</tbody>
</table>

Migration insert + Vecteur digéré au complet
- découper les bandes respectives
- purifier les bandes découpées avec kit GE PCR DNA and gel band purification
1.1.3 Dosage

Faire migrer sur gel d’agarose 2%, 2μl des produits purifiés (insert et vecteur) avec mass ruler pour quantifier chaque produit.
Déterminer les concentrations du vecteur et de l’insert (ng/μl).
Pour vecteur : calculer le volume pour 100 ng de vecteur

Pour l’insert (ng) = \( \frac{\text{poids moléculaire insert} \times \text{ng vecteur utilisé} \times \text{Ratio (vecteur : insert)}}{\text{poids moléculaire vecteur}} \)

Calculer le volume à utiliser en fonction de la concentration évaluée.

1.1.4 Ligation

<table>
<thead>
<tr>
<th></th>
<th>Ratio 1 :1</th>
<th>Ratio 1 :3</th>
<th>Contrôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vecteur</td>
<td>x μl</td>
<td>x μl</td>
<td>x μl</td>
</tr>
<tr>
<td>Insert digéré</td>
<td>x μl</td>
<td>x μl</td>
<td>0 μl</td>
</tr>
<tr>
<td>Tampon de ligation</td>
<td>2 μl</td>
<td>2 μl</td>
<td>2 μl</td>
</tr>
<tr>
<td>T4 ligase</td>
<td>0,5 μl</td>
<td>0,5 μl</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>H₂O</td>
<td>x μl</td>
<td>x μl</td>
<td>x μl</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>20μl</td>
<td>20μl</td>
<td>20μl</td>
</tr>
</tbody>
</table>

Incuber toute la nuit à température pièce

1.1.5 Transformation

- Dégeler cellules compétentes DH5α sur glace;
- Prélever 100 μl de cellules compétentes ;
- Ajouter 20 μl du produit de ligation;
- Incuber 30 min sur glace, 1 min à 42°C, puis 10 min sur glace;
- Ajouter 1 ml de milieu LB à chaque tube;
- Incuber 1h à 37°C avec agitation (incubateur);
- Centrifuger 7000 rpm, 1 min;
- Enlever le surnageant en gardant environ 100 μl;
- Resuspendre le culot dans le surnageant restant;
- Étaler sur Pétri LB/Ampicilline, 37°C toute la nuit;
- Dénombrer les colonies dans chaque Pétri;
- Calculer le ratio de colonies obtenues entre contrôle et autres Pétri.
I.1.6 Extraction d’ADN (mini-prep)
Prélever x colonies (selon ratio contrôle : clone), incuber dans 2 ml de LB/amp à 37 °C toute la nuit.
Extraire l’ADN avec le kit EZ10 spin column BIOBASIC (utiliser seulement 1,5 ml de chaque clone, le reste servira à repiquer les cultures si le clone est positif)

I.1.7 Vérification des clones
Digestion des ADN avec les enzymes BsaI et Smal

<table>
<thead>
<tr>
<th>Matière</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>5,0 μl</td>
</tr>
<tr>
<td>BsaI</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>Smal</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>Buffer 3</td>
<td>2,0 μl</td>
</tr>
<tr>
<td>BSA 10x</td>
<td>2,0 μl</td>
</tr>
<tr>
<td>H2O</td>
<td>12,0 μl</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>20,0 μl</strong></td>
</tr>
</tbody>
</table>

Incuber 1h à 25°C puis 1h à 50°C
Faire migrer sur un gel d’agarose 1% chaque clone digéré et déterminer les clones positifs

I.1.8 Conservation des clones positifs (DH5α)
- Ajouter 2 ml LB/Amp aux tubes de clones positifs DH5α à conserver, incuber toute la nuit à 37°C
- Prélever 600 μl de chaque culture dans un tube de congélation identifié, ajouter 400 μl glycérol 50%
- Conserver à - 80°C
- Inscrire dans le stock de bactéries sur feuille et sur ordinateur.

I.2. Hybridation des oligonucléotides pour le clonage des protéines de fusion GST-HIP1R 1015-1031, GST- HIP1R 1050-1068 et GST-HIP1R (1056/1057KK/AA)

Le tableau suivant résume les différentes amorces et enzymes de digestion utilisés pour les clonages des différentes protéines
Tableau 4 : Protéines de fusion et leurs amorces

<table>
<thead>
<tr>
<th>Protéines</th>
<th>Amorces</th>
</tr>
</thead>
</table>
| GST-HIP1R (1015-1031) | **Sens:** 5'GATCCTCAGGCAGCCCTGGAGAGGAGGCTGGGCCATCCGGCCCA GCACTGCCCCCGATAGC 3'  
|               | **Anti-sens:** 5'TCGAGCTATCGGGGGGCAGTGCTGGGCGGATGGCCACCTCCT CTCCAGGGCTGCTGAG 3' |
| GST-HIP1R (1050-1068) | **Sens:** 5'GATCCCCAGGACCAGCTTGACAAAAAGGATGGGCATCTACCCAGCT CAATCGTGAACTACTAGC 3'  
|               | **Anti-sens:** 5'GATCCCAGGACCAGCTTGACAAAAAGGATGGGCATCTACCCAGCT CAATCGTGAACTACTAGC 3' |
| GST-HIP1R (K1056/1057 KK/AA) | **Sens:** 5'GATCCAGGACCAGCTTGACCCCCCGCCATCTACCCAGCT CAATCGTGAACTACTAGC 3'  
|               | **Anti-sens:** 5'TCGAGCTCTAGTGGCTTGGACCCGAGTTGAGCTGGGCTAGATGCACCTCCTGG 3' |

