Caractérisation cellulaire et moléculaire de FANCG : une protéine à la croisée entre l’anémie de Fanconi et la réparation de l’ADN

Mémoire

Stéphanie Bérubé

Maîtrise en biologie cellulaire et moléculaire
Maître ès sciences (M.Sc.)

Québec, Canada
© Stéphanie Bérubé, 2015
Résumé

L’anémie de Fanconi est une maladie génétique récessive rare due à un défaut de réparation de l’ADN au niveau des pontages inter-brins. La protéine FANCG est impliquée, avec 15 autres protéines, dans cette réparation via la voie de Fanconi. En plus de ce rôle, FANCG a été identifié comme faisant partie du complexe B2D2GX3. Néanmoins, le rôle exact de ce complexe reste à être élucidé.

Cette étude a permis de mettre en évidence de nouveaux interacteurs de FANCG, connus pour être impliqués dans diverses voies de réparation de l’ADN et dans le choix de la voie de réparation à utiliser. Ainsi, nous posons l’hypothèse que FANCG possède des fonctions additionnelles, via ces nouveaux partenaires. Les données recueillies montrent qu’indépendamment de son rôle dans la voie de Fanconi, et bien que ne liant pas l’ADN, FANCG est recruté aux sites de dommages à l’ADN et permet d’engendrer sa réparation.
Table des matières

RÉSUMÉ .. III

TABLE DES MATIÈRES .. V

LISTE DES TABLEAUX .. IX

LISTE DES FIGURES .. XI

LISTE DES ABRÉVIATIONS ... XIII

REMERCIEMENTS ... XVII

INTRODUCTION .. 1

 1. Base génétique du cancer .. 1
 2. Les mécanismes de réparation de l’ADN ... 3
 2.1 BER ... 3
 2.2 NER ... 4
 2.3 MMR ... 5
 3. Les cassures double-brin de l’ADN .. 6
 3.1 La réparation par recombinaison homologue ... 7
 3.2 La réparation par le mécanisme de NHEJ ... 9
 3.3 La réparation par NHEJ-alternatif ... 12
 3.4 La réparation par single-strand annealing (SSA) ... 12
 4. Le cycle cellulaire et la réparation de l’ADN ... 13
 5. L’anémie de Fanconi ... 16
 5.1 Caractéristiques cliniques .. 16
 5.2 Caractéristiques cellulaires ... 18
 5.3 Les pontages inter-brins (ICL) .. 19
 5.4 La voie de Fanconi .. 20
 5.4.1 Le groupe I : le Complexe Cœur ... 20
 5.4.2 Le groupe II : le complexe FANCD2-FANCI .. 21
 5.4.3 Le groupe III : les protéines en aval de la mono-ubiquitination de D2-I 22
 6. FanCG .. 27
 6.1 Caractéristiques de FanCG .. 28
 6.1.2 Localisation cellulaire .. 28
 6.1.3 FanCG possède sept TPR .. 28
 6.1.4 FanCG-FanCA ... 29
 6.1.5 FanCG-FanCF .. 30
 6.1.6 Le complexe B2D2GX3 ... 30
 6.1.7 Modifications post-traductionnelles .. 31
 6.2 Études génétiques de FanCG .. 33
 7. Objectifs des travaux de maîtrise .. 34

MATÉRIELS ET MÉTHODES ... 35
Liste des tableaux

Tableau 1: Prévalence des mutations au niveau des gènes FANC et rôle dans la voie de Fanconi.................. 17
Tableau 2: Oligonucléotides utilisés pour la fabrication des sondes d'ADN... 46
Tableau 3: Anticorps utilisés en immunofluorescence .. 52
Tableau 4: Liste des amorces utilisées pour le clonage... 53
Tableau A 1: Liste des interacteurs de FANCG identifiés lors de l'analyse protéomique................................... 91
Liste des figures

Figure 1: Mécanisme de réparation des cassures double-brin par recombinaison homologue 9
Figure 2: Mécanisme de réparation des cassures double-brin par NHEJ et NHEJ-alt 11
Figure 3: Mécanisme de réparation des cassures double-brin par SSA ... 13
Figure 4: Le cycle cellulaire et ses points de contrôle ... 15
Figure 5: Étalement de lymphocytes caractéristique de l’anémie de Fanconi ... 19
Figure 6: La voie de Fanconi ... 26
Figure 7 : Séquence consensus d’un TPR et exemple de protéines contenant un TPR ainsi que leur séquence associée ... 28
Figure 8: Représentation schématique de FANCG et de ces interactions .. 33
Figure 9: Carte du plasmide pFastBac-GST-52b ... 37
Figure 10: Système d'expression Bac-to-Bac® ... 38
Figure 11: Carte du plasmide pGEX-6P-1 ... 42
Figure 12: Carte du plasmide pEGFP-C1 .. 47
Figure 13: Carte de la construction pLenti-myc-FANCG ... 50
Figure 14 : Cassettes de réparation .. 54
Figure 15: Coloration Coomassie des protéines purifiées ... 56
Figure 16 : Essai de compétition en retard sur gel .. 57
Figure 17: Co-localisation de FANCG en cellules PD326+v ... 59
Figure 18 : Co-localisation de FANCG et DNA-PKcs phosphorylé en cellules HeLa Fucci 60
Figure 19: Statistiques de co-localisation avec FANCG ... 61
Figure 20 : Niveau d'expression de FANCG dans les cellules PD326 ... 62
Figure 21: Foyers DNA-PKcs phosphorylé en absence de FANCG ... 64
Figure 22: Foyers de réparation de RIF1 en présence et en absence de FANCG en cellules PD326 65
Figure 23 : Essais de réparation in vivo ... 66
Figure 24: Modèle exposant le rôle de FANCG dans la réparation de l'ADN .. 74
Figure A 1: Interaction entre FANCG et XRCC3 ... 89
Figure A 2: Interaction de FANCG avec lui-même .. 90
Liste des abréviations

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degré Celsius</td>
</tr>
<tr>
<td>%</td>
<td>pourcent</td>
</tr>
<tr>
<td>6-4PP</td>
<td>[6-4] photoproducts</td>
</tr>
<tr>
<td>A-A</td>
<td>Antibiotic-Antimycotic</td>
</tr>
<tr>
<td>ADN</td>
<td>acide désoxyribonucléique</td>
</tr>
<tr>
<td>ADNc</td>
<td>ADN complémentaire</td>
</tr>
<tr>
<td>ADNds</td>
<td>ADN double-brin</td>
</tr>
<tr>
<td>ADNss</td>
<td>ADN simple-brin</td>
</tr>
<tr>
<td>AF</td>
<td>anémie de Fanconi</td>
</tr>
<tr>
<td>AP</td>
<td>apurinique ou apyrimidinique</td>
</tr>
<tr>
<td>ARN</td>
<td>acide ribonucléique</td>
</tr>
<tr>
<td>ATP</td>
<td>adénosine triphosphate</td>
</tr>
<tr>
<td>B2D2GX3</td>
<td>complexe formé de BRCA2, FANCD2, FANCG et XRCC3</td>
</tr>
<tr>
<td>BCDX2</td>
<td>complexe formé de RAD51B, RAD51C, RAD51D et XRCC2</td>
</tr>
<tr>
<td>BER</td>
<td>base excision repair ou réparation par excision de base</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumine</td>
</tr>
<tr>
<td>CBP</td>
<td>calmodulin binding peptide</td>
</tr>
<tr>
<td>CC</td>
<td>Complexe Coeur</td>
</tr>
<tr>
<td>CDB</td>
<td>cassure double-brin</td>
</tr>
<tr>
<td>Cdk</td>
<td>cylin-dependent kinase ou kinase dépendante de cycline</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate</td>
</tr>
<tr>
<td>CHO</td>
<td>chinese hamster ovary</td>
</tr>
<tr>
<td>CIP</td>
<td>alkaline phosphatase, Calf intestine</td>
</tr>
<tr>
<td>CMG</td>
<td>complexe formé de cdc5, MCM2-7 et GINS</td>
</tr>
<tr>
<td>CPD</td>
<td>cyclobutane pyrimidine dimers</td>
</tr>
<tr>
<td>CS</td>
<td>Syndrome de Cockayne</td>
</tr>
<tr>
<td>CSB</td>
<td>cassure simple-brin</td>
</tr>
<tr>
<td>CX3</td>
<td>complexe formé de RAD51C et XRCC3</td>
</tr>
<tr>
<td>D2-I</td>
<td>complexe formé de FANCD2 et FANCI</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6'-diamidino-2- phénylindole</td>
</tr>
<tr>
<td>DEB</td>
<td>diépoxybutane</td>
</tr>
<tr>
<td>dG</td>
<td>désoxyguanosine</td>
</tr>
<tr>
<td>DNA-PKcs</td>
<td>sous-unité catalytique de DNA-PK</td>
</tr>
<tr>
<td>dNTP</td>
<td>désoxynucléotide triphosphate</td>
</tr>
<tr>
<td>D-Loop</td>
<td>displacement loop ou boucle de déplacement</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DS</td>
<td>double-brin</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiotreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene damine tetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>FAAP</td>
<td>Fanconi anemia associated protein</td>
</tr>
</tbody>
</table>
FANC Fanconi anemia complementation group
FANCD2-ub FANCD2 ubiquitiné
FBS fetal bovine serum
Fucci fluorescent ubiquitination-based cell cycle indicator
GFP green fluorescent protein
GST glutathione S-transferase
GM Grace insect medium
h heure
HBS HEPES buffer saline
HEK human embryonic kidney
HeLa cellules épithéliales provenant d'un carcinome humain du col utérin
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His histidine ou étiquette poly-histidine
HJ Holliday junction ou jonction de Holliday
HR homologous recombination ou recombinaison homologue
ICL interstrand crosslinks ou pontage inter-brins
IPTG Isopropyl β-D-1-thiogalactopyranoside
IR radiations ionisantes
kb kilobase
kDa kilodalton
KO knock-out
L litre
LAM leucémie aigüe myéloïde
LB Luria broth
M molaire ou mole par litre
MCS multicloning site
μg microgramme
mg milligramme
μl microlitre
ml millilitre
μM micromolaire ou micromole par litre
mM millimolaire ou millimole par litre
mm millimètre
MMC mitomycine C
MMR mismatch repair ou réparation de mésappariement
MOPS 3-(N-morpholino)propansulfonic acid
MRN MRE11-RAD50-NBS1
N normal
NCS néocarzinostatine
NER nucleotide excision repair ou réparation par excision de nucléotide
ng nanogramme
NHEJ nonhomologous end-joining ou appariement d’extrémités non-homologues
NHEJ-alt NHEJ-alternatif
nM nanomolaire ou nanomole par litre
<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLS</td>
<td>signal de localisation nucléaire</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonidet P-40</td>
</tr>
<tr>
<td>PAR</td>
<td>polymère d’ADP-ribose</td>
</tr>
<tr>
<td>PARG</td>
<td>poly(ADP-ribose) glycohydrolase</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate saline buffer</td>
</tr>
<tr>
<td>PCR</td>
<td>réaction de polymérisation en chaîne</td>
</tr>
<tr>
<td>pH</td>
<td>potentiel hydrogène</td>
</tr>
<tr>
<td>PIPES</td>
<td>piperazine-N,N’-bis(2-ethanesulfonic acid)</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethylsulphonyl fluoride</td>
</tr>
<tr>
<td>Pol</td>
<td>polymérase</td>
</tr>
<tr>
<td>pPDA</td>
<td>p-phenylenediamine</td>
</tr>
<tr>
<td>PSB</td>
<td>protein sample blue</td>
</tr>
<tr>
<td>ROS</td>
<td>espèces réactives de l’oxygène</td>
</tr>
<tr>
<td>rpm</td>
<td>révolution par minute</td>
</tr>
<tr>
<td>S7</td>
<td>sérine 7</td>
</tr>
<tr>
<td>SA</td>
<td>splayed arms ou fourche synthétique</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>S9</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>siContrôle</td>
<td>ARN interférent contrôle ou siScramble</td>
</tr>
<tr>
<td>siFANCG</td>
<td>ARN interférent contre FANCG</td>
</tr>
<tr>
<td>SS</td>
<td>simple-brin</td>
</tr>
<tr>
<td>SSA</td>
<td>single-strand annealing ou appariement d’extrémités simple-brin</td>
</tr>
<tr>
<td>T4 PNK</td>
<td>T4 polynucléotide kinase</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA</td>
</tr>
<tr>
<td>TEV</td>
<td>Tobacco etch virus</td>
</tr>
<tr>
<td>TLS</td>
<td>translesion synthesis ou synthèse translésionnelle</td>
</tr>
<tr>
<td>TP</td>
<td>température pièce</td>
</tr>
<tr>
<td>TPR</td>
<td>tétratricopeptide répétés</td>
</tr>
<tr>
<td>UBZ</td>
<td>ubiquitin-binding zinc finger</td>
</tr>
<tr>
<td>UT</td>
<td>non-traité</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>XP</td>
<td>Xeroderma pigmentosum</td>
</tr>
</tbody>
</table>
Remerciements

La réalisation de mes travaux de maîtrise n’aurait pu se faire sans le soutien de gens exceptionnels auxquels je dois des remerciements. Je tiens tout d’abord à remercier mon directeur de recherche, le Dr Jean-Yves Masson, qui m’a offert une place dans son laboratoire ainsi qu’un projet de recherche plus que passionnant. Je tiens aussi à le remercier pour la confiance qu’il a eue en moi et pour l’autonomie qu’il m’a permise d’acquérir, tout en suivant la progression de mes travaux avec attention. Je ne peux pas passer sous silence le temps qu’il m’a permis d’investir dans la préparation de mon avenir, ce fut pour moi très précieux et il a toute ma gratitude pour cela. Encore plus, il m’a permis de travailler sur un sujet qui lui tient à cœur et il a réussi à me transmettre la passion qu’il a pour l’anémie de Fanconi. Cette passion a bien sûr été nourrie par ma présence au congrès annuel de l’anémie de Fanconi dont je ressors grandie et je suis grandement reconnaissante à Jean-Yves pour m’avoir donné l’opportunité d’y assister.

Je tiens aussi à remercier l’ensemble des membres du laboratoire, ceux de maintenant et ceux qui ont croisé ma route depuis mon arrivée au laboratoire. Tout d’abord, je voudrais remercier du fond du cœur Marie-Christine Caron, celle qui m’a presque tout appris. Merci pour ta patience, ta générosité et ton dévouement; j’ai beaucoup grandi scientifiquement et personnellement à ton contact. Je ne voudrais surtout pas oublier de te remercier aussi pour ta participation aux résultats de ce mémoire. Un énorme merci à Niraj Joshi qui, bien plus qu’un collègue, est un ami qui m’a supportée dans les hauts comme dans les bas lors de la réalisation de ces travaux. Je le remercie pour son support moral et scientifique et pour son extravagance qui ne peut que mettre du soleil dans une journée. Merci aussi d’avoir commencé ce projet, ce fut d’une grande aide au début de mes travaux. L’aide du Dre Amélie Rodrigue fut aussi essentielle pour la réalisation de nombreuses manipulations, je la remercie de m’avoir accordé du temps et d’avoir activement participé à mon projet. Merci à Yan Coulombe pour son aide dans la résolution de nombreux problèmes techniques et pour son calme dans toutes les situations. L’amitié d’Émilie Dubois et d’Anthony Couturier, m’a permis de garder le moral pendant ces deux années. J’ai énormément aimé travailler avec Anthony, qui est prêt à aider à tous moments ; c’est une personne que j’admire beaucoup pour sa persévérance à avancer dans la vie tout comme en science. Émilie, merci pour les beaux moments et les activités que nous avons partagés, ta vision du monde m’a amenée à me retourner de nombreuses fois afin de voir les choses sous un autre angle. Mon apprentissage dans le laboratoire a aussi été agrémenté par la présence de Joris Pauty qui a su répondre à mes plus que fréquentes questions.

Beaucoup de remerciements sont nécessaires, entre autres pour Ranjan Maity, qui m’a appris à manipuler les cellules d’insectes Sf9; pour Marie-Michelle Genois qui répond présente lorsqu’il est temps de clarifier un protocole; pour Kenny Dubois, dont la bonne humeur est contagieuse; pour Hemanta Adhikary bien que
discret est toujours prêt à donner un coup de main et pour Denis Velic pour son ardeur au travail qui est contagieuse.

Je remercie la Dre Isabelle Brodeur d’avoir pris le temps de lire ce mémoire et d’en effectuer la correction.

Au point de vue personnel, je veux remercier ma famille qui m’a toujours soutenue dans mes projets et surtout dans les moments les plus difficiles. Je n’aurais pu me rendre aussi loin dans mes études sans eux. Merci particulièrement à mon copain, la distance fut un défi que nous avons surmonté ensemble et il m’a sans cesse encouragée à donner mon maximum dans mon projet de recherche, ce qui a grandement contribué au succès de mon travail.

Finalement, je tiens à remercier le Fonds de recherche du Québec en santé (FRQS) d’avoir contribué au financement de ce projet par une bourse à mon égard pour toute la durée de ma maîtrise.
Introduction

1. Base génétique du cancer

Chaque jour, le génome humain est soumis à de multiples altérations. L’ADN qui contient toute l'information génétique est une composante fragile et vitale des cellules vivantes. L'information qu'elle contient est nécessaire à la vie, et son altération peut provoquer de graves maladies, la mort cellulaire ou le cancer. Les organismes ont donc développé au cours de l’évolution plusieurs mécanismes pour protéger leur information génétique. Il est bien certain qu'éliminer les sources de stress pouvant conduire aux bris de l’ADN est l’un de ces moyens de protection. Par contre, la cellule ne peut éliminer toutes les sources de stress présentes dans son environnement et pouvant entraîner des bris à l’ADN. Ceci est dû au fait que certains processus vitaux pour la cellule, tels la réplication de l’ADN, la méiose, la mitose et la respiration cellulaire sont des sources de stress potentielles pour l’ADN.

Lorsque la réparation de l’ADN n’est pas effectuée correctement ou que des bris persistent altérant ainsi le code génétique, les cellules peuvent devenir cancéreuses. Cette issue fatale peut être le résultat d’un mauvais fonctionnement de l’une des deux classes de gènes suivantes : les proto-oncogènes et les suppresseurs de tumeurs.

Les proto-oncogènes sont les gènes qui sont responsables de la croissance cellulaire dans les cellules normales. Ils vont devenir oncogènes s’ils deviennent suractivés ou si leur transcription est augmentée anormalement, ces gènes sont donc oncogéniques suite à un gain de fonction. Parmi les proto-oncogènes cellulaires, on retrouve des gènes impliqués au niveau de la prolifération, de la croissance et de la différenciation cellulaire. Quatre principaux mécanismes peuvent mener à la transformation des proto-oncogènes en oncogènes. Le premier mécanisme d’activation est la présence d’une simple mutation au niveau du gène. Cette mutation à elle seule peut provoquer l’hyperactivation de la protéine codée par ce gène et ainsi déréguler le système normal de la cellule. Le deuxième mécanisme d’activation d’un proto-oncogène consiste aussi en une mutation, mais au lieu de se trouver au niveau de la séquence codante de la protéine, la mutation peut se trouver au niveau de la séquence régulatrice du gène et causer une surproduction de la protéine oncogénique. Le troisième mécanisme d’activation d’un proto-oncogène est une amplification génique qui peut être la conséquence d’erreurs de réplication causant ainsi la présence de copies supplémentaires de l’oncogène. Finalement, le quatrième mécanisme d’activation d’un proto-oncogène est par réarrangement de chromosomes, ce qui peut situer l’oncogène dans une région activement transcrite et ainsi mener à sa surproduction (Alberts et al., 2008).
Les suppresseurs de tumeurs sont ces gènes qui contrôlent la croissance et la prolifération de façon à éviter que celles-ci ne soient excessives. Contrairement aux proto-oncogènes, ce n’est pas leur suractivation qui mène au développement tumoral, mais c’est la perte de leur fonction. La perte de fonction d’un suppresseur de tumeurs est un événement récessif, c’est-à-dire que les allèles maternels et paternels doivent être mutés pour qu’il y ait inactivation du gène et observation d’un phénotype (Russo et al., 2005). Deux types de suppresseurs de tumeurs sont retrouvés dans la cellule : les gatekeepers et les caretakers.

Les gatekeepers contrôlent directement la croissance cellulaire. Ce contrôle est possible par l’inhibition de la croissance, mais aussi parce que ces gènes peuvent induire la mort cellulaire. Les gatekeepers ont un rôle spécifique au tissu dans lequel ils se trouvent, mais ont en commun la particularité qu’ils doivent absolument être inactivés pour qu’une cellule devienne cancéreuse (Russo et al., 2005). Un gatekeeper type est la protéine du rétinoblastome, Rb. La protéine Rb est au cœur du point de restriction du cycle cellulaire. La phosphorylation de Rb permet son activation et la libération du facteur de transcription E2F. Ce dernier permet la transcription de la cycline E. Une boucle de rétroactivation rend ce processus irréversible et correspond au passage du point de restriction en G1 après quoi la cellule peut progresser vers la mitose sans nécessiter de stimuli mitogéniques (Malumbres et Barbacid, 2005). Suite à l’inactivation de Rb ou à l’interruption de sa production, le facteur de transcription E2F n’est plus inhibé et peut activer la production de la cycline E même lorsque les conditions cellulaires ne sont pas favorables à l’entrée dans le cycle cellulaire. Cette absence de Rb empêche la cellule de bien contrôler sa propre croissance et favorise ainsi la tumorigénèse (Deininger, 1999).

Les caretakers permettent de conserver l’intégrité de l’information génétique ; ce sont entre autres les protéines capables de détecter les bris dans l’ADN et les protéines de réparation de l’ADN (Russo et al., 2005). Par exemple, la protéine p53 qui est mutée dans environ 50% des cancers, a pour rôle de freiner la progression dans le cycle cellulaire lorsqu’il y a des dommages au niveau de l’ADN pour ainsi empêcher que la réplication ait lieu en présence d’ADN altéré (Deininger, 1999). Il s’agit donc d’un caretaker qui active les points de contrôle du cycle cellulaire, ce qui empêche les cellules d’entrer en division alors que le génome n’est pas intact. L’apoptose, la sénescence ou la mort cellulaire peuvent être induites par p53. (Ford et al., 2005 ; Riley et al., 2008). Les protéines de réparation de l’ADN, tel BRCA1/2, MSH2 et les protéines XP sont aussi des caretakers. Une perte de fonction au niveau de ces gènes entraîne une accumulation rapide de mutations, surtout dans les cellules en division. Ces mutations peuvent être dangereuses, car elles peuvent transformer un proto-oncogène en oncogène, elles peuvent inactiver une protéine nécessaire à l’entrée en apoptose ou elles peuvent inhiber les points de contrôle du cycle cellulaire. Bien que la perte d’un gène caretaker ne soit ni nécessaire, ni suffisante pour enclencher le processus de développement tumoral, leur inactivation peut fortement accélérer ce processus (Russo et al., 2005).
L'intégrité du code génétique est au cœur du développement de cancers. Les mécanismes de réparations de l'ADN doivent être performants et prêts à réparer tous les types de dommages pouvant être rencontrés sur l'ADN pour s’assurer de conserver cette intégrité si précieuse.

2. Les mécanismes de réparation de l’ADN

Plusieurs mécanismes de réparation ont été mis en place au cours de l’évolution pour répondre à ce besoin vital d’intégrité de l’ADN. La réparation par excision de base (BER, Base Excision Repair) est le mécanisme utilisé pour réparer les bases azotées ayant subi des modifications involontaires ou dont la base azotée est absente. La réparation de nucléotides mésappariés (MMR, MisMatch Repair) et la réparation par excision de nucléotides (NER, Nucleotide Excision Repair) sont spécialisées au niveau de la réparation des nucléotides endommagés. La réparation des cassures double-brin (CDB) de l’ADN représentant un défi de taille pour les cellules, quatre principaux mécanismes ont évolué pour permettre leur réparation : l’appariement d’extrémités non-homologues (NHEJ, NonHomologous End-Joining), le NHEJ-alternatif (NHEJ-alt), la recombinaison homologue (HR, Homologous Recombination) et l’appariement d’extrémités simple-brin (SSA, Single-Strand Annealing). Ces trois derniers mécanismes seront présentés en détails à la section 3. Bien qu’il ne s’agisse pas d’un mécanisme de réparation en tant que tel, il existe aussi des polymérases translésionnelles (polymérases TLS) qui peuvent permettre à la réplication d’avoir lieu, même en présence d’un dommage. Il s’agit d’un mécanisme de secours pour la cellule qui permet de tolérer des erreurs en cours de réplication, mais qui seront réparées de façon post-transcriptionnelle.

2.1 BER

Le mécanisme de réparation par excision de base cible particulièrement les bases endommagées. Ces dommages peuvent être dus à l’oxydation, à la désamination ou à l’alkylation de bases (Christmann et al., 2003). En plus de ces dommages, le BER permet de réparer les cassures simple-brin (CSB) qui sont quant à elles causées par les radiations ionisantes (IR), les espèces réactives de l’oxygène (ROS) ou suite à un dommage sur les sucres qui provoque la désintégration du squelette de l’ADN (Caldecott, 2014). La différence entre la réparation d’une CSB et la réparation d’une base endommagée est la façon dont le dommage est reconnu. La détection d’une CSB nécessite la participation de PARP1 (Poly(ADP-Ribose) Polymerase 1) qui par la suite peut activer le BER, alors que lorsqu’il y a présence d’une base endommagée dans l’ADN, celle-ci est reconnue par une ADN glycosylase (Caldecott, 2014 ; Christmann et al., 2003). Le dommage est excisé par cette ADN glycosylase par l’hydrolyse du lien N-glycosidique liant la base à son sucre, créant ainsi un site apurinique/apyrimidinique (AP). Le site AP est par la suite enlevé par une endonucléase AP ce qui conduit à la formation d’une CSB (Hegde et al., 2008).
La CSB créée par une ADN glycosylase ou par une autre source est détectée par PARP1 qui produit un polymère d'ADP-ribose (PAR) au site de cassure ce qui sert de plateforme pour le recrutement des autres protéines de réparation (Li et Yu, 2014). La réparation BER peut se faire soit par l’insertion du seul nucléotide manquant, ce qu’on appelle l’insertion d’une petite pièce d’ADN, ou par l’insertion d’une plus longue séquence d’ADN, soit entre deux et huit, ce qu’on appelle l’insertion d’une grande pièce d’ADN. L’ADN glycosylase impliquée dans la réparation est déterminante pour le choix de la réparation d’un court ou d’un long segment d’ADN (Krokan et al., 2000). L’ADN polymérase β (Polβ) est impliquée dans ces deux mécanismes pour l’insertion du premier nucléotide (Christmann et al., 2003). Lors de la réparation par l’insertion d’une petite pièce, ce nucléotide est lié au reste de la chaîne d’ADN par l’action concertée de XRCC1, de la ligase III et de PARP1 qui interagissent avec Polβ pour compléter la réparation. En ce qui concerne la réparation par l’insertion d’une grande pièce d’ADN, suite à l’insertion du premier nucléotide par Polβ, les polymérasases réplicatives (Polδ ou Polε), continuent l’elongation à l’aide de PCNA et RF-C. Cette elongation peut se poursuivre sur une longueur allant jusqu’à 10 nucléotides qui sont attachés au reste de l’ADN par la ligase I. Les extrémité protubérantes produites sont ensuite enlevées par l’endonucléase FEN1, ce qui complète la réparation (Christmann et al., 2003).

2.2 NER

Il est bien connu que les rayons du soleil sont dangereux pour la peau et, sans protection, à long terme, ils peuvent entraîner le développement de cancers. Ce phénomène s’explique par le fait que les rayons ultraviolets (UV) présents dans les rayons du soleil endommagent l’ADN en formant, entre autres, des CPD (Cyclobutane Pyrimidine Dimers) et des 6-4PP ([6-4] Photoproducts). Ces deux types de dommages peuvent être réparés par le mécanisme de NER. En plus de ces dommages, le mécanisme de NER peut réparer les dommages induits par des agents mutagènes de source exogène qui sont responsables de la présence d’amines aromatiques, de benzo[a]pyrene et des cyclopurines dans l’ADN (Schärer, 2013). L’absence des composantes de cette voie de réparation peut non seulement mener au développement de cancers, mais elle est aussi responsable de graves maladies, tels le Syndrome de Cockayne (CS) et le Xeroderma pigmentosum (XP). Les patients souffrant de XP sont hypersensibles aux rayons UV et une exposition au soleil cause des lésions cutanées importantes. Les patients atteints de cette maladie présentent des taches de rousseur en grande quantité et ont une prédisposition élevée à développer des carcinomes et des mélanomes de la peau ou de toute autre partie du corps exposée au soleil (Rapin, 2013). Les patients atteints du CS sont aussi sensibles aux rayons du soleil, mais, en plus de cette sensibilité, ils présentent un vieillissement prématuré. Ces patients ont des problèmes au niveau neurologique tel une microcéphalie, une perte des facultés auditive et visuelle ainsi qu’un retard mental. Les patients de ces deux groupes, XP et CS, peuvent aussi présenter des
phénotypes plus sévères se reflétant dans des problèmes sérieux au niveau du développement (Menck et Munford, 2014). L’intensité du phénotype varie selon le gène en cause dans la maladie (Schärer, 2013).

Il est possible de séparer le NER en deux voies de réparation distinctes : la réparation globale du génome et la réparation couplée à la transcription.

Dans le modèle de la réparation globale du génome, le nucléotide endommagé est reconnu par un complexe formé des protéines XPC et RAD23B (Friedberg, 2001). Ce complexe n’étant pas en mesure de reconnaître tous les types de dommages, le complexe DDB1/2-CUL4-ROC1 est nécessaire à son recrutement dans certaines circonstances, en particulier pour la reconnaissance des CPD pour lesquels XPC n’a pas d’affinité (Schärer, 2013). À la suite de cet événement de détection, d’autres protéines sont recrutées au site de dommage : XPA, RPA, TFIIH et XPG. Le facteur de transcription TFIIH joue un rôle primordial dans la réparation, en particulier deux de ces sous-unités, soit XPB et XPD qui possèdent respectivement une activité ADN hélicase 3'-5' et 5'-3' (Friedberg, 2001). L’activité hélicase de ces protéines permet l’ouverture de l’ADN sur une longueur d’une trentaine de paires de bases dans l’environnement du dommage à réparer créant ainsi une bulle de réparation. La formation d’une bulle de réparation est importante, car la jonction entre l’ADN simple-brin (ADNss) et l’ADN double-brin (ADNds) permet de délimiter la longueur du fragment d’ADN à exciser. Cet événement d’excision est possible par l’action d’endonucléases site-spécifique. L’endonucléase XPG assure le clivage de l’ADN à la jonction de la bulle en 3’ du dommage (Friedberg, 2001). Le complexe hétérodimérique ERCC1-XPF permet, quant à lui, de faire l’incision de l’ADN du côté 5’ du dommage dans le but de retirer un fragment d’environ 30 nucléotides qui contient le dommage. La machinerie de réplication impliquant les polymérases δ ou ε, PCNA, RFC, RPA et une ligase, va par la suite permettre la synthèse du fragment d’ADN manquant (Friedberg, 2001).

Le mécanisme NER couplé à la transcription permet de détecter les nucléotides endommagés par l’arrêt de l’ARN polymérase II au site de dommage. Cet arrêt de la transcription permet le recrutement de la machinerie de réparation par NER, soit XAB2, XPD, XPB et XPG, mais aussi des protéines CSA, CSB, BRCA1, BRCA2 et de certaines protéines MSH (Friedberg, 2001). Le mécanisme exact par lequel ce type de dommage est réparé reste mystérieux, mais l’efficacité de réparation est augmentée lorsque le dommage se retrouve dans les régions transcrites et ainsi détecté par l’ARN polymérase II plutôt que lorsque le dommage se retrouve dans les régions qui ne sont pas transcrites (Friedberg, 2001).

2.3 MMR

Les polymérases réplicatives Polδ et Polε possèdent une activité exonucléase 3'-5’ qui leur permet de réparer les erreurs pouvant survenir en cours de réplication et ainsi de s’assurer d’insérer le bon nucléotide au bon
endroit. Malgré la grande fidélité de ces polymérases, elles ont un taux d’erreur de 1×10^{-6} erreurs par base incorporée (Kunkel, 2009), certaines erreurs demeurent présentes et peuvent être réparées par MMR. Ce mécanisme de réparation permet d’augmenter la fidélité des polymérases réplicatives de plus de 100 fois pour un taux d’erreur de réplication de 1×10^{-8} à 1×10^{-10} erreurs par base (Miyabe et al., 2011). Les mésappariements restants suite à la réplication sont reconnus par le complexe MSH2/MSH6 ou par le complexe MSH2/MSH3 qui ont une affinité différente pour les différents mésappariements pouvant survenir (Christmann et al., 2003). Le complexe de reconnaissance est par la suite rejoint par l’un des complexes hétérodimériques MLH1-PMS2, MLH1-MLH2 ou encore MLH1-MLH3 et ces protéines forment alors un complexe capable de lier et d’hydrolyser l’ATP, ce qui est nécessaire pour les étapes subséquentes de la réparation, entre autres pour réaliser les changements conformationnels requis pour la discrimination entre le brin paternel et le brin fils (Kunkel, 2009). La discrimination entre le brin d’ADN matrice et le brin nouvellement répliqué est une étape cruciale de la réparation par MMR, car cette discrimination permet de réparer le mésappariement survenu lors de la nouvelle synthèse de l’ADN sans altérer le génome. L’identification des deux brins pourrait être réalisée par l’identification du brin contenant les fragments d’Okazaki, mais le mécanisme précis de cette reconnaissance n’est pas connu chez l’humain. Chez les bactéries cette reconnaissance est possible, car le brin parental est méthylé ce qui permet de distinguer le brin paternel du brin fils aisément (Christmann et al., 2003). Une fois les deux brins discriminés, le complexe MLH1/PMS2 s’associe aux protéines déjà présentes au site de dommage. Ensemble ces protéines permettent le recrutement de ExoI qui résecte l’ADN au niveau du dommage. L’ADN dégradé est remplacé par l’activité de synthèse de Pol δ (Christmann et al., 2003).

3. Les cassures double-brin de l’ADN

Les cassures double-brin de l’ADN peuvent survenir de différentes façons. Les IR, les ROS, le bris de fourches de réplication, la réplication d’une CSB et la réparation des pontages inter-brins (ICL) sont des causes accidentelles de CDB, mais ces cassures peuvent aussi être provoquées volontairement au cours de la méiose pour augmenter la diversité génétique ainsi que par le système immunitaire, soit au niveau de la recombinaison V(D)J, soit lors du class switch des lymphocytes B. Peu importe l’origine de la CDB, celle-ci doit impérativement être réparée afin d’éviter de provoquer de l’instabilité génétique ou la mort cellulaire. La réparation peut être effectuée à l’aide de quatre mécanismes différents : la HR, le NHEJ, le NHEJ-alt et le SSA. La HR est un mécanisme de réparation fidèle, c’est-à-dire qui ne fait pas d’erreurs lors de la réparation. Le désavantage de ce type de réparation est qu’il ne peut être utilisé qu’en phase S et G2 du cycle cellulaire, car ce mécanisme nécessite la présence d’une chromatide sœur comme matrice de réparation. Les autres mécanismes de réparation, ne sont pas fidèles, c’est-à-dire qu’ils peuvent être mutagènes, mais contrairement à la HR, peuvent être utilisés tout au long du cycle cellulaire pour réparer les CDB. En plus de la phase du
cycle cellulaire, plusieurs facteurs vont influencer le choix de la voie de réparation à utiliser lorsqu’il y a une CDB. L’un des facteurs les plus importants est le niveau de résection des deux extrémités d’ADN brisées. En effet, le NHEJ n’a pas besoin d’extrémités d’ADN résectées, alors que le NHEJ-alt, nécessite des extrémités protubérantes d’une longueur de 5 à 25 nucléotides. Pour leur part, la HR et le SSA nécessitent une résection extensive des extrémités d’ADN pour avoir lieu (Ciccia et Elledge, 2010). Ces quatre mécanismes de réparation des CDB seront présentés dans les sections suivantes.

3.1 La réparation par recombinaison homologue

Lorsqu’il y a une CDB dans l’ADN, PARP1 déetecte le dommage et s’y lie. En phase S et G2 du cycle cellulaire, le complexe MRN (MRE11-RAD50-NBS1) par l’intermédiaire de MRE11 est recruté au site de dommage par PARP1 (Haince et al., 2008). Ensemble, PARP1 et MRN sont les détecteurs du dommage à l’ADN et peuvent signaler sa présence. En plus de recruter MRE11, PARP1 produit une multitude de polymères d’ADP-ribose (PAR) au site de dommage provoquant un relâchement de la structure chromatinienne dû à la charge négative portée par le polymère (Wacker et al., 2007). À la fin de la réparation, PARG (Poly(ADP-Ribose) glycohydrolase) peut détruire les PAR présents sur l’ADN (Slade et al., 2011). Au niveau du complexe MRN, la protéine MRE11 possède une activité endonucléase et exonucléase qui est requise pour la résection de la CDB. Pour sa part, RAD50 fait partie des protéines de la famille des protéines de maintenance de la structure des chromosomes et possède un long domaine coiled-coiled qui maintient les deux extrémités de la CDB à proximité l’une de l’autre (Williams et al., 2007). NBS1 quant à lui, joue un rôle dans la signalisation des dommages, c’est-à-dire que le complexe MRN est recruté en premier au site de dommage et la présence de NBS1 dans ce complexe permet le recrutement de la protéine ATM à ce site ce qui enclenche le processus de réparation (Lee et Paull, 2005).

Le mécanisme de réparation par HR nécessite la formation d’extrémités d’ADN 3’ simple-brin. Celles-ci sont formées par résection de la CDB par des protéines spécialisées dans ce processus. MRE11 est l’une d’elles avec CptIP et Exol (Ciccia et Elledge, 2010). La résection est une étape de la réparation qui est hautement régulée, car tel que mentionné plus tôt, le choix de la voie de réparation est fortement dépendant de celle-ci. La résection est stimulée par l’activation de ATM qui peut phosphoryler les protéines de résection, ce qui les active. Par contre, la résection est inhibée par le complexe 53BP1-RIF1 qui se lie à l’ADN de part et d’autre de la CDB empêchant ainsi la dégradation de l’ADN (Daley et Sung, 2013). La résection est possible lorsque le complexe BRCA1-BARD1 enlève 53BP1 de l’ADN (Bunting et al., 2010). L’inhibition de 53BP1 par BRCA1-BRAD1 permet donc à MRE11, CptIP et Exol de réacter l’ADN. L’action concertée de ces trois protéines permet la production d’extrémités d’ADNss 3’ protubérantes qui sont rapidement recouvertes par RPA dont le rôle est d’empêcher la formation de structures secondaires, mais aussi de protéger l’ADNss de la dégradation.
Le filament de RPA couvrant l’ADNss permet le recrutement de la protéine ATR au site de dommage via l’interaction de ces deux dernières protéines avec la protéine ATRIP. Le recrutement de ATR au site de dommage permet l’activation du point de contrôle intra-S (Zou et Elledge, 2003).

La formation du nucléofilament de RAD51 sur l’ADNss est réalisée à l’aide du complexe formé de BRCA1-PALB2-BRCA2-RAD51. Une fois formé, le nucléofilament de RAD51 peut envahir la chromatide sœur à la recherche d’homologie, formant ainsi une structure d’ADN appelé D-Loop (Displacement Loop) et lorsque l’homologie est trouvée, une polymérase peut répliquer l’ADN en utilisant la chromatide sœur comme matrice (Hartlerode et Scully, 2009). Suite à la synthèse, l’ADN a une forme différente qui se nomme Jonction de Holliday (HJ). Plusieurs protéines ont été identifiées comme ayant un rôle au niveau de la résolution de cette structure, entre autres, les paralogues de RAD51, mais aussi BLM en complexe avec la topoisomérase IIIa, MUS81-EME1 et GEN1 (Hartlerode et Scully, 2009). Les différentes étapes de la HR sont présentées dans la Figure 1.
Figure 1: Mécanisme de réparation des cassures double-brin par recombinaison homologue

A La recombinaison homologue permet de réparer les cassures double-brin lors des phases S et G2 du cycle cellulaire. B La réparation débute par la détection du bris par PARP1 et le recrutement du complexe MRN, ce qui active le point de contrôle dépendant de ATM. C Par la suite, l’ADN est résecté de part et d’autre du bris afin de produire des extrémités d’ADN 3’ protubérantes. D L’ADN simple-brin ainsi généré est rapidement recouvert par la protéine RPA. Cette dernière permet le recrutement et l’activation d’ATR. E S’ensuit la formation du nucléofilament de RAD51 apporté sur l’ADN par les protéines BRCA1, PALB2 et BRCA2. F L’invasion du duplex homologue par le filament de RAD51 entraîne la formation d’une structure en D-Loop. G La synthèse d’ADN est possible par l’utilisation de la chromatide sœur comme matrice et la résolution de la HJ permet de compléter la réparation.

3.2 La réparation par le mécanisme de NHEJ

Lorsque la cellule est en phase G1 du cycle cellulaire, il n’y a pas de chromatide sœur présente pour l’invasion de brin par le nucléofilament de RAD51 ce qui fait que la HR n’est pas possible. À ce moment, c’est le mécanisme de réparation par NHEJ qui est préféré (Figure 2). Ce mécanisme consiste simplement à lier ensemble les deux extrémités d’ADN brisées. Le NHEJ est un mécanisme mutagène, car la liaison des extrémités non-homologues peut entraîner la perte d’information génétique tout comme un déphasage du
cadre de lecture. Par contre, une réparation de ce type est appropriée puisqu'elle peut empêcher la mort cellulaire, mais aussi car seulement une petite partie du génome humain est codante, ce qui fait qu'il est possible pour la cellule, jusqu'à un certain point, de tolérer des erreurs.