I.2.1 Préparation du vecteur

- Digestion de 8 μl du vecteur pGEX4T1 (4,9kb) avec BamHI et XhoI
- Déphosphorylation du vecteur avec 1ul de la CIP (Calf Intestine Phosphatase).

I.2.2 Préparation des oligonucléotides

1- Hybridation des oligonucléotides pour le clonage
   - 2,5 μl d’oligonucléotides sens
   - 2,5 μl d’oligonucléotides antisens
   - 25 μl du tampon d’hybridation 2X (20mM Tris PH 7.8, 100 mM NaCl, 0.2 mM EDTA)
   - 20 μl d’eau
   - Mettre à 95 °C pendant 5mn puis laisser refroidir sur la paillasse 1 à 2 h

2- Phosphorylation des oligonucléotides
   - 1 μl d’oligonucléotides de l’étape 1
1 μl du tampon de l’enzyme T4 DNA ligase (10X)
1 μl de l’enzyme T4 polynucléotide kinase (PNK)
Incuber pendant 30 mn à 37 °C puis 10 mn à 70 °C

3- Ligation
- 0.5 μl du vecteur digéré (dilué 1/5)
- 1 μl d’oligonucléotides phosphorylé (dilué 1/125)
- 2 μl de tampon de ligation
- 2 μl de T4 DNA ligase
- 14.5 μl d’H2O
- Incuber pour ligation 1h à température pièce;
- Faire un contrôle de ligation avec vecteur seul

4- Transformation dans des bactéries compétentes
- Inoculer 100 μl de bactérie DH5 α avec 20 μl du produit de ligation;
(voir protocole de transformation bactérienne dans la technique du clonage moléculaire);
- Incuber les boîtes Pétri + Ampicilline toute la nuit à 37 °C;
- Repiquer un certain nombre de colonies dans 2ml du milieu LB + ampicilline;
- Incuber toute la nuit avec agitation à 37 °C;

5- Extraction d’ADN et vérification des clones
- Extraire l’ADN de chaque clone avec les solutions appropriées
- Tester les clones avec une double digestion
- Remettre en culture les clones positifs dans du milieu LB + ampicilline toute la nuit;
- Stocker les clones positif à -80°C dans 50% du glycérol.
ANNEXE B

II. Production de protéines de fusion GST sous différentes formes

II.1 Protéines de fusion pour Pull-Down

1. Incuber toute la nuit 10 ml de culture du plasmide voulu. Placer un 500 ml de LB à 37°C toute la nuit.
2. Inoculer le 500 ml de LB + antibiotique correspondant au plasmide avec le 10 ml de culture toute la nuit. Incuber 2 heures à 37°C.
3. Induire en ajoutant de l’IPTG (0,5 mM ou 1X final) et incuber 2,5 heures à 37°C.
4. Centrifuger la culture à 5000 rpm pendant 10 minutes à 4°C.
5. Resuspendre le culot dans 20 ml de PBS 1X froid. (Ajouter 10 ml, resuspendre et compléter à 20 ml) Transférer le tout dans les tubes allant à la centrifugeuse (10 000 rpm).
6. Soniquer 3 fois 10 secondes en plaçant le tube 5 secondes sur la glace entre les sonications.
7. Ajouter le Triton-X100 10% pour qu’il soit à 1% final. Incuber 15 minutes à 4°C.
8. Centrifuger à 10 000 rpm pendant 5 minutes à 4 °C.
9. Incuber le surnageant avec 500 μl de billes de glutathione-sépharose lavées préalablement avec 50 ml de PBS 1 X et une centrifugation de 2 minutes à 3000 rpm.
10. Incuber par rotation toute la nuit à 4 °C.

II.2 Protéines de fusion éluées (Protéines purifiées)

1. Prélever 20 μl de billes pour contrôle avant élution.
2. Ajouter les billes à la colonne.
3. Laver 3 fois avec 20 ml de PBS 1X froid.
4. Éluer avec 4 fois 1 ml de tampon d’élution froid (38 ml H₂O, 2 ml Tris 1M pH 7,4, 0,062g Glutathione). Attendre 2 minutes entre chaque fraction. Récupérer chaque ml dans un eppendorf.
5. Prélever 20 μl par aliquot et faire migrer sur gel 12% avec courbe standard BSA pour obtenir la concentration des protéines.
II.3 Protéines de fusion clivées (protéine purifiée sans la portion GST)

1. Laver 2 fois avec 20 ml de PBS 1X.
2. Resuspendre les billes dans 300 µl de PBS 1X et transférer dans un eppendorf. Prendre un aliquot.
3. Ajouter 20 µl de thrombine et incuber par rotation à 4°C toute la nuit.
4. Prendre un aliquot. Ajouter 500 µl de PBS 1X.
5. Centrifuger à 13 000 rpm pendant 2 minutes à 4°C.
6. Récupérer le surnageant et concentrer sur tube amicon.