Lorsqu'une CDB survient sur l'ADN en phase G1 du cycle cellulaire, celle-ci est rapidement localisée par l'hétérodimère Ku70/80 qui se lie aux extrémités libres de l'ADN et sert de plateforme pour le recrutement des autres acteurs de la réparation par NHEJ (Lieber, 2010). Bien que le recrutement de l'hétérodimère Ku soit généralement reconnu comme la première étape de la réparation par NHEJ, une étude récente démontre que PARP1, NONO et SFPQ pourraient aussi être impliquées dans la détection du dommage (Krietsch et al., 2012). Cette étude met en évidence le rôle de NONO en tant que régulateur de la balance entre le NHEJ et la HR, car une délétion de NONO diminue la réparation par NHEJ de 50%, tout en augmentant la HR de 40%. NONO est en complexe avec SFPQ et peut lier le PAR formé par PARP1 qui, tel que décrit à la section 3.1, est un détecteur de dommages (Gagné et al., 2008 ; Gagné et al., 2011). Ceci met en lien NONO et l'hétérodimère Ku, qui lui aussi peut lier PAR en plus d'être une cible pouvant être PARylée (Li et al., 2004). En plus d'avoir un impact sur le NHEJ et la HR, NONO est situé sur l'ADN à la même distance du bris que Ku80, renforçant ainsi l'idée que NONO est un acteur de la réparation par NHEJ (Rodrigue et al., 2006).

Une fois l'hétérodimère Ku lié aux extrémités d'ADN à réparer, la sous-unité catalytique de DNA-PK (DNA-PKcs) est recrutée au site de dommage (Mahaney et al., 2009). DNA-PKcs lié à l'ADN à réparer peut s'autophosphoryler. Le premier événement d'autophosphorylation à avoir lieu est une phosphorylation de six résidus appelés le groupe T2609, ce qui provoque un changement de conformation qui permet de libérer les extrémités d'ADN afin que l'enzyme Artémis puisse y être recrutée pour les préparer à la ligation (Meek et al., 2008). Afin d'éviter qu'il y ait une longue résection sur les extrémités à ligaturer, DNA-PKcs subit une deuxième ronde d'autophosphorylation, cette fois-ci sur un groupe de cinq acides aminés nommé le groupe S2056 (Meek et al., 2008). Cette phosphorylation permet de protéger encore une fois les extrémités d'ADN libres. Le dernier événement à survenir est le recrutement de XRCC4 et de la ligase IV en complexe avec XLF qui vont permettre la ligation des deux extrémités d'ADN libres ensemble (Lieber, 2010).
Figure 2: Mécanisme de réparation des cassures double-brin par NHEJ et NHEJ-alt

A Une cassure double-brin peut être réparée par NHEJ selon deux voies distinctes. B Dans la voie classique de NHEJ, l’hétéroduplexe Ku reconnaît les extrémités d’ADN brisées et s’y lie. C DNA-PKcs est ensuite recruté et, dans le cas où il n’est pas possible de ligaturer directement les extrémités d’ADN son autophosphorylation au niveau de six résidus T2609, permet de libérer les extrémités d’ADN. D Artemis peut alors être recrutée et préparer les extrémités avant leur ligation. E DNA-PKcs est phosphorylé sur le groupe S2056 et XRCC4, Ligase IV et XPF peuvent lier les extrémités brisées ensemble. F Le NHEJ-alt est utilisé lorsqu’en phase G1 la cassure double-brin est détecté par PARP1. G Une résection limitée par CtIP permet aux bouts d’ADN de s’apparier selon de courtes régions d’homologie exposées. H Les protéines Ligase III et XRCC1 sont responsables de lier l’ADN dans ce mécanisme.
3.3 La réparation par NHEJ-alternatif

La grande affinité de Ku pour les extrémités libres d’ADN, en plus de sa grande abondance, lui permet de lier l’ADN rapidement à la suite d’une CDB pour initier le NHEJ. Par contre, il arrive qu’il y ait suffisamment de dommages pour occuper une grande partie des Ku disponibles ou que certains des facteurs de la voie classique de NHEJ ne soient pas disponibles dans la cellule. À ce moment, une autre voie de réparation doit réparer le bris. Lors d’une CDB, il a été démontré qu’il existe une compétition entre les protéine Ku et PARP1 pour la liaison à l’ADN (Wang et al., 2006). Si PARP1 lie une CDB en phase G1 du cycle cellulaire, la réparation pas NHEJ-alt aura lieu (Figure 2). Ainsi, PARP1, au site de dommage, permet le recrutement de MRN via son interaction avec MRE11. CtIP est ensuite recruté au site de dommage et peut réacter l’ADN sur quelques bases d’une façon indépendante de BRCA1, créant ainsi de courtes extrémités 3’ protubérantes (Yun et Hiom, 2009). Les bouts d’ADNss protubérants peuvent être appariés si seulement quelques bases possèdent de l’homologie. La liaison est effectuée par la ligase III et XRCC1 (Audebert et al., 2004 ; Wang et al., 2005).

3.4 La réparation par single-strand annealing (SSA)

La réparation par SSA débute par le recrutement de PARP1 au site de dommage et suit les mêmes étapes que la HR jusqu’à la formation du filament RPA sur l’ADNss (Figure 3). Ainsi, le SSA nécessite une résection extensive pour avoir lieu. La présence de séquences répétées dans l’environnement de la CDB permet à RAD52 d’apparier deux ADNss ensemble afin de réparer le bris (Ciccia et Elledge, 2010). Par la suite, les extrémités protubérantes sont enlevées par le complexe XPF/ERCC1 (Motycka et al., 2004). Ce mécanisme de réparation n’est pas fidèle, car il peut y avoir une perte plus ou moins importante de l’information génétique, il s’agit donc d’un mécanisme de réparation mutagène.
Figure 3: Mécanisme de réparation des cassures double-brin par SSA

A Dans les régions de séquences répétées, le mécanisme d'appariement d'extrémités simple-brin homologues est catalysé par RAD52. B Le bris est détecté par PARP1 et MRN. C En présence de BRCA1, 53BP1 est inhibé et ne peut pas bloquer la résection, ce qui permet à CtIP de réacter l'ADN de façon extensive. D L'ADN simple-brin produit est recouvert par la protéine RPA se qui permet sa protection. E RAD52 peut déplacer le filament de RPA pour promouvoir l'appariement des extrémités simple-brin créées. Les protéines XPF et ERCC1 enlèvent les extrémités protubérantes créées lors de l’appariement.

4. Le cycle cellulaire et la réparation de l’ADN

La division de la cellule se produit selon quatre phases qui composent le cycle cellulaire (Figure 4). La première phase du cycle cellulaire est la phase G1 dans laquelle la cellule joue son rôle dans l’organisme tout en accumulant le matériel qui sera nécessaire pour la poursuite du cycle. La deuxième phase du cycle cellulaire est la phase S qui est la phase de synthèse de l'ADN. Au cours de cette phase, la cellule duplique en entier son génome. Cette étape importante est suivie par la troisième phase du cycle cellulaire qui est la phase G2. Cette phase permet à la cellule d'accumuler les protéines nécessaires et de croître davantage dans
le but d’être prête pour la division. La quatrième et dernière phase du cycle cellulaire est la phase M. C’est au
cours de cette phase que la cellule accomplit l’acte final pour lequel elle s’est préparée tout au long du cycle,
en se divisant pour ainsi produire deux cellules filles. Pour que cette étape soit possible, lors d’une séquence
d’événements bien orchestrés, la cellule condense ses chromosomes, suite à quoi elle perd son enveloppe
nucléaire. Les chromosomes homologues sont identifiés et sont attachés à un fuseau de microtubules qui les
sépare l’un de l’autre aux deux extrémités de la cellule. La séparation de la membrane cytoplasmique entre les
chromosomes homologues ainsi éloignés permet la formation de deux nouvelles cellules qui peuvent
recommencer le cycle.

La régulation du cycle cellulaire est dépendante de l’activité de différentes Cdk (Cyclin-Dependent Kinases)
qui sont elles-mêmes régulées par des cyclines. Les cyclines sont des molécules synthétisées et dégradées
suivant les différentes phases du cycle cellulaire, ce qui permet aux Cdk d’être activées seulement dans
certaines phases du cycle cellulaire (Malumbres et Barbacid, 2005). En plus d’être contrôlé par les Cdk et les
cyclines, le cycle cellulaire est contrôlé par des points de contrôle. Ces points de contrôle ont pour
caractéristique commune de s’assurer de transmettre l’information génétique complète et sans altération aux
cellules filles. Le contrôle du cycle cellulaire, se fait principalement par le contrôle des Cdk et des cyclines
présentées dans la cellule, mais d’autres mécanismes, comme la phosphorylation, peuvent agir sur la
progression dans le cycle cellulaire. Au total, cinq points de contrôle sont présents à travers le cycle cellulaire,
soit, le point de contrôle à la transition G1/S, le point de contrôle intra-S, le point de contrôle G2/M, le point de
contrôle de la réplication de l’ADN et le point de contrôle au niveau de l’assemblage du fuseau mitotique
(Figure 4 ; Chin et Yeong, 2010). Les points de contrôle G1/S, intra-S et G2/M sont particulièrement
intéressants, car ils ont pour utilité de vérifier si l’ADN est endommagé et peuvent ainsi freiner la progression
dans le cycle pour donner le temps à la cellule de réparer les dommages avant de passer à l’étape suivante.

En phase G1, lorsque la cellule détecte des dommages à l’ADN, les protéines kinases ATM et ATR
phosphorylent CHK1 et CHK2, ce qui active le point de contrôle G1/S (Schmitt et al., 2007). La concentration
des protéines ATM et CHK2 étant constante à travers le cycle cellulaire, contrairement à la concentration de
ATR et CHK1 dont la concentration est basse en phase G1, c’est majoritairement ATM et CHK2 qui sont
responsables de ce point de contrôle (Kastan et Bartek, 2004). L’activation d’inhibiteurs de Cdk par
CHK1/CHK2 et l’inactivation de d’autres facteurs d’importance pour la transition G1/S, de même que
l’activation de p53, permet l’arrêt du cycle cellulaire pour allouer le temps nécessaire à la réparation (Kastan et
Bartek, 2004). Le point de contrôle intra-S pour sa part, permet entre autres d’activer les origines de
réplication normalement inhibées de façon à permettre la réplication de tout le génome, même lors de
dommages. Ceci se fait de deux façons, soit par le même mécanisme qu’en phase G1, c’est-à-dire par
l’activation d’ATM et d’ATR, mais aussi par la phosphorylation de NBS1 par ATM, ce qui active la réplication
du dommage rencontré lors de la réparation (Kastan et Bartek, 2004). Quant au point de contrôle G2/M, il permet d'éviter l'entrée en mitose en présence de dommages à l'ADN. Encore une fois, ce point de contrôle est activé par ATR et ATM, ce qui permet l’arrêt, par divers mécanismes, du cycle cellulaire jusqu’à ce que les dommages soient réparés et dans le cas contraire, l’induction de l’apoptose (Kastan et Bartek, 2004).

Figure 4: Le cycle cellulaire et ses points de contrôle

Les différentes phases du cycle cellulaire sont régulées par différents points de contrôle qui permettent de s’assurer de l’intégrité de l’information transmise aux cellules filles. Les points de contrôle activés par les dommages à l’ADN sont présentés en rouge. Image adaptée de (Chin et Yeong, 2010).

Les mécanismes de réparation utilisés tout au long du cycle cellulaire varient, plus particulièrement en ce qui concerne la réparation des CDB. Tel que mentionné plus tôt, lorsque la cellule rencontre ce type de dommage, quatre mécanismes s’offrent à elle pour la réparation. À l’évidence, en phase G1, l’ADN n’est pas dupliqué, la HR ne peut donc pas avoir lieu, car pour que la HR soit possible il doit y avoir une chromatide sœur. Mais qu’en est-il des autres mécanismes de réparation et quel mécanisme est dominant dans chacune des phases du cycle cellulaire ? Il est difficile de connaître le pourcentage exact de réparation par chacun des mécanismes à tout moment. Par contre, l’équilibre entre la réparation par HR et par NHEJ est très étudié. Il a été découvert que la réparation par NHEJ est dominante en phase G1 et aussi en phase G2 où l’on ne retrouve qu’une très faible proportion de réparation par HR (Karanam et al., 2012). La présence d’une forte
quantité de NHEJ en phase G2 est le résultat de la compaction élevée de la chromatine, ce qui rend la chromatide sœur inaccessible pour la réparation par HR. De plus, la cinétique de réparation par NHEJ est plus rapide que celle par HR, ce qui peut être favorable pour la cellule sur le point de se diviser (Shibata et al., 2011). En ce qui concerne la réparation par HR, la proportion de réparation par ce mécanisme progresse dès le début de la phase S pour atteindre un sommet en milieu de phase S et diminuer graduellement jusqu’à l’arrivée en phase G2 (Karanam et al., 2012). La variation de la proportion de réparation par HR varie selon le niveau de réplication laissant supposer que la HR est des plus importantes pour la réparation de CDB créées par la réplication (Karanam et al., 2012).

5. L’anémie de Fanconi

Mon projet porte spécifiquement sur la protéine FANCG mutée dans l’anémie de Fanconi. Dans les prochaines sections, je décrirai les rôles de cette voie dans la réparation des dommages à l’ADN.

L’anémie de Fanconi (AF) est une maladie génétique autosomale, sauf pour FANCB qui est situé sur le chromosome X (Meetei et al., 2004). Il s’agit d’une maladie récessive rare due à un défaut de réparation au niveau des ICL de l’ADN, ce qui explique l’instabilité chromosomique présente chez tous les patients. C’est le pédiatre Guido Fanconi qui a décrit cette maladie rare pour la première fois en 1927, en basant ses études sur l’observation de trois frères atteints de diverses malformations, telles une microcéphalie, une peau pigmentée brune par endroits, une hypoplasie des testicules en plus d’une apparence d’anémie dans les échantillons sanguins prélevés (Fanconi, 1927). La recherche et la technologie ont permis de mieux connaître cette maladie nommée en l’honneur de l’homme qui l’a décrite pour la première fois et, au fil des ans, des caractéristiques se sont ajoutées à cette première description. À ce jour, 17 protéines FANC (Fanconi ANemia Complementation group) ont été identifiées, soit les protéines FANCA à FANCS (Tableau 1) (Bogliolo et al., 2013; Kottemann et Smogorzewska, 2013 ; Sawyer et al., 2014). La présence de chacune de ces protéines est importante pour le maintien de la stabilité du génome lors de la réplication de l’ADN.

5.1 Caractéristiques cliniques

Plusieurs malformations ou traits physiques sont associés à l’AF, malgré le fait que 25% des patients reconnus comme ayant la maladie sont asymptomatiques (Alter, B.P., 2003). Les symptômes les plus décrits dans la littérature sont généralement les plus impressionnants ; les statistiques s’en retrouvent ainsi biaisées. Les taches de type café au lait ou d’hypopigmentation, un retard de croissance, une microcéphalie et les malformations au niveau des mains (pouces), des bras (absence de radius), des yeux et des oreilles sont des caractéristiques fréquemment observées dans l’AF (Fanconi anemia : Guidelines for diagnosis and managements, 2008). Malgré certains traits spécifiques à l’AF, le phénotype général est très hétérogène, même en ce qui a trait aux membres d’un même groupe de complémentation.
Tableau 1: Prévalence des mutations au niveau des gènes FANC et rôle dans la voie de Fanconi

<table>
<thead>
<tr>
<th>Gène</th>
<th>Prévalence*</th>
<th>Taille (kDa)</th>
<th>Fonction dans la voie Fanconi*,**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANCA</td>
<td>64%</td>
<td>163</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I</td>
</tr>
<tr>
<td>FANCB</td>
<td>2%</td>
<td>95</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I</td>
</tr>
<tr>
<td>FANCC</td>
<td>12%</td>
<td>63</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I</td>
</tr>
<tr>
<td>FANCD1/BRCA2</td>
<td>2%</td>
<td>380</td>
<td>Médiateur de la HR, stimule l’activité recombinase de RAD51 et localise RAD51 au noyau</td>
</tr>
<tr>
<td>FANCD2</td>
<td>4%</td>
<td>162</td>
<td>Mono-ubiquitiné par FANCL en réponse aux dommages à l’ADN</td>
</tr>
<tr>
<td>FANCE</td>
<td>1%</td>
<td>60</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I, lie directement FANCD2</td>
</tr>
<tr>
<td>FANCF</td>
<td>2%</td>
<td>42</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I</td>
</tr>
<tr>
<td>FANCG</td>
<td>8%</td>
<td>68</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I</td>
</tr>
<tr>
<td>FANCI</td>
<td>1%</td>
<td>147</td>
<td>Mono-ubiquitiné par FANCL en réponse aux dommages à l’ADN</td>
</tr>
<tr>
<td>FANJ/BRIP1/BACH1</td>
<td>2%</td>
<td>140</td>
<td>Hélicase 5’-3’, rôle dans la HR</td>
</tr>
<tr>
<td>FANCL</td>
<td>0,4%</td>
<td>43</td>
<td>Complexe Cœur, requis pour l’ubiquitination de D2-I, possède un domaine PHD, activité ubiquitine ligase</td>
</tr>
<tr>
<td>FANCM</td>
<td>0,1%</td>
<td>250</td>
<td>Hélicase, localise le Complexe Cœur sur l’ADN, requis pour l’ubiquitination de D2-I, active ATR lors de la réparation de ICL</td>
</tr>
<tr>
<td>FANCN/PALB2</td>
<td>0,7%</td>
<td>140</td>
<td>Interacteur de BRCA2, rôle dans la HR</td>
</tr>
<tr>
<td>FANCO/RAD51C</td>
<td>0,1%</td>
<td>42</td>
<td>Parologue de RAD51, rôle dans la HR</td>
</tr>
<tr>
<td>FANCP/SIX4</td>
<td>0,5%</td>
<td>200</td>
<td>Endonucléase structures spécifique, localisation de XPF-ERCC1 et MUS81-EME1 au site de dommage</td>
</tr>
<tr>
<td>FANCQ/ERCC4/XPF</td>
<td>0,1%</td>
<td>104</td>
<td>Endonucléase, rôle en aval de la mono-ubiquitination de FANCD2</td>
</tr>
<tr>
<td>FANCS/BRCA1</td>
<td>0,1%</td>
<td>208</td>
<td>Rôle dans la HR, Inhibition du NHEJ, retire le complexe CMG de l’ADN lors de la réparation de ICL</td>
</tr>
</tbody>
</table>

*(Wang et Smogorzewska, 2015)

**(Kottemann et Smogorzewska, 2013 ; Moldovan et D’Andrea, 2009)

La caractéristique principale de cette maladie est une déplétion progressive de la moelle osseuse, qui se transforme en pancytopénie dans plusieurs cas. Les problèmes hématologiques apparaissent généralement très tôt au cours du développement de l’enfant soit dès l’âge de 7 ans et peuvent entraîner la mort vers l’âge de 16 ans, s’ils ne sont pas traités (Alter, 1996; Alter et al. 2003). Heureusement, il existe des traitements de plus en plus efficaces pour traiter les problèmes hématologiques chez les patients de l’AF, tel que la transplantation de cellules souches hématopoïétiques, la prise d’hormones androgènes qui augmentent le nombre de globules rouges dans le sang, et l’injection de cytokines qui augmentent le nombre de neutrophiles.
présents dans le sang. Ces traitements, bien que comportant tous un certain potentiel d'effets secondaires désagréables, améliorent grandement l'espérance de vie des patients (Fanconi anemia : Guidelines for diagnosis and managements, 2008).

L'AF est aussi associée à une prédisposition accrue à développer des cancers par rapport à la population en général et les cancers apparaissent plus tôt dans la vie. L'un des cancers les plus fréquents chez les patients atteints de l'AF est la leucémie aigüe myéloïde (LAM) ; ceux-ci présentent un risque 700 fois plus élevé de développer ce type de cancer que la population générale (Deans et West, 2011). La LAM est un cancer qui prend place dans les cellules souches du sang, plus précisément dans les cellules souches de la lignée myéloïde. Ces cellules commencent alors à se diviser rapidement de façon désordonnée et arrivent rapidement à empêcher les cellules saines de jouer leur rôle dans l’organisme. Dans le cas où les patients atteints d'AF ont un cancer dont la cause n’est pas hématologique, il s’agit le plus fréquemment de carcinomes au niveau des cellules squameuses de la tête et du cou, mais aussi des régions de l’anus et des parties génitales (Auerbach, 2009). Cette prédisposition à développer des cancers qui est caractéristique des patients atteints d’AF, indique qu’en plus de leur rôle dans la voie Fanconi, les protéines FANC pourraient avoir un rôle important à jouer dans la suppression tumorale.

5.2 Caractéristiques cellulaires

Le phénotype physique des patients atteints de l'AF est des plus hétérogènes. Il est alors surprenant de constater qu’au niveau cellulaire, tous les groupes de complémentation partagent une même caractéristique : une instabilité chromosomique spontanée (Figure 5). De plus, ces cellules sont hypersensibles aux agents pontant l'ADN, tel le diépoxybutane (DEB). Conséquemment, le test utilisé de nos jours pour détecter l’AF est un étalement de chromosomes de cellules lymphocytaires du sang, traitées avec le DEB. Chez les patients atteints de l’AF, une accumulation de ICL est observée et c’est cette accumulation de ICL qui provoque l’instabilité chromosomique (Deans et West, 2011). La voie de Fanconi, permettant la réparation des dommages pontants, est déficiente dans les cellules de patients atteints de cette maladie. La voie de Fanconi est impliquée dans la réparation de plusieurs types de dommages à l'ADN. Par contre, contrairement aux ICL, les autres types de dommages peuvent être réparés par d’autres voies de réparation. C’est pour cette raison que les cellules de patients atteints de l’AF sont spécifiquement hypersensibles aux agents pontant l’ADN et non à d’autres types de dommages tels les IR ou les rayons UV (Moldovan et D’Andrea, 2009). Les patients atteints d’AF présentent un haut taux de cancers, mais puisque les agents pontants l’ADN sont d’usage courant en chimiothérapie, et que les cellules de l’organisme entier des ces patients sont hypersensibles à ce type de dommages, d’autres traitements doivent être envisagés pour ceux-ci.
5.3 Les pontages inter-brins (ICL)

Les ICL sont des lésions très toxiques pour les cellules, car ils représentent un obstacle pour les mécanismes de transcription et de réplication. Ceci est dû au fait que les ICL lient de façon covalente les deux brins opposés de l’ADN. Cette liaison empêche les deux brins d’être séparés lors du passage des polymérasases pour les processus cellulaires vitaux. Plusieurs agents, soit de source endogène ou de source exogène, peuvent entraîner la formation de ICL. Les agents exogènes les plus connus sont le cisplatine qui est l’agent chimiothérapeutique le plus utilisé, la mitomycine C (MMC) et le DEB. Récemment, les aldéhydes et leur dérivés ont été identifiés comme étant des agents génotoxiques endogènes au niveau de l’AF (Kottemann et Smogorzewska, 2013). Les psoralènes naturels ainsi que les estrogènes sont d’autres sources endogènes pouvant conduire à la formation de ICL (Deans et West, 2011).

Tel que mentionné plus tôt, les ICL sont très nocifs pour la cellule, il est donc impératif que ces bris soient réparés. Pour ce faire, un total de quatre incisions doivent être effectuées de façon spécifique de part et d’autre du dommage. Plusieurs nucléasases sont impliquées dans ce processus, mais aussi plus d’un mécanisme de réparation. Il est bien certain que la voie de Fanconi joue un rôle dominant dans cette réparation. C’est en fait la voie de Fanconi qui coordonne l’ensemble du processus de réparation du ICL et qui permet aux autres mécanismes, NER, TLS et HR, d’agir en synergie les uns avec les autres (Moldovan et D’Andrea, 2009).
5.4 La voie de Fanconi

Au niveau cellulaire, l’anémie de Fanconi est une voie de réparation de l’ADN qui est spécialisée dans la réparation des ICL présents sur l’ADN. Les différentes étapes de cette réparation sont résumées à la Figure 6. Les 17 protéines de l’AF sont impliquées dans cette réparation. On peut diviser ces protéines en trois groupes. Le groupe I se compose des protéines qui sont nécessaires à la mono-ubiquitination de FANCD2 et FANCI, soit FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL et FANCM. Les protéines du groupe II, sont FANCD2 et FANCI qui forment un complexe, le complexe D2-I. La mono-ubiquitination des deux protéines de ce complexe est l’étape clé du processus de réparation du ICL. Le groupe III est un groupe de protéines agissant en aval de la mono-ubiquitination du complexe D2-I ou dont la fonction n’est pas liée à la mono-ubiquitination de FANCD2 et FANCI. Ce groupe comprend les protéines FANCD1 (BRCA2), FANCJ (BRIP1/BACH1), FANCN (PALB2), FANCO (RAD51C), FANCP (SLX4), FANCQ (XPF/ERCC4) et FANCS (BRCA1).

5.4.1 Le groupe I : le Complexe Cœur

Le mécanisme d’activation de la voie de Fanconi le mieux décrit est un mécanisme de détection des ICL qui est dépendant de la réplication. Lors de la réplication, la rencontre d’un ICL par une ou des fourches de réplication provoque un arrêt des polymérasases et ainsi, un arrêt de la réplication. Ce blocage entraîne un stress réplicatif qui mène au recrutement du complexe composé de FANCM, FAAP24 (Fanconi Anemia Associated protein, 24 kDa) ainsi que l’hétérodimère MHF1-MHF2 au site de dommage. FANCM possède un domaine hélicase de type DEAH, un domaine endonucléase ERCC4-like inactif et son domaine C-terminal peut lier plusieurs structures d’ADN, incluant les structures d’ADN mimant des fourches de réplication (Meetei et al., 2005; Singh et al., 2010). De plus, le complexe FANCM/MHF1/MHF2 possède une activité translocase et peut provoquer la reprise de la transcription suite à un blocage des fourches de réplication ou entraîner la traverse du ICL lorsque la réplication est arrêtée à cause d’un tel dommage (Gari et al., 2008 ; Huang et al., 2013 ; Schwab et al., 2010). Lors du blocage d’une fourche de réplication au site de ICL, FANCM et ses effecteurs détectent le bris et sont recrutés sur l’ADN. Par la suite, ce complexe peut recruter le Complexe Cœur (CC) de l’AF et activer le point de contrôle du cycle cellulaire intra-S dépendant de ATR (Ataxia-Telangiectasia and Rad3-related) (Collis et al., 2008; Schwab et al., 2010). Cette dernière peut alors phosphoryler une multitude d’effecteurs, dont CHK1, dans le but de les activer et de démarrer le processus de réparation. Cette cascade de phosphorylation mène au recrutement et à l’activation du CC au site de dommage. Le CC est composé des protéines FANCA, FANCB, FANCC, FANCE, FANCF, FANCG et FANCL en plus des protéines FAAP20 et FAAP100. Ces deux dernières n’ayant pas à ce jour été retrouvées mutées chez des patients, ne sont pas considérées comme des protéines de l’AF directement, mais plutôt comme des protéines associées à l’AF ne causant pas la maladie. Au sein même du CC, il existe trois sous-complexes.
dont les fonctions sont plus ou moins claires. Le premier sous complexe comprend FANCA-FANCG-FAAP20 (Ali et al., 2012 ; Garcia-Higuera et al. 2000). Bien que la présence de ce sous-complexe ne soit pas strictement nécessaire pour la mono-ubiquitination de D2-I, puisque la seule présence de FANCL et Ube2T est nécessaire pour la mono-ubiquitination de D2-I in vitro (Alpi et al., 2008; Hodson et al., 2014; Longerich et al., 2009; Sato et al. 2012), sa présence est requise pour la rétention du CC au niveau de la chromatine, endroit où la mono-ubiquitination a lieu in vivo (Huang et al., 2014). Le deuxième sous-complexe est composé de FANCB-FANCL-FAAP100 et consiste en la sous-unité catalytique du CC. FANCL, une protéine comprenant un domaine RING, possède l’activité ubiquitine ligase nécessaire pour la mono-ubiquitination de D2-I (Meetei et al., 2003). L’ubiquitination est possible en présence de la protéine Ube2T qui est l’enzyme de conjugaison dans ce processus. Finalement le dernier sous-complexe est composé de FANCC-FANCE-FANCF. FANCF pouvant lier FANCM qui se trouve au site de dommage, le rôle de ce sous-complexe est redondant bien que indépendant des autres sous-complexes. Tout comme le complexe FANCA-FANCG-FAAP20, FANCC-FANCE-FANCF a pour rôle de localiser la sous-unité catalytique (FANCL) au site de dommage sur la chromatine (Huang et al., 2014). Une fois le CC recruté au site de dommage et activé par ATR/CHK1, la mono-ubiquitination du complexe FANCD2-FANCI par FANCL/Ube2T peut avoir lieu.

5.4.2 Le groupe II : le complexe FANCD2-FANCI

La mono-ubiquitination des protéines FANCD2 et FANCI est vue comme l’étape clé de la réparation des ICL par la voie de Fanconi. Ces deux protéines sont des paralogues, c’est-à-dire que leur séquence partagent 13% d’identité, en plus de partager 20% de similarité au niveau des acides aminés (Smogorzewska et al., 2007). De plus, contrairement aux autres protéines du CC, FANCD2 et FANCI sont relativement conservées à travers l’évolution, ce qui démontre bien leur importance au niveau du maintien de la stabilité génomique. Ces deux protéines existent en complexe, le complexe D2-I et elles sont toutes deux mono-ubiquitinées par le CC, modification qui est nécessaire à leur fonction dans la voie de Fanconi. La lysine 561 (K561) de FANCD2 (Garcia-Higuera et al., 2001) et la lysine 523 (K523) de FANCI sont les sites de mono-ubiquitination par FANCL. Ces deux événements sont dépendants du CC, mais la mono-ubiquitination de FANCI est aussi dépendante de la mono-ubiquitination de FANCD2 (Smogorzewska et al., 2007). En plus de leur mono-ubiquitination, FANCD2 et FANCI peuvent être phosphorylées par les kinases ATM et ATR (Andreassen et al., 2004; Matsuoka et al., 2007; Taniguchi et al., 2002). La phosphorylation de la sérine 222 de FANCD2 par ATM est nécessaire pour l’activation du point de contrôle intra-S, mais n’est pas requise pour la mono-ubiquitination (Taniguchi et al., 2002), alors que la phosphorylation de FANCI sur les sites S/TQ est nécessaire à la mono-ubiquitination de FANCD2 et ainsi, à l’activation de la voie de Fanconi (Ishiai et al., 2008).
Une autre caractéristique des protéines FANCD2 et FANCI est leur capacité à lier l'ADN (Joshi et al., données non-publiées du laboratoire Masson ; Park et al., 2005; Roques et al., 2009; Yuan et al., 2009). Les domaines précis de liaison à l'ADN de ces deux protéines n'ont pas encore été identifiés, et c'est un thème qui est exploré dans notre laboratoire. Toutefois, la préférence de liaison à l'ADN sur des substrats mimant des fourches de réplication, en plus de la co-localisation des foyers de FANCD2 avec différentes protéines de la HR, laisse supposer que cette capacité de liaison à l'ADN est nécessaire pour le recrutement des protéines agissant en aval de la mono-ubiquitination du complexe D2-I.

À la toute fin de la réparation USP1 (Ubiquitine-Specific Peptidase 1) et UAF1 (USP1 Associated Factor 1) peuvent enlever l'ubiquitine présente sur FANCD2 et FANCI, ce qui va permettre l'inactivation de la voie de Fanconi (Cohn et al., 2007; Nijman et al., 2005; Smogorzewska et al., 2007). USP1 est constitutivement active dans la cellule. Par contre, lorsque la voie de Fanconi doit être activée, la transcription du gène de USP1 est inactivée et la protéine présente est dégradée par le protéasome (Moldovan et D'Andrea, 2009).

5.4.3 Le groupe III : les protéines en aval de la mono-ubiquitination de D2-I

Les protéines de ce groupe sont les protéines agissant en aval de la mono-ubiquitination de FANCD2 et FANCI ou agissant parallèlement à cette mono-ubiquitination. Suite à la mono-ubiquitination du complexe D2-I, différentes nucléases sont recrutées au site de dommage dans le but du créer une incision de part et d'autre du ICL, et ainsi de provoquer son relargage. Le déroulement de cette étape, ainsi que les différentes nucléases impliquées sont encore aujourd'hui un sujet de débat. Malgré tout, le groupe de Douwel et al. a démontré que la mono-ubiquitination de FANCD2 permet le recrutement au site de dommage de XPF(FANCQ)-ERCC1 ainsi que de SLX4 (FANCP), et que ces trois dernières forment le complexe nécessaire pour les deux événements d'incisions (Douwel et al., 2014). Le recrutement de ce complexe au site de dommage peut se faire via le domaine UBZ (Ubiquitin-binding zinc finger) présent sur SLX4 qui peut reconnaître et lier l'ubiquitine sur FANCD2 (Yamamoto et al., 2011). FAN1 (Fanconi Associated Nuclease 1), MUS81-EME1 et SLX1 ont aussi été identifiées comme étant des nucléases structure-spécifiques impliquées dans le relargage du ICL de la voie de Fanconi, mais leur rôle semble peu important dans ce processus (Douwel et al., 2014 ; Hanada et al., 2006 ; Smogorzewska et al., 2010). Une fois l'incision faite, deux substrats d'ADN sont présents. Sur l'un se trouve une CDB, alors que sur l'autre se trouve le pontage relargué.

La synthèse de nucléotides sur le substrat d'ADN contenant le pontage relargué sera d'abord complétée sur le brin continu par une polymérase transélectionnelle par le mécanisme TLS. Cette synthèse est possible, car les polymérasases transélectionnelles ont un site catalytique permissif, c'est-à-dire qu'il peut adapter plusieurs structures d'ADN, même celles contenant divers bris, ce qui résulte en une synthèse qui n'est pas fidèle avec
un taux d’erreur de 1×10^{-6} à 1×10^{-4} (Kunkel, 2009), car elles ne possèdent pas d’activité d’édition 3’-5’ (Sale et al. 2012). Les polymérasases translésionnelles ont pour fonction de permettre la poursuite de la réplication en contournant les dommages présents dans l’ADN. Ces polymérasases appartiennent à la Famille Y des polymérasases. Celles-ci sont généralement peu processives, c’est-à-dire qu’elles ne synthétisent qu’une courte séquence d’ADN pour chaque événement de liaison (Bebenek et Kunkel, 2004). Les polymérasases translésionnelles impliquées au niveau de l’AF sont Rev1 et Polζ (Kim et D’Andrea, 2012). Rev1 n’est pas une polymérase en soit, mais plutôt une désoxycytidyle transférase, car elle peut transférer un nucléotide désoxycytidine sur un brin d’ADN en face d’une désoxyguanosine (dG), ou en face d’un site abasique et ce, grâce à un résidu arginine conservé au niveau de son site catalytique (Nelson et al., 1996; Haracska et al. 2002). Suite à la synthèse d’ADN sur le brin opposé au dommage, le nucléotide toujours endommagé est réparé par le mécanisme de NER, alors que la CDB générée est réparée par HR, mécanismes qui sont présentés aux sections 2.2 et 3.1 respectivement.

Dans les sections suivantes, les protéines de l’anémie de Fanconi impliquées dans la HR seront brièvement présentées.

5.4.3.1 BRCA1/FANCS

Une mutation bi-allélique de BRCA1 (BReast CAncer 1, early onset) a récemment été identifiée chez un patient atteint d’AF faisant de ce gène un nouveau composant de l’AF identifié comme FANCS (Sawyer et al., 2014). Les individus ayant une mutation hétérozygote au niveau de BRCA1 sont susceptibles de développer des cancers avec un risque avant l’âge de 70 ans s’élèvant à 60% au niveau du cancer du sein et un risque de 59% au niveau du cancer des ovaires (Mavaddat et al., 2013). Bien que le rôle de BRCA1 en tant que protéine de l’AF n’ait été que récemment identifié, son implication dans la réparation des ICL et dans la HR est connue depuis un certain temps déjà. En effet, BRCA1 joue un rôle dans la réparation des ICL, au niveau des étapes précoces tout comme au niveau des étapes plus tardives. Le rôle précoce de BRCA1 serait de recruter FANCD2 ubiquitinée (FANCD2-ub) au site de dommage. L’absence de BRCA1 ne change pas le niveau de FANCD2 mono-ubiquitiné dans la cellule, mais a un fort impact au niveau de son recrutement, et si FANCD2-ub n’est pas recruté au site de dommage l’incision du ICL ne peut avoir lieu (Bunting et al., 2012). Tel que discuté précédemment, la détection des ICL présents sur l’ADN se fait au cours de la réplication. Ainsi, lorsque la machinerie de réplication rencontre physiquement un ICL, celle-ci est bloquée. L’arrêt initial de la machinerie de réplication se fait sur le brin continu 20 nucléotides avant le bris. À ce moment, l’ADN hélicase réplicative CMG (Cdc5, MCM2-7 et GINS) présente au niveau de la machinerie de réplication est responsable de l’encombrement stérique qui empêche la polymérase réplicative de s’approcher du ICL à une distance plus petite que 20 nucléotides. BRCA1 est en mesure de retirer CMG de l’ADN dans cette situation afin que la
polymérase réplicative puisse continuer la synthèse d’ADN sur le brin continu jusqu’à une distance d’un nucléotide du dommage (Fu et al., 2011 ; Long et al., 2014). C’est cet événement qui permet le recrutement de FANCD2-ub sur la chromatine et qui explique pourquoi en absence de BRCA1, FANCD2 est toujours ubiquitiné, mais est plus difficilement recruté au site de dommage.

Au niveau des étapes plus tardives de la réparation, BRCA1 est impliqué dans la HR, BRCA1 peut interagir avec 53BP1 (p53 Binding Protein 1) un inhibiteur de résection et ainsi empêcher le NHEJ aberrant et stimuler la HR (Bunting et al., 2010). BRCA1 agit aussi directement dans la HR lorsque sa sérine 988 (S988) est phosphorylée. Cet événement de phosphorylation permet à BRCA1 d’interagir directement avec PALB2 et indirectement avec BRCA2 pour promouvoir la formation du filament de RAD51 sur l’ADN recouvert de la protéine RPA (Zhang et al., 2004). D’autres rôles de BRCA1 ont été mis en évidence, mais ceux-ci n’étant pas directement liés au mécanisme de réparation des ICL, ils ne seront pas abordés ici.

5.4.3.2 BRIP1/BACH1/FANCJ

La protéine FANCJ est aussi nommée BRIP1 (BRCA1-Interacting protein) ou BACH1 (BRCA1-associated C-terminal helicase 1) due à son interaction avec la protéine BRCA1. La fonction précise de FANCJ au niveau de la réparation en phase S n’est pas connue avec exactitude, mais certaines propriétés de la protéine ont été décrites. FANCJ est une hélicase qui a la capacité de défaire les G-quadruplex présents dans les séquences riches en guanosines et qui peuvent bloquer la réplication (Wu et al., 2008). Une analyse des substrats d’ADN susceptibles d’être déroulés par FANCJ a été réalisée avec la protéine purifiée et des substrats d’ADN synthétiques. Les résultats démontrent que les structures en forme de D-Loop peuvent être résolues par FANCJ, mais ce n’est pas le cas pour les HJ (Gupta et al., 2005). Le rôle de FANCJ dans la voie de Fanconi pourrait se trouver dans les étapes très tardives de la HR au niveau de la résolution de la structure D-Loop.

5.4.3.3 BRCA2/FANCD1

FANCD1, plus connue sous le nom de BRCA2 (BReast CAncer 2, early onset), est essentielle à la fonction de la recombinase RAD51. Une mutation hétérozygote de BRCA2 mène à une susceptibility accrue à développer des cancers, plus précisément, le risque de développer un cancer du sein est de 55% et celui de développer un cancer des ovaires est de 16,5 % à l’âge de 70 ans (Mavaddat et al., 2013). Une mutation homozygote, pour sa part, est associée à l’AF et le phénotype de ces patients est généralement plus prononcé que le phénotype des patients ayant une mutation au niveau des gènes du CC. BRCA2 possède 8 répétitions BRC (BRC1 à BRC8), en plus de posséder un signal de localisation nucléaire (NLS) et un domaine de liaison à l’ADN qui a été résolu par cristallographie aux rayons X et qui lui permet de lier l’ADNss ainsi que l’ADNds (Yang et al., 2002). Les répétitions BRC présentes sur BRCA2 peuvent lier RAD51, mais ne lient pas d’elles-
mêmes l’ADN. Par contre, ces répétitions, lorsque liées à RAD51 vont favoriser la liaison de ce dernier à l’ADNss tout en stimulant le déplacement de la protéine RPA de l’ADNss. À haute concentration, les répétitions BRC peuvent inhiber la capacité de RAD51 à former un nucléofilament sur l’ADNds. De plus, le BRC4 peut empêcher l’hydrolyse de l’ATP contenu dans le site actif de RAD51, ce qui permet de maintenir la stabilité du filament de RAD51 sur l’ADNss (Carreira et al., 2009 ; Liu et al., 2010 ; Thorslund et al., 2010). BRCA2 a aussi la capacité d’amener RAD51 au niveau du noyau. En absence de BRCA2, RAD51 est principalement cytoplasmique, mais la présence de BRCA2 permet une localisation cytosolique et nucléaire de RAD51 (Davies et al., 2001).