II.4 Protéines Concentrées sur tube amicon

1. Placer le surnageant sur le filtre du tube amicon
2. Centrifuger 10 minutes à 4000g
3. Faire le tampon d'échange si nécessaire pour une autre application (ajouter environ 10 ml de tampon)
4. Centrifuger 20-25 minutes à 4000g
5. Récupérer le surnageant (250-500µl). Doser les protéines sur un minigel avec une courbe BSA.
III. Protocole de production d’extrait de cerveau

1. Décongeler le cerveau de rat dans un volume de PBS 1X;
2. Peser le cerveau, et mixer, à l’aide d’un polytron, dans du tampon de lyse (10ml pour 1g de cerveau)
3. Centrifuger à 800g pendant 15 mn (rotor JA20)
4. Incuber le surnageant dans du TritonX100 (1% final) à 4°C pendant 30min avec agitation
5. Centrifuger avec l’ultracentrifugeuse à 46 K pendant 30 min à 4°C (rotor MLA55)
6. Doser le surnageant par la méthode de Bradford.
ANNEXE D

IV. Protocole de sédimentation avec l’actine

IV.1 Préparation de l’actine filamentuse

1. Resuspendre un aliquot d’actine purifié (250µg de cytoskeleton #APHL 99-A) dans 25µl d’eau nanopure;
2. Ajouter 600µl de tampon général actine A;
3. Laisser 30 min sur glace;
4. Centrifuger à 47K pendant 1h à 4°C dans le rotor TLA120.1
5. Utiliser une dose d’actine fixe soit 20µg. Faire un contrôle sans actine.

Pour un dosage fixe mettre 120µl du surnageant dans un tube à ultracentrifugation pour chaque protéine étudiée.

6. Ajouter 12µl de tampon de polymérisation de l’actine 10X (B) sur le surnageant de l’étape 5;
7. Laisser 1h à température ambiante.

IV.2 Préparation des protéines de fusion

1. Les protéines de fusion sont préparées, clivées à la thrombine et concentrées selon le protocole III.D
2. Prendre 24µg de protéines dans 30µl final de tampon C;
3. Centrifuger à 96K pendant 25min à 4°C dans le rotor TLA 120.1
4. Récupérer le surnageant.

IV.3 Cosédimentation de l’actine

1. Ajouter les protéines de fusion sur l’actine polymérisée de l’étape 7;
2. Laisser 30min à température pièce
3. Centrifuger à 90K pendant 25min à température ambiante dans le rotor TLA 100
4. Prélever 50µl du surnageant pour migration et aspirer le reste
5. Resuspendre le culot dans 150µl de LSB 1X et charger seulement 50µl.
V. Protocole de démantèlement de vésicules de clathrine

1. Incuber 7,5 μg de vésicules de clathrine purifiées avec ou sans HSC70 et avec ou sans HIP1R TALIN dans un milieu contenant un système de régénération d’ATP (5 mM d’ATP, 50 mM de créatine phosphate et 12.5 unités de créatine phosphokinase)
2. Compléter le volume à 100μl avec le tampon AK
3. Réaliser un contrôle en traitant les vésicules avec une solution Tris 0.5 M, pH 7
4. Incuber 5 min à 25°C
5. Centrifuger à 48K pendant 5 min (rotor TLA 100)
6. Faire migrer 50μl du surnageant (ne pas perturber le culot) sur gel SDS-PAGE (5%-16%)
7. Coloration au bleu de Coomassie.
ANNEXE F

VI. Présentation des sites d’HIP1R TALIN potentiels à l’interaction avec HSC70

<table>
<thead>
<tr>
<th>Domaines</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP1R-CORE</td>
<td>QLVEA, QLVAA</td>
</tr>
<tr>
<td>HIP1R-LATCH</td>
<td>QVRVL</td>
</tr>
<tr>
<td>HIP1R-THATCH</td>
<td>Contient les sites du CORE et LATCH</td>
</tr>
<tr>
<td>HIP1R-C-terminal</td>
<td>QLDKK, QLVNY</td>
</tr>
<tr>
<td>HIP1R-TALIN</td>
<td>Regroupe tous les sites</td>
</tr>
</tbody>
</table>

Le domaine HIP1R-C-terminal est riche en P et G (représentés en vert sur la séquence). Ces acides aminés sont présents en grande nombre dans le site de liaison de la chaîne légère de clathrine avec HSC70. HSC70 pourrait interagir avec ce domaine par le biais de ces acides aminés.