5.4.3.4 PALB2/FANCN

L’un des médiateurs importants de la HR qui est aussi impliqué dans la voie de Fanconi est PALB2 (Partner And Localizer of BRCA2) aussi nommé FANCN. Cette protéine est essentielle à la HR car, sans elle, le recrutement des protéines BRCA2 et RAD51 au site de dommage est complètement déficient (Xia et al., 2006). La fonction principale de PALB2 est d’assurer le lien entre BRCA1 et BRCA2, ce qui permet à ces deux dernières d’être efficaces pour la réparation. C’est le domaine coiled-coiled en N-terminal de PALB2 qui peut interagir avec BRCA1, alors que son domaine WD40 en C-terminal est nécessaire pour sa liaison avec BRCA2 (Pauty et al., 2014). Le complexe formé par ces trois protéines permet la localisation cellulaire correcte de celles-ci, ce qui rend possible la formation des foyers de réparation de BRCA2 et de RAD51 au niveau du noyau (Oliver et al., 2009 ; Xia et al., 2006 ; Zhang et al., 2009 ;). Il a aussi été démontré que PALB2 peut dimériser et cette dimérisation se produit au niveau du domaine coiled-coiled en N-terminal, ce qui chevauche donc le site de liaison de BRCA1 sur PALB2. Ainsi, il y a compétition entre la dimérisation de PALB2, qui inhibe la HR, et la liaison de PALB2 à BRCA1 pour ainsi promouvoir la HR (Buisson et Masson, 2012). D’ailleurs l’interaction entre PALB2 et BRCA1 est plus forte suite à l’induction de dommages, appuyant ainsi le fait que cette interaction est nécessaire pour que la HR ait lieu lors de dommages à l’ADN.
Figure 6: La voie de Fanconi

La voie de Fanconi permet de réparer les pontages inter-brins dans l’ADN en coordonnant divers mécanismes de réparation. A Tout d’abord, les fourches de réplication sont bloquées au site de dommage. B Les protéines FANC détectent alors le dommage et FANCM active ATR responsable du point de contrôle intra-S. C ATR et CHK1 phosphorylent les protéines du Complexe Coeur ce qui mène au recrutement de FANCD2 et FANCI. D Le Complexe Cœur, par l’intermédiaire de FANCL permet la monoubiquitination de FANCD2 et de FANCI. E Les nucléases recrutées au site de dommage via le complexe FANCD2-FANCI monoubiquitiné vont cliver l’ADN de part et d’autre du bris. F Les mécanismes de réparation de l’ADN TLS et le NER complètent la réparation sur le brin contenant le bris. G La cassure double-brin créée lors de la réparation est réparée par HR. H La réparation se termine par la déubiquitination de FANCD2 et FANCI par USP1 et UAF1.
5.4.3.5 Paralogues de RAD51

Chez l’humain, il existe cinq paralogues de RAD51, ainsi nommés en raison de l’homologie à RAD51 au niveau de leur séquence. Ces paralogues de RAD51 sont RAD51B, RAD51C, RAD51D, XRCC2 et XRCC3. Ceux-ci existent en deux différents complexes, le complexe formé de RAD51B, RAD51C, RAC51D et XRCC2 (BCDX2) et le complexe formé de RAD51C et XRCC3 (CX3, Masson et al., 2001). Une mutation biallélique chez un patient de l’AF de RAD51C a permis son identification en tant que FANCO. Plusieurs caractéristiques de cette protéine ont été identifiées. Tout d’abord, sa présence est requise pour la formation des foyers de réparation de RAD51, ce qui permet de conclure à un rôle en aval du recrutement de RAD51 pendant la HR (French et al., 2002 ; Godthelp et al., 2002), alors que son absence mène à un arrêt du cycle cellulaire en phase G2/M (Rodrigue et al., 2012). Ensuite, le complexe CX3 peut lier les HJ et est nécessaire pour leur résolution (Liu et al., 2004 ; Liu et al., 2007).

6. FANCG

La découverte de la protéine FANCG et du gène codant cette protéine, se sont faites en plusieurs étapes. En premier lieu, le gène XRCC9 a été identifié et localisé sur le chromosome 9p.13 par Liu et al., par sa capacité à corriger l’instabilité chromosomique observée dans des cellules de hamster CHO UV40 à la suite à d’un traitement aux agents pontants l’ADN, aux IR ou aux rayons UV (Liu et al., 1997). Au même moment, un patient atteint de l’AF a été identifié par la technique de fusion de cellules somatiques comme n’appartenant pas aux groupes déjà existants, soit FANCA, FANCB, FANCC, FANCD1/2 et FANCE. Le nouveau gène découvert a été baptisé FANCG (Joenje et al., 1997). En deuxième lieu, Saar et al. ont utilisé la localisation par homozygotie pour localiser sur le chromosome 9p un gène appartenant au groupe de l’AF (Saar et al., 1998). La localisation par homozygotie est utilisée pour localiser les gènes impliqués dans les maladies récessives rares. Cette technique est basée sur le fait que les individus ayant une maladie génétique récessive rare et provenant de familles consanguines vont avoir une mutation homozygote au niveau du gène responsable de la maladie et vont donc aussi être homozygote au niveau des marqueurs chromosomaux permettant ainsi de savoir quel gène ou partie de gène est responsable de la maladie (Génin, 2007). Des analyses subséquentes ont permis de déterminer que ce gène appartenait à l’un des groupes parmi FANCF, FANCG ou FANCH1. Finalement, de Winter et al. ont identifié FANCG comme étant XRCC9 à l’aide d’essais de complémentation et confirment ainsi la présence de FANCG sur le chromosome 9p.13 (de Winter et al. 1998). Le gène de FANCG s’étend sur une longueur de 6 kb et possède 14 exons. La protéine produite est de 68 kDa et de 622 acides aminés.

\(^1\) FANCH est disparu de la nomenclature, car ce patient fut identifié comme appartenant au groupe FANCA un peu plus tard (Joenje et al. 2000).
6.1 Caractéristiques de FANCG

6.1.2 Localisation cellulaire

FANCG est une protéine principalement nucléaire, bien qu'une certaine quantité se retrouve au cytoplasme (Garcia-Higuera et al., 1999; Waisfisz et al., 1999). Lorsque FANCG est localisé au noyau, on le retrouve plus précisément sur la chromatine, tel que démontré lors de fractionnement cellulaire, bien qu'au cours de la mitose FANCG et les autres protéines du CC soient exclues de la chromatine et même du noyau (Qiao et al., 2001). La localisation cellulaire de FANCG est grandement régulée par FANCA et par son niveau de phosphorylation, régulation qui sera décrite avec plus de détails dans les sections suivantes.

6.1.3 FANCG possède sept TPR

Très peu de domaines fonctionnels ont été identifiés sur les protéines du CC de l'AF. Par contre, sept motifs tétratricopeptide répétés (TPR) ont été identifiés et s'étendent sur toute la longueur de FANCG (Blom et al., 2004). Les TPR sont des séquences dégénérées de 34 acides aminés répétés contenant une séquence consensus de 8 résidus, soit -W-LG-Y-A-F-A-P-, arrangés tels que présentés à la Figure 7. (Blatch et Lässle, 1999; Wilson et al., 2010). Les TPR adoptent la structure d’une double hélice α antiparallèle. Cette structure favorise les interactions protéine-protéine, ce qui explique le fait que les protéines possédant des TPR sont souvent associées à des complexes multi-protéiques (Blatch et Lässle, 1999). Dans les prochaines pages, un bref survol des interacteurs de FANCG ayant été découverts jusqu’à maintenant sera présenté (Figure 8).

Figure 7 : Séquence consensus d'un TPR et exemple de protéines contenant un TPR ainsi que leur séquence associée.

Séquences consensus d'un motif TPR typique observé dans la région liant la protéine HSP90 de quatre protéines : la murine de stress inductible (mSTI1), la protéine phosphatase 5 humaine (PP5), la cyclophi1ne-40 de bovin (Cyp40) ainsi que la protéine de lapin liant FK506 (FKBP52). Les nombres représentent la position occupée dans la séquence. Image adaptée de (Blatch et Lässle, 1999).
6.1.4 FANCG-FANCA

Les TPR présents sur FANCG favorisent les interactions avec d’autres protéines. D’ailleurs au fil des années, plusieurs partenaires de FANCG ont été identifiés. La première protéine ayant été découverte comme partenaire de FANCG à l’aide de co-immunoprécipitation est FANCA (Garcia-Higuera et al. 1999). Cette interaction directe a par la suite été confirmée par des études en double-hybride chez la levure, des études cellulaires ainsi que par des essais de transcription et de traduction in vitro (Gordon et Buchwald, 2003; Kruyt et al., 1999; Waisfisz et al., 1999). Le domaine de FANCA comprenant les acides aminés 18 à 29 est responsable de la liaison à FANCG, plus précisément, l’abolition de trois résidus, soit l’arginine 18 (R18), l’arginine 19 (R19) et la leucine 25 (L25) de FANCA, est suffisante pour que l’interaction avec FANCG soit perdue (Kruyt et al., 1999). En ce qui concerne la région de FANCG nécessaire pour la liaison avec FANCA, les études sont contradictoires. Une première étude de Kruyt et al. a identifié deux régions distinctes de liaison à FANCA. La première région se trouvant de l’acide aminé 400 à 475, région qui chevauche les TPR4 et TPR5, alors que la deuxième région couvre la partie C-terminale de la protéine en s’étendant de l’acide aminé 585 jusqu’à l’acide aminé 622 (Kruyt et al. 1999). Dans une étude où l’acide aminé en position 8 de la séquence consensus des TPR (Glycine ou alanine) est muté en glutamine, ce qui a pour effet de déstabiliser les deux doubles hélices antiparallèles, Blom et al. ont identifié les TPR1, -2, -5, et 6 de FANCG comme étant responsables de la liaison à FANCA et ce, à l’aide de co-immunoprécipitations à partir d’extrait cellular (Blom et al., 2004). À l’aide des mêmes constructions TPR mutantes, le groupe de Hussain et al. a identifié en 2006, à l’aide de systèmes en double-hybride, uniquement les TPR5 et TPR6 de FANCG comme étant nécessaires pour l’interaction avec FANCA (Hussain et al., 2006). Ces trois études contredisent une étude réalisée à l’aide de systèmes de double-hybride dans laquelle une construction de FANCG possédant uniquement les acides aminés 1 à 480 (TPR1 à TPR5), et donc ne possédant pas la région contenant le TPR6, peut lier FANCA (Gordon and Buchwald, 2003).

L’interaction entre FANCG et FANCA est cruciale, car elle est nécessaire pour la stabilité de ces deux protéines in vivo, mais aussi parce qu’elle régule la localisation cellulaire de ces deux protéines. Il a été démontré qu’en absence de FANCG, FANCA est instable et possède une demi-vie d’une heure, alors qu’en présence de FANCG, la demi-vie de FANCA est de plus de 10 heures. L’inverse est aussi vrai; c’est-à-dire que FANCG est plus stable en présence de FANCA. La demi-vie de FANCG est augmentée de huit à dix fois en présence de FANCA. Il a aussi été prouvé, à l’aide de mutants de liaison, que l’interaction entre ces deux protéines est nécessaire, mais non suffisante, pour que le CC soit localisé au noyau (Kruyt et al., 1999; Garcai-Higuera et al., 2000). Ainsi, la présence de FANCA et FANCG en complexe est nécessaire pour les deux protéines soient présentes en quantité suffisante et pour que chacune d’elles puissent se localiser au noyau et ainsi se rendre au site de dommage à l’ADN.
6.1.5 FANCG-FANCF

Une interaction directe entre FANCG et FANCF a été démontrée à l’aide de système en double-hybride. De plus, FANCG est nécessaire pour l’interaction indirecte entre FANCA et FANCF (Gordon and Buchwald, 2003). À l’aide des mutants TPR de FANCG décrits dans la section précédente, Hussain et al., ont identifié les TPR1, -2, -5 et -6 comme étant responsables de la liaison de FANCG à FANCF (Hussain et al., 2006). De plus, un autre groupe stipule que le mutant L71P de FANCG, qui est une mutation fréquente des patients de ce groupe de complémentation, ne peut pas lier FANCF (Gordon and Buchwald, 2003).

6.1.6 Le complexe B2D2GX3

En 2008, Wilson et al. ont identifié FANCG comme faisant parti d’un complexe comprenant les protéines BRCA2 (FANCD1), FANCD2 et XRCC3 (B2D2GX3, Wilson et al., 2008). Ce qui rend ce complexe intéressant, est que les protéines FANCG et FANCD2 sont associées à l’AF, alors que les protéines BRCA2 et XRCC3 sont associées à la HR, laissant penser à une fonction de liaison pour ce complexe entre la voie de Fanconi et la HR. C’est cette observation qui est à la base de mes travaux de maîtrise. Bien que la fonction de ce complexe n’ait pas été déterminée jusqu’à maintenant, plusieurs interactions individuelles à l’intérieur même du complexe ont été caractérisées.

Bien avant la découverte du complexe B2D2GX3, Hussain et al. avaient mis en évidence l’interaction entre FANCG et BRCA2 par co-immunoprécipitation et à l’aide de système en double-hybride. Ce groupe a identifié la région N-terminale de BRCA2, soit la région se trouvant de l’acide aminé 499 à 994, et la région contenant les acides aminés 2118 à 2566 en C-terminal comme étant responsables de l’interaction avec FANCG (Hussain et al., 2003). En ce qui concerne la région de liaison à BRCA2 sur FANCG, elle fut identifiée en 2006, encore une fois à l’aide des différents mutants TPR de FANCG et du système de double-hybride. Ainsi, les TPR1 et TPR2 sont responsables de l’interaction de FANCG avec la partie N-terminale de BRCA2, alors que les TPR5 et TPR6 sont responsables de l’interaction avec la partie C-terminale de BRCA2. De plus, la mutation dérivée de patient, FANCG L71P, abolit complètement l’interaction FANCG-BRCA2 (Hussain et al., 2006).

Suite à la découverte de l’interaction de FANCG avec BRCA2, il est devenu intéressant d’explorer l’interaction possible de cette protéine avec d’autres acteurs de la HR. C’est ainsi que RAD51, ainsi que ses paralogues XRCC2 et XRCC3, ont été analysés en double-hybride pour leur interaction possible avec FANCG. RAD51 et XRCC2 ne se sont pas montrés comme des acteurs potentiels, alors que XRCC3 a démontré une liaison avec FANCG (Hussain et al., 2006). Cette interaction a été confirmée par co-immunoprécipitation à partir d’extraits cellulaires provenant de plusieurs types cellulaires différents (AF, humain et hamster). Encore une fois,
l'interaction entre ces deux protéines est abolie par la mutation FANCG L71P, ainsi que par les mutants TPR5 et TPR6 (Hussain et al., 2006). Alors qu'une autre étude indique que les mutants TPR1, TPR2, TPR5 et TPR6 abolissent tous l'interaction entre FANCG et XRCC3 (Wilson et al., 2010).

Bien que XRCC3 lie RAD51, de même que RAD51 lie BRCA2, aucune interaction directe entre BRCA2 et XRCC3 n'était connue. Par contre, Hussain et al. ont examiné le lien possible entre ces deux protéines. Aucune interaction n'a été mise en évidence par double-hybride. Par contre, une immunoprécipitation de BRCA2 à partir d'extraits cellulaires humains normaux peut co-immunoprécipiter FANCG et XRCC3. Alors qu'une immunoprécipitation contre BRCA2 dans des cellules déficientes en FANCG, ne permet pas de co-immunoprécipiter XRCC3, démontrant ainsi que ces trois protéines existent en complexe et que l'interaction entre BRCA2 et XRCC3 est dépendante de FANCG (Hussain et al., 2006).

Entre temps, l'interaction entre FANCD2 et BRCA2 a été identifiée par co-immunoprécipitation et celle-ci est dépendante de la présence de FANCG. (Hussain et al., 2004). Toutes ces découvertes ont amené Wilson et al. à s'intéresser à la possible existence d’un complexe contenant les protéines BRCA2, FANCD2, FANCG et XRCC3. Ce groupe a ainsi démontré que FANCG et FANCD2, ainsi que FANCD2 et XRCC3 co-immunoprécipitent dans des cellules humaines sauvages. Bien que ni XRCC3, ni FANCD2 soient requises pour les différentes interactions présentes dans le complexe, BRCA2 et FANCG sont pour leur part nécessaire pour ces interactions. De plus, la formation de ce complexe est indépendante du CC et indépendante de la mono-ubiquitination de FANCD2 (Wilson et al., 2008).

6.1.7 Modifications post-traductionnelles

Certaines modifications post-traductionnelles sont associées à FANCG et ont été décrites dans la littérature.

FANCG est une phosphoprotéine. Trois sites de phosphorylation ont été identifiés. Le premier site de phosphorylation de FANCG est sur la sérine 7 (S7). Le rôle exact de cette phosphorylation et la kinase responsable sont mal connus. La kinase impliquée dans cette phosphorylation n'est pas identifiée, mais la suppression de ATR entraîne sa disparition (Wilson et al., 2008). De plus, FANCG a été identifié comme substrat pour les kinases CHK1 et CHK2 (Kim et al., 2007). Il reste à déterminer si la phosphorylation est faite directement par ATR ou par une autre kinase en aval de celle-ci, tel que CHK1. Par contre, certaines caractéristiques ont été mises en évidence au sujet de la phosphorylation S7 de FANCG. Bien que non-nécessaire pour la liaison avec FANCA et FANCC, celle-ci est requise pour la mono-ubiquitination de FANCD2 en réponse aux dommages. En d'autres mots, FANCG S7 phosphorylé n'est pas nécessaire pour la formation du CC, mais il l’est pour sa fonction (Qiao et al., 2004). La phosphorylation de la S7 de FANCG est
par ailleurs requise pour l’interaction entre FANCG et BRCA2 ainsi que pour l’interaction entre FANCG et XRCC3 et dès lors, essentielle à la formation du complexe B2D2GX3 (Wilson et al., 2008).

Deux autres sites de phosphorylation sont présents sur FANCG. C’est une étude sur la localisation cellulaire des protéines de l’AF qui a d’abord mis en évidence la phosphorylation de FANCG (Qiao et al., 2001). Dans cette étude, les auteurs démontrent que les protéines de l’AF sont présentes au cytoplasme et au noyau dans des conditions normales. L’induction de dommages par la MMC permet d’augmenter substantiellement la quantité de ces protéines qui sont liées à la chromatine. De plus, les auteurs ont observé en microscopie à fluorescence que lors de la mitose, les protéines de l’AF sont exclues de la chromatine condensée. La visualisation par immunobuvardage des protéines de l’AF provenant de cellules synchronisées a permis l’observation d’une migration plus lente de 3 isoformes de FANCG et l’utilisation de phosphatases a permis de conclure que ces isoformes correspondent à des formes phosphorylées de FANCG. C’est dans l’étude de Mi et al. que ces sites de phosphorylation ont été identifiés sur FANCG, l’un se situant sur la sérine 383 (S383), alors que l’autre se situe sur la sérine 387 (S387) (Mi et al., 2004). Ces deux sites sont spécifiquement phosphorylés à la mitose et leur mutation diminue la survie et augmente la quantité de cellules en phase G2/M par rapport à la forme sauvage de FANCG. De plus, la localisation cellulaire des mutants de phosphorylation est inadéquate. La kinase phosphorylant S387 a été identifiée comme étant cdc2, alors que la kinase phosphorylant S383 reste à être identifiée (Mi et al., 2004).

En plus d’être phosphorylé, FANCG est aussi une protéine ubiquitinée. Cette ubiquitination K63 liée est spécialisée pour ce qui concerne les interactions protéine-protéine. Elle surviendrait sur l’un des trois ou sur les trois résidus suivants : lysine 182 (K182), lysine 258 (K258) ou lysine 347 (K347) (Zhu et al. 2014). Cette ubiquitination K63 liée est nécessaire pour la liaison de FANCG au complexe Rap80-BRCA1 ayant un rôle de limitation de la HR par son habileté à restreindre la résection. Un mutant des trois lysines précédemment mentionnées, est toujours capable de lier FANCA. Dans ce mutant la mono-ubiquitination de FANCD2 n’est pas affectée, mais la présence de FANCG au niveau de la chromatine est diminuée. Bien que le rôle exact de cette ubiquitination de FANCG ne soit pas connu, ni l’ubiquitine ligase qui lui est associée, cette modification post-traductionnelle joue un rôle au niveau de la promotion de la HR pour la réparation des ICL (Zhu et al., 2014).
La protéine FANCG possède sept TPR qui permettent les interactions protéines-protéines. La déstabilisation de ces TPR peut abolir certaines interactions. Les sites de phosphorylation de FANCG sont aussi présentés.

6.2 Études génétiques de FANCG

Une souris fancg-/− a été produite et étudiée. La naissance des souris fancg-/− générées respecte les ratios Mendélien attendus et les souris sont totalement viables (Koomen et al., 2002). De plus, le phénotype de ces souris est moins sévère que le phénotype retrouvé chez les humains, car les souris KO (Knock-Out) ont une espérance de vie normale, une faible incidence de malformations et présentent une absence d’anémie après une année de vie. Malgré cela, un hypogonadisme ainsi qu’une diminution de la fertilité ont été observés chez les mâles comme chez les femelles, ce qui est cohérent avec le phénotype observé chez les patients. Les cellules embryonnaires dérivées de ces souris présentent une instabilité chromosomique accrue et sont sensibles aux agents pontants l’ADN, tel la MMC, encore une fois, comme les cellules de patients le sont (Koomen et al., 2002). Malgré l’absence d’anémie chez les souris KO de un an, les cellules progénitrices de la moelle osseuse de ces souris sont incapables de s’implanter dans une moelle osseuse suite à une transplantation et ne peuvent migrer correctement en réponse à des stimuli migratoires (Barroca et al. 2012).

Les patients FANCG représentent environ 10% des patients atteint de l’AF (Fanconi anemia : Guidelines for diagnosis and managements, 2008) et ont des phénotypes très variés, même lorsqu’il s’agit d’enfants de la même famille (Demuth et al., 2000). Parmi les patients FANCG, on retrouve des patients ayant peu ou pas de symptômes caractéristiques, alors que d’autres patients FANCG ont des phénotypes très sévères. Par exemple, un patient ayant des malformations au niveau des pouces, une microcéphalie, une microphtalmie, en plus de taches café au lait et de problèmes au niveau du foie a été identifié comme appartenant au groupe de
complémentation G. Chez ce patient, les problèmes hématologiques sont survenus dès l’âge de 2 ans (Demuth et al. 2000). Beaucoup de phénotypes intermédiaires sont aussi retrouvés chez ce groupe de complémentation.

7. Objectifs des travaux de maîtrise

Il est bien connu que FANCG est un composant essentiel du Complexe Cœur de l’anémie de Fanconi. Plusieurs partenaires interagissant avec FANCG ont aussi été caractérisés par le passé. Malgré cela, le rôle biochimique de FANCG au sein du CC et au sein du complexe nouvellement identifié, B2D2GX3, reste méconnu. La localisation à la chromatine de FANCG a été mise en évidence maintes fois, mais, si ce n’est de la nécessité de FANCA, le mécanisme par lequel cette localisation nucléaire est possible n’a toujours pas été caractérisé.

Étant donné l’état actuel des connaissances sur FANCG et sur le complexe B2D2GX3, l’objectif de ces travaux de maîtrise est de caractériser les propriétés structurales et biochimiques de FANCG dans le but de déterminer sa fonction précise au niveau des deux complexes auxquels il appartient, soit le Complexe Cœur de l’anémie de Fanconi et le complexe B2D2GX3.

L’objectif de mon projet est de déterminer les caractéristiques biochimiques et moléculaires de FANCG et d’évaluer son rôle au sein du complexe B2D2GX3. Cet objectif général peut être défini par des objectifs plus spécifiques :

1) Déterminer si FANCG a la capacité de lier l’ADN et ce faisant, quelle est sa structure d’ADN préférée.

2) Prouver l’existence du complexe B2D2GX3 à l’aide de la spectrométrie de masse, et ce faisant, déterminer la présence possible d’autres protéines dans ce complexe.

3) Explorer le possible rôle de FANCG dans d’autres voies de réparation de l’ADN in vivo.

Étant donné la forte prédominance de mutations au niveau de la protéine FANCG chez les patients atteints de l’AF, une meilleure compréhension du rôle de cette protéine au niveau cellulaire et moléculaire pourra mener à une meilleure compréhension des aberrations présentes chez ces patients et ainsi au développement de traitements spécifiques et adaptés à ce groupe de complémentation.
Matériels et Méthodes

1. Culture cellulaire

Différentes cellules ont été utilisées pour ces travaux de maîtrise. Les cellules HEK (Human Embryonic Kidney) 293T, HeLa et HeLa Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator, Amalgaam) sont maintenues dans du milieu DMEM (Gibco) supplémenté avec 10% FBS (Fetal Bovine Serum) et 1% Pénicilline-Steptomycine (Gibco) dans un incubateur à une température de 37°C et avec une concentration de 5% de dioxyde de carbone. Les cellules PD326 complémentées avec l’ADN complémentaire (ADNc) de FANCG (PD326+FG) et complémentées avec le vecteur seul (PD326+v) ont été généreusement fournies par le Dr Alan D. D’Andrea et sont maintenues dans le même milieu, mais celui-ci est supplémenté avec 0,5 μg/ml de puromycine. Les cellules d’insectes Sf9 (Spodoptera frugiperda) sont quant à elles maintenues dans du Grace insect medium (GM, Gibco) supplémenté de 10% FBS et 1% A-A (Antibiotic-Antimycotic, Gibco) à une température de 27°C sans dioxyde de carbone.

2. Purification de FANCG en cellules d’insectes Sf9

2.1 Clonage de FANCG

La construction pFastBac-GST-FANCG-TAP a été clonée par Niraj Joshi à partir de l’ADNc de FANCG sauvage par amplification PCR avec les amorces JYM2641 et JYM2642 (Tableau 4). Pour réaliser l’amplification PCR, un mélange réactionnel contenant 10 ng de l’ADN servant de gabarit, 0,25 μM de chacune des deux amorces, 0,25 mM de dNTP et 1,25 unité d’enzyme PfuUltra dans son tampon (Agilent Technologies) est produit. Le mélange réactionnel peut subir une amplification à l’aide d’un thermocycleur. La réaction d’amplification consiste en une dénaturation initiale de l’ADN matrice à 94°C pendant 3 minutes suivie de 35 cycles d’amplification où l’ADN est dénaturé à 94°C pour 30 secondes, l’appariement se fait à 58°C pour 30 secondes et l’élongation se produit à 72°C pour 2 minutes, le tout se terminant par une élongation finale de 2 minutes à 72°C. Le fragment d’ADN obtenu est ensuite purifié sur gel d’agarose et extrait du gel à l’aide d’un ensemble d’extraction sur gel selon les instructions du fabricant (Feldan Bio). Par la suite, le fragment d’ADN, ainsi que le plasmide qui recevra la construction amplifiée, sont digérés par 0,6 unité/μl de chacune des enzymes KpnI-HF® et SalI-HF® de NEB (New England Biolabs), à l’aide du tampon fourni par le fabricant. Le plasmide utilisé est pFastBac1-GST-52b (Figure 9). Ce vecteur a été créé à partir du vecteur pFastBac™1 (Life Technologies), dont le MCS (MultiCloning Site) a été remplacé par le MCS provenant du vecteur pET-52b (Merck Millipore). Finalement, l’étiquette streptavidine a été remplacée par l’étiquette GST en provenance du vecteur pGEX6p (GE Healthcare). L’utilisation de ce plasmide particulier permet de produire une protéine recombinante dans les cellules d’insectes Sf9. La présence des étiquettes GST et His en N-
terminal et C-terminal respectivement permettra de purifier la protéine produite à l’aide d’un protocole de purification utilisant la double affinité. Le plasmide vide et digéré est incubé 1h avec 0,3 unité/μl d’enzyme CIP (Alkaline Phosphatase, Calf Intestine, NEB) afin de le déphosphoryler les extrémités ouverte du vecteur pour empêcher que celles-ci ne se referment spontanément sur elles-mêmes. Cette étape permet donc de favoriser l’insertion de la construction d’intérêt dans le plasmide plutôt que la recircularisation du vecteur initial. L’ADN de FANCG amplifié et digéré par les enzymes de restriction appropriées, de même que le vecteur pFastBac-GST-52b digéré adéquatement et déphosphorylé, sont purifiés sur gel d’agarose une fois de plus et peuvent par la suite être ligués ensemble. La réaction de ligation est réalisée avec le Quick Ligation™ Kit (NEB) selon les instructions du fabricant. Une fois la séquence du vecteur contenant l’ADNc de FANCG confirmée par séquençage, l’étiquette TAP a été clonée avec les amorces JYM2640 et JYM2668 (Tableau 4). Cet ADN est préparé par digestion avec les enzymes Sall-HF® et NotI-HF® de NEB et inséré à l’endroit approprié dans la construction pFastBac-GST-FANCG en suivant les mêmes étapes que lors de l’insertion de FANCG dans pFastBac-GST-52b de façon à produire le vecteur pFastBac-GST-FANCG-TAP dont la séquence est vérifiée par séquençage automatisé.

2.1.1 Transformation bactérienne

La transformation de 1 ng de la construction pFastBac-GST-FANCG-TAP est réalisée avec 50 μl de bactéries Escherichia coli (E. coli) DH5α. Le tout est laissé sur glace pour 30 minutes. Ensuite un choc thermique est effectué en plaçant les bactéries à 42°C pour une durée de 45 secondes. Rapidement le tout est retourné sur la glace pour deux minutes. Le milieu de croissance pour bactérie Luria Broth (LB) est ajouté à raison de 300 μl et les bactéries en suspension sont incubées à 37°C avec agitation pour une heure. Après cela, les bactéries sont étalées sur une boîte de pétri contenant le milieu LB-2% agar et 100 μg/ml d’ampicilline, puisque le plasmide inséré dans les bactéries possède le gène de résistance à cet antibiotique. La boîte de pétri est placée à 37°C pour la nuit. Plusieurs colonies sont ensuite repiquées dans 2 ml de milieu LB avec 100 μg/ml d’ampicilline et incubées à 37°C avec agitation pour la nuit. L’ADN plasmidique ainsi produit peut être extrait des bactéries à l’aide d’un ensemble pour mini-preps (Bio Basic), selon les directives du fabricant et envoyé au séquençage automatisé pour s’assurer que la séquence introduite ne contient pas de mutations.
2.2 Production du bacmide recombinant

Une fois la séquence du plasmide vérifiée par séquençage, celui-ci peut être transformé dans des bactéries compétentes *E. coli* DH10Bac afin de produire un bacmide recombinant par l’utilisation du système d’expression Bac-to-Bac® (Invitrogen, Figure 10). Les bactéries DH10Bac portent le bacmide bMON14272 qui contient le replicon mini-F, une résistance à la kanamycine ainsi que la séquence codante pour le peptide *lacZα*, inductible par l’IPTG (Isopropyl β-D-1-thiogalactopyranoside). De plus, sur le gène codant *lacZα*, il y a une séquence cible pour la transposition mini-attTn7. Le tout est accompagné par un plasmide auxiliaire qui confère une résistance à la tétracycline et un gène codant pour la transposase. Lorsque le plasmide donneur pFASTBAC™1 est transformé dans les bactéries DH10Bac, les sites Tn7R et Tn7L, présents sur ce plasmide...
donneur, permettent l'intégration de la séquence d'intérêt par transposition au site cible mini-atfTn7 présent sur le bacmide. Cette transposition est possible par l'expression de la transposase fournie par le plasmide auxiliaire présent dans les bactéries DH10Bac. L'insertion du gène d'intérêt au niveau du site de transposition perturbe le gène lacZα, les colonies recombinantes seront alors blanches, et celles n'ayant pas intégrées le gène seront bleues lorsque le milieu de culture contient du Bluo-gal.

Figure 10: Système d'expression Bac-to-Bac®

Le système d'expression Bac-to-Bac® nécessite l'insertion de l'ADNc de la protéine à produire dans le plasmide pFastBac™. La transformation de cette construction dans des bactéries compétentes E. coli DH10Bac™, permet l'insertion de l'ADNc de la protéine dans le bacmide porté par ces bactéries. Le bacmide exprimant la protéine d'intérêt peut être extrait des bactéries et transfecté dans des cellules d'insectes Sf9 ce qui permet la production de baculovirus exprimant la protéine d'intérêt lors de l'infection subséquente de cellules Sf9. Image tirée du www.invitrogen.com.

Ainsi, 50 μl de bactéries DH10Bac sont ajoutées à 1 ng d'ADN de la construction pFastBac-GST-FANCG-TAP et transformées tel que décrit à la section 2.1.1. L'étallement des bactéries transformantes se fait sur des boîtes de pétris LB-2% agar supplémentés de 50 μg/ml de kanamycine, 7 μg/ml de gentamicine, 10 μg/ml de tétracycline, 100 μg/ml de Bluo-gal ainsi que de 40 μg/ml d'IPTG. Les colonies produites seront blanches ou
bleues selon qu'elles aient recombinées ou non. Les colonies recombinantes sont repiquées dans 2 ml de LB contenant 50 μg/ml de kanamycine, 10 μg/ml de gentamicine, 10 μg/ml de tétracycline et incubées à 37°C avec agitation pour la nuit. Les bactéries sont ensuite séparées du milieu de culture par centrifugation à 13 000 rpm pour 1 minute afin de pouvoir en extraire le bacmide. Le culot obtenu est resuspendu dans 300 μl de Solution 1 (15 mM Tris-HCl pH 8,0, 10 mM EDTA et 100 μg/ml RNase A). Lorsque le mélange est bien homogène une quantité de 300 μl de Solution 2 (0,2 N NaOH et 1% SDS) est ajouté en mélangeant doucement. Délicatement, 300 μl d'acétate de potassium 3 M, pH 5,5 est incorporé au mélange et incubé 10 minutes sur glace. Par la suite, une centrifugation à 13 000 rpm pendant 10 minutes à 4°C est nécessaire pour enlever les débris cellulaires présents. L'ADN est précipité par l'ajout de 800 μl d'isopropanol et incubé pour 10 minutes sur glace avant d'être centrifugé à 13 000 rpm pour 15 minutes à une température de 4°C. L'ADN du culot peut alors être lavé dans 500 μl d'éthanol concentré à 70%, suivi d'une centrifugation identique à la dernière. Le culot d'ADN est alors séché et resuspendu dans 40 μl de TE (10 mM Tris-HCl pH 8,0 et 1 mM EDTA pH 8,0) stérile. Le bacmide ainsi préparé est conservé à 4°C. L'intégrité de la construction insérée dans le plasmide est vérifiée par amplification PCR.

2.3 Transfection des cellules d'insectes Sf9 et amplification du virus

Une fois l'intégrité du bacmide vérifiée, celui-ci peut être transfecté dans les cellules Sf9 afin de produire un virus. Pour ce faire, 9 x 10⁵ cellules Sf9 sont mises en culture avec 2 ml de GM dans une plaque de 35 mm. Les cellules sont laissées au repos pendant 1h à 27°C pour permettre leur adhésion à la plaque. Pendant ce temps, 100 μl de GM, sans FBS et sans antibiotique est déposé dans deux tubes de 1,5 ml. Dans le premier tube, 5 μl de bacmide est ajouté. Dans le deuxième tube, 6 μl de Cellfectin® II Reagent (Invitrogen) est ajouté et bien mélangé. Les deux tubes sont alors mélangés ensemble et incubés pour une durée de 30 minutes à TP. Les cellules sont lavées avec du GM libre de FBS et d'antibiotique qui est enlevé immédiatement. 800 μl de ce même milieu est ajouté à la réaction de transfection qui est déposé sur les cellules Sf9. Le tout est incubé 5h à 27°C. Après ce temps, le GM est changé pour du GM supplémenté avec 10% FBS et 1% A-A frais et incubé pour une durée de 7 jours pendant lesquels le virus est produit. L'évolution de l'infection virale est suivie grâce à un puits contrôle qui n'est pas infecté. Une fois le baculovirus produit, le milieu contenant le virus est récolté et débarrassé des débris cellulaires par centrifugation 5 minutes à 800 rpm.

Une deuxième amplification du virus est nécessaire. Cette amplification se fait dans des plats de culture T-75 contenant 20 x 10⁶ cellules Sf9 dans 20 ml de milieu. Celles-ci sont incubées pendant 1h à 27°C pour permettre leur adhésion, suite à quoi 1 ml de virus préalablement produit est déposé sur les cellules Sf9. Ces dernières sont remises en incubation pour une durée de 7 jours, après quoi 95% des cellules seront lysées dû à l'infection virale. Encore une fois, le milieu est récolté et centrifugé afin d'enlever les débris cellulaires.
Une troisième amplification virale est réalisée. Celle-ci se fait dans un plat de culture T-225 contenant 60 x 10^6 cellules Sf9 dans 40 ml de GM. L’adhésion est faite par une incubation de 1h à 27°C. Ensuite 500 μl du virus produit par la deuxième amplification est ajouté sur les cellules dans le plat T-225. Après 7 jours d’incubation, il est possible d’observer 95% de lyse des cellules, ce qui indique que le virus est prêt à être récolté et centrifugé. Le virus débarrassé des débris cellulaires est conservé à 4°C, à l’abri de la lumière jusqu’à son utilisation.

2.4 Test d’expression de la protéine FANCG recombinante

L’expression de la protéine recombinante est testée par mini-infection, ce qui consiste en une production de protéines à petite échelle. Dans un tube de 50 ml une quantité de 20 x 10^6 cellules Sf9 est mise en culture dans 20 ml de GM supplémenté avec 10% FBS et 1% A-A. Les cellules sont infectées avec 200 μl de virus (dilution 1:100) GST-FANCG-TAP qui a été amplifié trois fois. La mini-infection est placée dans l’incubateur à une température de 27°C avec agitation pour une durée de 50h, suite à quoi les cellules infectées sont récoltées par centrifugation. Les cellules sont lysées dans la Solution A contenant des inhibiteurs de protéase (50 mM Tris-HCl pH 8,5, 5 mM β-mercaptopéthanol et 100 mM KCl, 3,4 ug/ml aprotinine, 5 μg/ml leupeptine et 1 mM PMSF) et soniquées trois fois 10 secondes à une intensité de 30%. Pour des analyses subséquentes, 20 μl d’extrait total sont conservés dans 20 μl de PSB 2X (125 mM Tris-HCl pH 6,8, 2% SDS, 10% glycérol, 300 mM β-mercaptopéthanol, 0,0018% Bleu de Bromophénol et 100 mM DTT). L’extrait total restant est ensuite centrifugé pendant 30 minutes à une vitesse de 13 000 rpm à 4°C. L’extrait soluble ainsi produit servira pour des analyses subséquentes, c’est pourquoi 20 μl sont prélevés et conservés dans 20 μl de PSB 2X. Les échantillons conservés pour analyse sont alors bouillis pendant 5 minutes à 95°C et déposés sur gel SDS-PAGE 8% (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) et analysés par immunobuvardage à l’aide de l’anticorps FANCG monoclonal (Abnova) utilisé à une dilution de 1:500.

2.5 Production de FANCG recombinante

La production de la protéine recombinante à grande échelle est réalisée dans un spinner. Ce dernier est un contenant possédant un agitateur interne, afin que les cellules soient maintenues en suspension pendant toute la durée de l’infection. Dans un spinner de 1L, 500 ml de milieu GM est versé auquel 250 x 10^6 cellules Sf9 est ajouté pour obtenir une concentration de 5 x 10^6 cellules/ml et le tout est incubé à 27°C sous agitation. Lorsque la concentration de cellules atteint 2 x 10^6 cellules/ml, de deux à trois jours plus tard, 500 ml de milieu GM supplémenté est ajouté pour obtenir une concentration finale de 1 x 10^6 cellules/ml. À ce moment, les cellules sont infectées à l’aide du virus produit par la troisième amplification selon une dilution 1:100. L’infection est maintenue pour une durée de 50h à 27°C sous agitation, suite à quoi les cellules sont récoltées par centrifugation et conservées à -80°C jusqu’à la purification.
2.6 Purification TAP-GST

La purification de la protéine GST-FANCG-TAP produite est réalisée en utilisant les étiquettes TAP et GST. Tout d’abord le culot de bactéries est resuspendu dans 40 ml de la Solution A (50 mM Tris-HCl pH 8,5, 5 mM β-mercaptoéthanol et 100 mM KCl) contenant les inhibiteurs de protéase (3,4 ug/ml aprotinine, 5 μg/ml leupeptine et 1 mM PMSF). Les cellules sont ensuite brisées sur glace avec un douncer. Par la suite, le lysat est séparé en deux et chaque moitié est soniquée deux fois 30 secondes à une intensité de 40%, avec une pause de 30 secondes entre chaque sonication. Le 40 ml de lysat subit alors un traitement à la benzonase (15 unités/ml de benzonase (Novagen) et 1 mM MgCl₂) d’une durée de 1h à 4°C avec agitation. Ce traitement permet d’éliminer l’ADN et l’ARN pouvant être lié aux protéines. Les débris cellulaires sont éliminés de la solution par une centrifugation de 30 minutes à 18 000 rpm à une température de 4°C à l’aide de la centrifugeuse SORVALL® RC Plus avec le rotor SS-34. Le surnageant récolté est déposé sur 500 μl de billes IgG sepharose (GE healthcare) préalablement lavées avec la Solution A et incubé pour une durée de 3h à 4°C avec agitation. Le surnageant peut alors être jeté et les billes sont lavées quatre fois avec la Solution A et une fois avec la Solution B (10 mM Tris-HCl pH 8,0, 150 mM NaCl, 0,1% CHAPS, 0,5 mM EDTA et 2 mM DTT). Lors du dernier lavage, les billes sont séparées en deux parties dans deux tubes de 1,5 ml. Chaque part est suspendue dans 500 μl de Solution B dans laquelle 20 unités d’enzyme AcTEV™ Protease (Novex) est ajouté. Cette enzyme permet de cliver l’étiquette TAP, puisqu’un site de clivage TEV (Tobacco Etch Virus) est présent au niveau N-terminal de l’étiquette TAP, et ainsi de libérer la protéine GST-FANCG des billes IgG. Le clivage se fait à 4°C avec agitation pour la nuit. Une fois les protéines clivées, le surnageant est récolté et les billes sont lavées avec 100 μl de Solution B. Le surnageant qui est aussi récolté, est ajouté au reste des protéines. Ces protéines sont déposées sur 400 μl de billes glutathione sepharose 4B (GE Healthcare) préalablement lavées avec 10 ml de Tampon I (150 mM KCl, 1% Triton X-100, 0,5 mM DTT dans du PBS 1X (Fisher Bioreagents)). La liaison des protéines GST-FANCG aux billes glutathione sepharose 4B est effectuée à 4°C avec agitation pendant une période de 2h. Une fois la protéine recombinante liée aux billes, les protéines non-liées sont enlevées par un lavage avec le Tampon I supplémenté de 250 mM KCl, suivi de deux lavages avec le Tampon I. Les protéines de choc thermique sont éliminées par un traitement de 1h à 4°C dans le Tampon I supplémenté avec 5 mM ATP et 15 mM MgCl₂. Suite à ce traitement, les billes liées à la protéine recombinante sont lavées une fois avec le Tampon I, une fois avec le Tampon II (50 mM Tris-HCl pH 8,0) ainsi qu’une fois dans le Tampon de digestion (50 mM Tris HCl pH 7,4, 150 mM NaCl, 1 mM EDTA, 0,05% Tween20 et 1 mM DTT). Lors du dernier lavage les billes sont séparées dans quatre tubes de 1,5 ml de façon à ce qu’il y ait 100 μl de billes par tube. Celles-ci sont resuspendues dans 300 μl de Tampon de digestion auquel 80 unités/ml de billes sèches d’enzyme PreScission protéase fait maison sont ajoutées afin de cliver l’étiquette GST au site approprié de reconnaissance pour cette enzyme. Le clivage est réalisé sur une période de 5h à 4°C sous agitation. Les protéines relarguées sont récupérées par centrifugation des
billes. Le surnageant contenant la protéine subit par la suite une dialyse de 1h à 4°C dans le tampon de conservation (20 mM Tris-HCl pH 7,4, 250 mM NaCl, 10% glycérol et 1 mM DTT). La protéine ainsi purifiée est analysée sur gel SDS-PAGE 10% par coloration au Bleu de Coomassie et conservée à -80°C jusqu’à son utilisation.

3. Purification de FANCG en bactéries

3.1 Clonage de FANCG

La construction pGEX-6P-1-Flag-FANCG-His a été clonée à partir de l’ADNc de FANCG sauvage par amplification PCR avec les amorces JYM2443 et JYM2908 contenant respectivement une étiquette flag et une étiquette His (Tableau 4). Le clonage est effectué selon la méthode présentée à la section 2.1. La température d’appariement lors de cette amplification PCR est de 64°C. Le fragment d’ADN produit par la réaction d’amplification possède un site de clivage pour l’enzyme EcoRI et un pour l’enzyme NotI. Ce fragment est digéré avec les enzymes hautes fidélités appropriées (NEB) avant d’être inséré dans le vecteur pGEX-6P-1 (GE Healthcare, Figure 11), aussi digéré par ces mêmes enzymes en plus d’être déphosphorylé.

Figure 11: Carte du plasmide pGEX-6P-1

Image tirée du www.gelifesciences.com
3.2 Transformation en bactéries

Le plasmide obtenu peut être transformé dans des bactéries compétentes *E.coli* DH5α selon le protocole présenté à la section 2.1.1. Le plasmide produit est envoyé au séquençage.

3.3 Test d’expression de la protéine FANCG recombinante

Une fois la séquence de la construction confirmée, pGEX-6P-1-Flag-FANCG-His est transformé dans des bactéries *E. coli* BL21 RP selon le protocole décrit à la section 2.1.1. Ces bactéries possèdent un plasmide permettant l’expression des ARN de transferts peu fréquents chez les bactéries, mais fréquents chez les mammifères. Les antibiotiques de sélection utilisés pour sélectionner les colonies ayant intégré le plasmide d’intérêt sont l’ampicilline à une concentration de 100 μg/ml et le chloramphénicol concentré à 25 μg/ml, résistance portée par les bactéries. Une colonie de *E. coli* BL21 RP contenant le plasmide d’intérêt est repiquée dans une culture de 2 ml de LB avec 25 μg/ml chloramphénicol et 100 μg/ml ampicilline et incubée avec agitation à 37°C pour la nuit. De cette culture, 0,5 ml est transféré dans un erlenmeyer contant 25 ml de LB avec 25 μg/ml chloramphénicol et 100 μg/ml ampicilline et incubé à 37°C avec agitation jusqu’à l’obtention d’une densité optique de 0,4. Lorsque cette valeur est atteinte, l’IPTG est ajouté pour une concentration finale de 0,1 mM. L’IPTG est un analogue de l’allolactose qui active la transcription au niveau de l’opéron lac, mais il peut aussi lier le répresseur de l’opéron lactose, soit *LacI*, présent sur le plasmide pGEX-6P-1. L’inhibition du répresseur *LacI* permet donc la traduction de la protéine présente dans ce plasmide sous le contrôle du promoteur *tac*. Les cultures sont placées pour la nuit à 16°C avec agitation pour permettre la production de la protéine. Une fois les protéines produites, 1 ml de culture est prélevé et centrifugé. Les bactéries récoltées sont lysées dans 200 μl de Tampon I (150 mM KCl, 1% Triton X-100, 0,5 mM DTT dans du PBS 1X) avec inhibiteurs de protéase (3,4 μg/ml aprotinine, 1 μg/ml leupeptine et 1 mM PMSF) et soniqué deux fois 10 secondes à 30% d’intensité. 50 μl de l’extrait total est prélevé et mélangé à 50 μl de PSB 2X. Le reste du lysat est centrifugé à 13 000 rpm pendant 20 minutes à 4°C. De l’extrait soluble ainsi récolté, 50 μl est prélevé et mélangé à 50 μl de PSB 2X. Les extraits récoltés sont ensuite bouillis à 95°C pendant 5 minutes et déposés sur un gel SDS-PAGE 8% et analysés par une coloration au bleu de Coomassie et par immunobuvardage contre GST présenté sur la protéine de fusion. L’anticorps utilisé est GST-F1 polyclonal, fait maison. La dilution de l’anticorps est de 1:5000.

3.4 Production de FANCG recombinante

Pour la production de la protéine recombinante en grande quantité, les mêmes étapes que lors du test d’expression sont suivies, mais les volumes de production diffèrent. Ainsi, la pré-culture est de 100 ml et le volume de la culture est de deux fois 800 ml qui sont tous deux inoculés à partir de 16 ml de la pré-culture.
Suite à l'induction à 16°C pour la nuit avec 0,1 mM IPTG, les bactéries sont récoltées par centrifugation en un seul culot qui est entreposé à -80°C jusqu'au moment de la purification.

3.5 Purification GST-His

Le culot de bactéries obtenu plus tôt est resuspendu dans 40 ml de Tampon I contenant les inhibiteurs de protéase. Par la suite, les cellules sont brisées par sonication sur glace trois fois 30 secondes avec une intensité de 30%. Un traitement à la benzonase (15 unités/ml de benzonase (Novagen) et 1 mM MgCl₂) d'une durée de 1h à 4°C avec agitation est réalisé. Les débris cellulaires sont extraits de la solution par ultracentrifugation à 35 000 rpm à l'aide d'une ultracentrifugeuse Sorvall Ultra Pro80 avec le rotor TV 647,5 pendant 30 minutes. Le surnageant résultant est déposé sur 500 μl de billes sèches glutathione sepharose 4B (GE Healthcare) préalablement équilibrées par un lavage avec du PBS 1X froid et un lavage avec le Tampon I. Les billes et le surnageant sont incubées à 4°C avec rotation pour une durée de deux heures. La centrifugeuse SORVALL Legend RT est ensuite utilisée à une vitesse de 1000 rpm pour trois minutes à 4°C pour séparer les billes liées à la protéine du reste du liquide présent qui est jeté par la suite. Les billes sont ensuite lavées deux fois au PBS 1X froid, une fois avec une solution d'ATP (15 mM MgCl₂, 5 mM ATP dans le Tampon I) pour 30 minutes à 4°C avec agitation, deux fois avec du Tampon I et une fois avec du P5 (50 mM NaHPO₄/NaH₂PO₄, 500 mM NaCl, 10% glycérol, 0,05% Triton X-100 et 5 mM imidazole à pH 7,0). Les billes sont ensuite resuspendues dans 1 volume de P5. Le clivage de l'étiquette GST attachée aux billes est effectué par 80 unités/ml de billes sèches enzyme PreScission protéase faite maison et le mélange est incubé toute la nuit à 4°C avec rotation. Le lendemain, les tubes sont centrifugés 3 minutes à 1000 rpm à une température de 4°C dans une centrifugeuse de table Centrifuge 5415R. Le surnageant contenant la protéine recombinante sans étiquette GST est récupéré et le reste des billes est lavé deux fois avec 400 μl de P5 par tube en récupérant le surnageant après chaque lavage. Dans un tube 15 ml, 400 μl de billes Talon® Metal affinity resin (Clontech) sont placés. Les billes sont lavées avec 10 ml d'eau et équilibrées avec 10 ml de P5. Les protéines récoltées sont mélangées à 10 ml de P5 et déposées sur les billes Talon® pour être incubées à 4°C avec rotation pendant 30 minutes. Les billes liées aux protéines sont séparées du reste du liquide par centrifugation à 700 g/rcf pendant une minute sur SORVALL Legend RT. Par la suite les billes sont lavées trois fois avec du P40 (50 mM NaHPO₄/NaH₂PO₄, 500 mM NaCl, 10% glycérol, 0,05% Triton X-100 et 40 mM imidazole à pH 7.0). L'élimination de la protéine se fait avec 500 μl de P500 (50 mM NaHPO₄/NaH₂PO₄, 500 mM NaCl, 10% glycérol, 0,05% Triton X-100 et 500 mM imidazole à pH 7.0) pour une durée de deux minutes. Au total, deux éluats sont effectuées. Pour terminer, les éluats sont dialysés séparément dans du Tampon de dialyse (20 mM Tris-Acétate pH 8,0, 200 mM Acétate de Potassium, 10% glycérol, 1 mM EDTA et 0,5 mM DTT) pendant 45 minutes à 4°C. Cette purification par double affinité permet l'obtention d'une protéine pure et ne comportant pas de fragments de dégradation.
4. Essais de compétition en retard sur gel

4.1 Synthèse des sondes d’ADN radio-marquées

Afin de faire des essais de compétition en retard sur gel, cinq différents substrats d’ADN représentant diverses structures rencontrées lors de la recombinaison homologue, soit une jonction de Holliday (HJ), une fourche synthétique (SA), un ADN double-brin (DS) et un ADN simple-brin (SS) sont préparés à partir d’un oligonucléotide de 60 nucléotides, JYM925, alors qu’une boucle de déplacement (D-Loop) est préparée à partir de l’oligonucléotide de 29 nucléotides, JYM1745. Les séquences des oligonucléotides utilisés sont présentées dans le Tableau 2. Les sondes SS, DS, SA et HJ, sont préparées avec 1,5 μg d’oligonucléotide chaque, alors que la sonde D-Loop est préparée à partir de 2 μg d’ADN. Toutes les sondes sont réalisées à partir de 30 μCi de γ-ATP32 par réaction. Le phosphate radioactif est incorporé sur l’oligonucléotide à l’aide de 30 unités/sonde de l’enzyme T4 polynucléotide kinase (T4 PNK, NEB) dans son tampon de réaction pour un volume réactionnel final de 15 μl/sonde. La réaction est incubée pendant 1h à 37°C pour ensuite être arrêtée avec 25 mM EDTA. Les substrats d’ADN sont préparés par appariement avec les oligonucléotides appropriés (Tableau 2) avec les ADN préalablement radio-marqués. La réaction d’appariement est réalisée avec un excès des nucléotides à appairer qui est mélangé à l’ADN radio-marqué, le tout est dénaturé à une température de 95°C pour 5 minutes, suite à quoi la température est diminuée de 0,03°C/seconde jusqu’à atteindre 12°C.

Les sondes d’ADN sont ensuite déposées sur un gel d’acrylamide 8% en TBE (90 mM Tris, 90 mM acide borique et 2 mM EDTA, pH 8,0) afin d’être purifiées. L’électrophorèse est d’une durée de 1h15 à 250 V. Afin d’extraire les sondes purifiées du gel, celui-ci est recouvert d’une pellicule plastique et révélé à l’aide d’un film Amersham Hyperfilm™ (GE Healthcare). Cette révélation permet de connaître la position exacte des sondes sur le gel. Celles-ci sont découpées sur le film, qui sert de modèle afin de prélever le gel au bon endroit de façon à recoller le plus de sondes possible. Le gel ainsi prélevé est déposé dans des tubes de 1,5 ml et broyé à l’aide de l’embout d’une pipette. Le gel broyé est mélangé à 300 μl d’eau avant d’être incubé pour la nuit à 4°C sous agitation. Le lendemain, les sondes sont centrifugées à 13 000 rpm pour 2 minutes et le surnageant contenant la sonde est récolté.

La quantification des sondes ainsi préparées est réalisée par compte de la scintillation. Ce compte est réalisé avec 1 μl de sonde qui a été prélevé immédiatement après l’incorporation de la radioactivité et avec 1 μl de chacune des sondes prélevé à la suite de la purification sur gel qui sont tous deux déposés dans 99 μl d’EDTA 100 mM, pH 8,0. De cette dilution, 1 μl est déposé sur du papier Whatman, séché et lavé dans une solution de lavage (0,5 M NaHPO₄ pH 6,8). Lorsque le papier est sec, il est déposé dans 5 ml de liquide de scintillation ScintiVerse (Fisher Scientific) et le compte de la scintillation est obtenu avec un compteur LS 6500, Multi-
purpose Scintillation Counter (Beckman Coulter). Le compte ainsi obtenu permet de calculer la concentration des sondes.

\[
C_{\text{finale}} \, (\mu M) \times \left(\frac{\text{Compte après}}{\text{Compte avant}} \right) = C_{\text{initiale}} \, (\mu M)
\]

Tableau 2: Oligonucléotides utilisés pour la fabrication des sondes d'ADN

<table>
<thead>
<tr>
<th>Nom de l’oligonucléotide</th>
<th>Séquence</th>
<th>Substrat d’ADN formé</th>
</tr>
</thead>
<tbody>
<tr>
<td>JYM925</td>
<td>GGGTGAACCTGCAGGTGGGCAAAGATGTCTTAGCAATGTAATCGTC AAGCTTTATGCCGT</td>
<td>SS, DS, SA, HJ</td>
</tr>
<tr>
<td>JYM926</td>
<td>ACGCTGCCGAATTCTACCAGTGCACGGAGACATCTTGCCCACCTGAGCTGCTATAGA GATCGAATTCGT</td>
<td>SA, HJ</td>
</tr>
<tr>
<td>JYM927</td>
<td>ACGGCATAAAGCTTGAACCATTACATGCTACATGGAGCTGCTAGAG GATCGAATTCGT</td>
<td>HJ</td>
</tr>
<tr>
<td>JYM928</td>
<td>CGATAGTCGGATCTCCTATGACGCTCCATGCTGGTCGCTGGA CACTGTGA GAATTGAGCAGCTCGGT</td>
<td>HJ</td>
</tr>
<tr>
<td>JYM945</td>
<td>ACGGCATAAAGCTTGAACCATTACATGCTAGACATCTTGGCCCACC TGCAGGTCACCACCGT</td>
<td>DS</td>
</tr>
<tr>
<td>JYM1745</td>
<td>AAGATGTCTAGCAACCCCTAGTAGC</td>
<td>D-Loop</td>
</tr>
<tr>
<td>JYM1395</td>
<td>GCCAGGGACGGGTTGAACCTGCAGGTGGGCGGCTGCTACATGATGT GATATCGCAATTTGGTAGAAGACCGCTGCTACATCGGACCGG</td>
<td>D-Loop</td>
</tr>
<tr>
<td>JYM1396</td>
<td>GCCGTCGCATGACGCTGCCAATTCTACCACAGCTACTAGGTCGCTGCTAG TGCTAGGACATCTTTGGCCCACCCTGAGGTTCACCACCGTGCTCCCTGCG</td>
<td>D-Loop</td>
</tr>
</tbody>
</table>

4.2 Titration de FANCG et compétition en retard sur gel

Cet essai permet de mettre en compétition cinq substrats d’ADN représentant différentes structures afin de déterminer si la protéine d’intérêt, ici FANCG, peut lier l’ADN, et si oui, quel est le substrat pour lequel elle a le plus d’affinité. Le volume réactionnel de cette réaction est de 10 µl. De ce 10 µl, 2,5 µl sont composés de la protéine à la concentration désirée et de la quantité appropriée de tampon de conservation pour que le volume total de ces deux composantes soit égal à 2,5 µl. Dans chaque tube contenant le tampon de conservation, 20 nM de chacune des cinq sondes de la section 4.1 sont mis en compétition dans du tampon de réaction MOPS (25 mM MOPS pH 7,0, 60 mM KCl, 0,2% Tween20 et 2 mM DTT). À ce mélange, 1 mM de MnCl₂ est ajouté. Le mélange est équilibré à 37°C pour une durée de 5 minutes. Suivant cette étape d’équilibration, la protéine est ajoutée et le mélange est incubé à 37°C pour 10 minutes. La réaction est ensuite fixée par l’ajout de 0,2% de glutaraldéhyde et incubé 15 minutes à 37°C. Préalablement au dépôt sur gel, le mélange réactionnel est mélangé à 2 µl de Bleu ADN 6X (10 mM Tris-HCl pH 7,4, 50% glycérol, 0,05% Bleu de Bromophénol, 0,05% xylène cyanole). Le mélange est ensuite déposé sur un gel d’acrylamide 8% non-
dénaturant et les sondes sont séparées par une électrophorèse dans du TBE de 150 V pour une durée de 1h45. Le gel est ensuite séché sur du papier Whatman et peut être révélé par autoradiographie sur des films Amersham Hyperfilm™ (GE Healthcare). La quantité d’ADN lié à la protéine peut ensuite être quantifiée en mesurant la disparition de la radioactivité en comparaison avec un échantillon sans protéine. Cette quantification se fait sur des écrans phosphorimager (Molecular Dynamics, Amersham) et peut être lue par un appareil spécialisé FUJIFILM FLA-5100 et l’intensité du signal et mesuré à l’aide du logiciel MultiGauge V3.0. Trois essais indépendants ont été réalisés et quantifiés, suite à quoi la moyenne et l’écart-type ont été calculés.

5. Spectrométrie de masse

5.1 Clonage de pEGFP-C1-FANCG

Le clonage de la construction pEGFP-C1-FANCG a été réalisé par Niraj Joshi tel que décrit à la section 2.1. Les amorces utilisées pour l’amplification sont les amorces JYM2624 et JYM2625 contenant respectivement un site de restriction pour l’enzyme BglII et SalI (Tableau 4). Le vecteur dans lequel FANCG est inséré est le vecteur pEGFP-C1 (BD Biosciences) présenté à la Figure 12.

Figure 12: Carte du plasmide pEGFP-C1

Image tirée du www.bdbiosciences.com
5.2 Préparation des extraits cellulaires et spectrométrie de masse

La protéine de fusion EGFP-FANCG est produite en cellules humaines pour ensuite être extraite et envoyée en spectrométrie de masse pour en identifier les différents partenaires. Pour ce faire, une boîte de pétri contenant des cellules 293T confluentes à 30% est transfectée avec la construction pEGFP-C1 seule ou pEGFP-C1-FANCG. La méthode de transfection utilisée est celle du calcium phosphate. Ainsi, un mélange contenant 15 μg de plasmide dans un volume de 375 μl d’eau est préparé. À ceci, 125 mM de CaCl₂ est incorporé ainsi qu’un volume de HBS 2X (280 mM NaCl, 50 mM HEPES et 1,5 mM Na₂HPO₄, pH 7,01) qui est ajouté goutte à goutte et mélangé avec un volume d’air. Le tout est incité 20 minutes à TP. Une fois l’incubation terminée, le mélange est ajouté goutte à goutte aux cellules contenant du milieu de culture frais en même temps que 25 μM de chloroquine. Les cellules sont incubées 6h à 37°C pour ensuite être lavées trois fois avec du PBS 1X et remises à 37°C pour la nuit avec du milieu de culture frais sans drogue ou avec 3 μM MMC pour 18h.

Le lendemain, les cellules sont récoltées et centrifugées 5 minutes à 800 rpm. Elles sont ensuite lavées deux fois avec 10 ml de PBS 1X. La lyse des cellules est effectuée dans 1,5 ml de Tampon IP150 (50 mM Tris-HCl pH 7,4, 150 mM NaCl, 0,5% NP40, 3,4 μg/ml aprotinine, 1 μg/ml leupeptine et 1 mM PMSF, 5 mM NaF et 1 mM Na₃VO₄) et est suivie d’une incubation sur glace de 30 minutes. Une sonication de trois fois 10 secondes à 30% d’intensité est alors effectuée. Les débris cellulaires peuvent alors être séparés de l’extrait soluble à l’aide d’une centrifugation de 30 minutes à 13 000 rpm, à une température de 4°C. Le surnageant est ensuite dosé à l’aide de la coloration au Bradford selon le protocole de la compagnie (BioBasic).

Une immunoprécipitation est alors réalisée afin d’isoler EGFP-FANCG et ses interacteurs des autres protéines présentes dans l’extrait soluble. Pour ce faire, 9 mg d’extrait soluble et de tampon IP150 pour un volume total de 1,5 ml est déposé sur 50 μl de Billes GFP-Trap®_A (Chromotek) préalablement équilibrées avec 1 ml de Tampon IP150. Le tout est incité pour une durée de 1h30 à 4°C avec agitation. Les protéines liées aux billes sont ensuite lavées quatre fois avec 1 ml de Tampon IP150 à chaque lavage. Les billes sont ensuite lavées deux fois avec 1 ml de Tris-HCl pH 7,4. Lorsque les billes sont bien lavées, il est temps de procéder à l’élution des protéines. L’élution se fait avec 110 μl d’acide phosphorique froid pendant 10 minutes sur glace en agitant légèrement et régulièrement. Le tout est centrifugé et le surnageant est prélevé. Deux élutions supplémentaires sont réalisées en combinant le surnageant récolté lors de chacune d’elles à la première élution. Les extraits sont congelés à -80°C et traités pour analyse en spectrométrie de masse par le Dr Nicolas Bisson avant d’être soumis à la plateforme de protéomique du CHU de Québec (http://proteomique.crchul.ulaval.ca/fr/).
6. Co-localisation *in vivo*

6.1 Co-localisation en cellules déficientes en FANCG, PD326+v

Dans des plaques de 35 mm dont la confluence des cellules PD326+v atteint 30%, la construction pLenti-myc-FANCG (généreusement fournie par le laboratoire du Dr Toshiyasu Taniguchi, Figure 13) est introduite dans les cellules. La transfection des cellules s'effectue avec l'agent de transfection Effectene® (Quiagen) selon les instructions du fabricant. Après 18h de transfection, les cellules sont traitées avec l'agent pontant MMC à une concentration de 200 ng/ml pour 24h. Les cellules sont ensuite lavées une fois avec du PBS 1X et une étape de fixation combinée à une perméabilisation est réalisée avec une solution de 4% paraformaldéhyde et de 0,5% Triton X-100 dans du PBS 1X pour une durée de 30 minutes à TP sur une plaque agitatrice. Un autre lavage au PBS 1X est nécessaire avant d'incuber les cellules pendant 15 minutes dans une solution de blocage (3% BSA, 0,1% Tween20 et 0,5% NaN₃ dans du PBS 1X). Suite à ce traitement, les anticorps primaires dilués dans la solution de blocage sont déposés sur les cellules pour une heure. La liste des anticorps utilisés est présentée dans le Tableau 3. L'anticorps primaire est lavé trois fois pendant dix minutes avec du PBST (0,1% Tween20 dans du PBS 1X). Ces lavages sont suivis de l'application des anticorps secondaires fluorescents appropriés (Tableau 3) dilués dans la solution de blocage pour obtenir une concentration finale de 1:2000. Finalement les cellules sont lavées trois fois pendant dix minutes avec du PBST et la lamelle est fixée sur une lame de microscopie avec l'agent de montage ProLong® (Invitrogen). La visualisation des foyers obtenus se fait sur le microscope à fluorescence Leica DMI6000B. Les statistiques de co-localisation sont compilées à partir de trois expériences indépendantes les unes des autres. Lors de chacune des expériences, 25 cellules contenant des foyers FANCG et des foyers de la protéine étudiée sont analysées. L’analyse de ces cellules consiste à compter le nombre de foyers de réparation de FANCG total dans la cellule ainsi que le nombre de foyers FANCG qui co-localisent avec les foyers de la protéine à l’étude. Le pourcentage de co-localisation est compté comme suit :

\[
\frac{\text{Nombre de foyers FANCG co-localisant avec la protéine à l'étude}}{\text{Nombre total de foyers FANCG}} \times 100.
\]

La moyenne et l’écart-type sont calculés selon les données recueillies.

6.2 Co-localisation en cellules HeLa Fucci

Le protocole d’immunofluorescence suivi est le même que celui présenté à la section 6.1, sauf que les anticorps secondaires utilisés diffèrent. Ainsi, l’anticorps Alexa Fluar® 647 goat anti-mouse est utilisé pour cibler l’anticorps myc, alors que l’anticorps Alexa Fluar® 405 goat anti-rabbit reconnaît l’anticorps polyclonal ciblant DNA-PKcs phosphorylé. Les anticorps primaires myc et DNA-PKcs phosphorylé sont les mêmes que ceux utilisés à la section 6.1. Les statistiques de co-localisation sont compilées à partir de trois expériences indépendantes les unes des autres. Lors de chacune des expériences, 40 cellules contenant des foyers...
FANCG et des foyers DNA-PKcs phosphorylé ont été analysées. L’analyse de ces cellules consiste à compter le nombre de foyers de réparation de FANCG total dans la cellule ainsi que le nombre de foyers FANCG co-localisant avec les foyers de la protéine à l’étude. Le pourcentage de co-localisation est compté comme suit :

\[
\text{Pourcentage de co-localisation} = \frac{\text{Nombre de foyers FANCG co-localisant avec la protéine à l'étude}}{\text{Nombre total de foyers FANCG}} \times 100.
\]

Les données sont ensuite séparées selon l’état du cycle cellulaire de la cellule. Les moyennes et écarts-types sont calculés pour chacune des phases.

Figure 13: Carte de la construction pLenti-myc-FANCG
La construction pLenti-myc-FANCG a été clonée par la Dre Maria Castella dans le laboratoire du Dr Toshiyasu Taniguchi.

7. Effet de l’absence de FANCG sur la réparation

7.1 Immunofluorescence pour visualiser les foyers de réparation
Afin de déterminer l’impact de l’absence de FANCG sur les foyers de réparation des protéines DNA-PKcs phosphorylé et RIF1, les cellules de patients n’exprimant pas FANCG, les cellules PD326+v, ou ces mêmes cellules complémentées avec FANCG, les cellules PD326+FG, sont utilisées. L’expression de FANCG dans ces cellules est vérifiée par immunobuvardage contre FANCG avec l’anticorps FANCG monoclonal d’Abnova dilué 1:500. Pour visualiser les foyers de RIF1, les cellules sont cultivées dans des puits 35 mm et traitées avec 200 ng/ml MMC pour une durée de 24h avant la réalisation de l’immunofluorescence. En ce qui concerne
les foyers de DNA-PKcs phosphorylées, les cellules sont aussi cultivées dans des puits de 35 mm, mais cette fois-ci elles sont traitées avec 100 ng/ml néocarzinostatine (NCS, Sigma) pendant 30 minutes avant la réalisation de l’immunofluorescence. Les foyers de réparation sont visualisés par immunofluorescence contre la protéine d’intérêt. Pour ce faire, les cellules sont d’abord lavées deux fois dans du PBS 1X et incubé 5 minutes sur glace avec le Tampon A (10 mM PIPES pH 6,8, 100 mM NaCl, 3 mM MgCl₂, 1 mM EGTA, 0,5% Triton X-100 et 300 mM de sucrose). Suite à quoi les cellules sont incubées dans le Tampon B (10 mM Tris-HCl pH 7,4, 10 mM NaCl, 3 mM MgCl₂, 1% Tween20 et 0,5% sodium déoxycholate) pour 5 minutes sur glace. Deux lavages avec du PBS 1X sont nécessaires avant d’être en mesure de fixer les cellules dans une solution contenant 3% paraformaldéhyde et 2% sucrose dans du PBS 1X, et ce, pendant 20 minutes à TP. Un autre lavage au PBS 1X est requis avant de perméabiliser les cellules pendant 15 minutes dans du PBS 1X contenant 0,5% Triton X-100. Un lavage au PBST (PBS 1X et 0,1% Tween20) est réalisé avant d’incuber les cellules 45 minutes dans la solution de blocage (2% BSA dans PBST). Ensuite, l’anticorps primaire (Tableau 3) dilué dans la solution de blocage est déposé sur les cellules pour une durée de 2h. Trois lavages de 10 minutes dans le PBST sont réalisés afin d’éviter le marquage non spécifique. L’anticorps secondaire est dilué dans le PBST 1:800 (Tableau 3) avant que celui-ci soit mis sur les cellules pour une durée de 45 minutes. Trois derniers lavages sont faits avec du PBST avant que les lames soient montées avec la solution de montage ProLong® (Invitrogen). Le résultat peut ensuite être visualisé en microscopie à fluorescence.

Les données de trois expériences réalisées indépendamment les unes des autres ont été recueillies pour des fins statistiques. À chacune des expériences le nombre de foyers de réparation présent a été compté pour 100 cellules choisies de façon aléatoire. Les données ont ensuite été groupées et la moyenne et l’écart-type ont été calculés pour chacun de ces groupes.

7.2 Cassette de réparation in vivo

Le niveau de réparation selon les trois différents mécanismes de réparation des CDB, SSA, NHEJ et HR peut être mesuré à l’aide de cassettes de réparation in vivo qui sont présentées à la Figure 14. Ces cassettes de réparation sont exprimées de façon stable dans des cellules HEK293T qui ont été sélectionnées selon la résistance portée dans leur vecteur respectif. Des clones ont été sélectionnés et l’expression de la GFP suite à l’induction d’une CDB à un site unique I-SceI a été vérifiée en microscopie à fluorescence. L’enzyme de restriction I-SceI reconnaît une séquence de 18 paires de bases dans l’ADN. Cette séquence n’est pas présente dans le génome humain, ce qui permet le clivage à un endroit unique lors de l’utilisation de cette enzyme. Les cassettes de réparation DR-GFP, SA-GFP et EJ5-GFP provenant respectivement des clones 6, 2 et 8 ont été sélectionnés pour ces expériences.
Tableau 3: Anticorps utilisés en immunofluorescence

<table>
<thead>
<tr>
<th>Anticorps primaire</th>
<th>Anticorps secondaire</th>
<th>Protocole d’immunofluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Compagnie</td>
<td>Dilution</td>
</tr>
<tr>
<td>53BP1 polyclonal</td>
<td>Novus Biologicals</td>
<td>1:500</td>
</tr>
<tr>
<td>c-Myc (9E10) monoclonal</td>
<td>Santa Cruz</td>
<td>1:500</td>
</tr>
<tr>
<td>DNA PKcs (phospho S2056) polyclonal</td>
<td>Abcam</td>
<td>1:500</td>
</tr>
<tr>
<td>DNA PKcs (phospho T2609) monoclonal</td>
<td>Abcam</td>
<td>1:500</td>
</tr>
<tr>
<td>γH2AX</td>
<td>Upstate</td>
<td>1 :100</td>
</tr>
<tr>
<td>RIF1 polyclonal</td>
<td>Bethyl</td>
<td>1:500</td>
</tr>
</tbody>
</table>

Les niveaux de HR et de SSA ont été mesurés par Dre Amélie Rodrigue suivant le même protocole pour les deux types de réparation. Pour ce faire, les cellules contenant les cassettes de réparation exprimées de façon stable sont transfectées avec l’agent de transfection DharmaFECT®1 Transfection Reagent (Dharmacon™) selon les instructions du fabricant avec un ARN interférent contrôle (siScramble) dont la séquence est GACGUCCAUAUACCAAGCUAGUUUDdtdt ou avec un ARN interférent contre FANCG (siFANCG) dont la séquence est CCCAGGUAAUCGAGACACUUAdtdt. Une autre transfection est effectuée huit heures plus tard, toujours selon les instructions fournies par le fabricant, mais cette fois-ci en utilisant l’agent de transfection X-tremeGENE 9 DNA Transfection Reagent (Roche) pour incorporer dans les cellules le vecteur exprimant l’enzyme de restriction I-SceI. 48h plus tard, le pourcentage de cellules exprimant la GFP est mesuré par cytométrie en flux. Parallèlement, l’expression de FANCG dans ces cellules est vérifiée par immunobuvardage contre FANCG avec l’anticorps FANCG monoclonal d’Abnova à une dilution de 1:500. L’expérience est répétée cinq fois dans le but d’obtenir des données statistiquement valides.

Le niveau de réparation par NHEJ a quant à lui été mesuré par Marie-Christine Caron. Les ARN interférents contrôle et dirigé contre FANCG ont été transfectés dans les cellules EJ5-GFP avec l’agent de transfection Oligofectamine™ Reagent (Invitrogen) selon les instructions fournies par le fabricant. Après 8h d’incubation, la transfection du vecteur exprimant l’enzyme de restriction I-SceI est effectuée avec l’agent de transfection X-tremeGENE 9 selon les instructions du fabricant. Un temps d’expression de 48h est alloué suite à quoi une
immunofluorescence contre la protéine fluorescente GFP est réalisée afin d'amplifier le signal. Pour l'immunofluorescence, es cellules ont été lavées au PBS 1X et fixées dans une solution de PBS 1X contenant 4% de paraformaldéhyde pour une durée de 30 minutes. Le paraformaldéhyde est lavé par du PBS 1X avant de perméabiliser les cellules pendant 5 minutes dans du PBS 1X supplémenté de 0,5% Triton X-100. Les cellules sont lavées deux fois avec 0,1% Triton X-100 dans du PBS 1X. Une étape de blocage préalable au dépôt de l’anticorps est nécessaire pour minimiser les interactions non-spéfiques et se fait dans une solution contenant 10% Goat Serum (Wisent) dans le PBS 1X pour une durée de 1h. Suite à ce blocage, l’anticorps primaire GFP ab290 polyclonal (Abcam) est dilué dans la solution de blocage 1:2500 avant d’être déposé sur les cellules pour un période de 1h. Les cellules sont lavées trois fois 10 minutes au PBS 1X. Suite à cela l’anticorps secondaire Alexa Fluor® 568 goat anti-rabbit (Invitogen) est dilué 1:800 dans du PBS 1X et ajouté aux cellules pour 45 minutes. Un lavage de PBS 1X contenant 0,5 μg/ml de DAPI (4’,6’-diamidino-2-phénylindole, Roche) pour 5 minutes est réalisé afin de marquer le noyau des cellules. Trois lavages de 10 minutes dans du PBS 1X sont ensuite effectués, suivi de la fixation des lamelles sur des lames de microscopie avec l’agent de montage p-phenylenediamine (pPDA, Sigma). Le pourcentage de cellules GFP est compté manuellement en microscopie à fluorescence sur le microscope Leica DMI6000B. L’expérience est réalisée en triplicata et 2000 cellules sont comptées à chaque expérience.

Tableau 4: Liste des amorces utilisées pour le clonage

<table>
<thead>
<tr>
<th>Nom de l’amorce</th>
<th>Séquence</th>
<th>Site de restriction</th>
<th>Étiquette</th>
</tr>
</thead>
<tbody>
<tr>
<td>JYM2443</td>
<td>5’-GCCGAATTCATGGATTACAAGGATGACGACGATAAGGGCAT GTCCGCGCCAGACCCCC-3’</td>
<td>EcoRI</td>
<td>Flag</td>
</tr>
<tr>
<td>JYM2624</td>
<td>5’-GCCAGATCTATGTCGCCGACGACCACCTC-3’</td>
<td>BglII</td>
<td>-</td>
</tr>
<tr>
<td>JYM2625</td>
<td>5’-GCCGTCGACCTACAGGTCACAAGACTTTGG-3’</td>
<td>Sall</td>
<td>-</td>
</tr>
<tr>
<td>JYM2640</td>
<td>5’-ATTGGCGGCCGCTCAGGTGACTTCCCCCGCGGAATTCC-3’</td>
<td>NotI</td>
<td>-</td>
</tr>
<tr>
<td>JYM2641</td>
<td>5’-ATTGGTACCGGATGTCCCGGCAGACCCCTC-3’</td>
<td>KpnI</td>
<td>-</td>
</tr>
<tr>
<td>JYM2642</td>
<td>5’-ATTGTACCTAGGTCAAGAGACTTTTGGC-3’</td>
<td>Sall</td>
<td>-</td>
</tr>
<tr>
<td>JYM2668</td>
<td>5’-ATTGTGACACTGTAGCGAGAATTITGTA-3’</td>
<td>Sall</td>
<td>-</td>
</tr>
<tr>
<td>JYM2908</td>
<td>5’-CTGCAGCGCCGCTAATGATGATGATGATGATGATGATGATGATGATGATGATGATGATGATGGTGACAGGTCAACAAGAC-3’</td>
<td>NotI</td>
<td>His</td>
</tr>
</tbody>
</table>
Figure 14 : Cassettes de réparation

A Vecteur de réparation DR-GFP utilisé pour mesurer le niveau de réparation par recombinaison homologue suite à l’induction d’une seule cassure double-brin à un site unique de clivage I-SceI.

B Vecteur de réparation EJ5-GFP utilisé pour mesurer le niveau de réparation par NHEJ suite à l’induction de deux cassures double-brin dans l’ADN à des sites spécifiques I-SceI permettant l’activation de la cassette GFP.

C Vecteur SA-GFP utilisé pour mesurer le niveau de réparation par appariement d’extrémités simple-brin suite à l’induction d’une cassure double-brin à un site unique de clivage I-SceI.
Résultats

1. Purifications de FANCG

La protéine GST-FANCG-TAP est ainsi produite en cellules Sf9. L’étiquette TAP présente en C-terminal est composée du CBP (Calmodulin binding peptide), d’un site de clivage pour la protéase TEV ainsi que de la protéine A. L’étiquette TAP, en particulier la protéine A qui y est contenue, a une grande affinité pour l’anticorps anti-IgG. C’est pour cette raison que des billes de sépharose couplées à l’anticorps anti-IgG sont utilisées à la première étape de la purification. La protéine recombinante liée aux billes peut être clivée avec l’enzyme AcTEV™ protéase au site de clivage TEV libérant ainsi la protéine des billes IgG. L’utilisation d’une deuxième étape de purification permet l’obtention d’une protéine pure et sans fragments de dégradation. Cette étape est réalisée à l’aide de billes glutathione sepharose 4B, qui ont une grande affinité pour la protéine de fusion GST présente en N-terminal sur la protéine recombinante à purifier. Une fois liée aux billes par l’intermédiaire de la GST, la protéine d’intérêt peut être lavée de toutes impuretés avant d’être séparée des billes par clivage au niveau du site de reconnaissance pour l’enzyme PreScission protéase présent à la jonction entre la protéine GST et la protéine FANCG. Cette méthode permet d’obtenir une protéine pure, ne possédant pas d’étiquette (Figure 15A).

Le deuxième système utilisé pour la production de la protéine FANCG recombinante, est le système d’expression de protéines en bactéries E. coli. Les bactéries utilisées sont des bactéries E. coli BL21 RP qui permettent l’expression d’ARN de transfert de codons rares chez les bactéries, mais fréquents chez les eucaryotes. Ce système a comme avantage de permettre la production d’une grande quantité de protéines à faible coût. De plus, les protéines produites ne possèdent pas de modifications post-traductionnelles, ce qui peut être très utile pour mesurer l’impact de ces modifications sur les fonctions biochimiques de la protéine à étudier. La protéine recombinante GST-Flag-FANCG-His est produite à l’aide de ce système. Une première
étape de purification est réalisée à l’aide de la protéine de fusion GST tel que décrit précédemment. Une fois la protéine Flag-FANCG-His libérée des billes glutathione sepharose 4B, une deuxième étape de purification est réalisée. L’affinité de l’étiquette poly-histidine pour les billes Talon® est essentielle pour cette étape. Ces dernières sont en fait couplées à un agent chélateur contenant du cobalt pour lequel l’étiquette poly-histidine a une grande affinité. Une fois liée à la colonne Talon, la protéine recombinante peut être lavée de tous contaminants. Par la suite, une solution concentrée en imidazole, un compétiteur de l’histidine pour la liaison à la colonne Talon®, permet d’éluer la protéine recombinante d’intérêt. La protéine FANCG ainsi obtenue possède une étiquette flag du côté N-terminal et une étiquette poly-histidine du côté C-terminal (Figure 15B).

Figure 15: Coloration Coomassie des protéines purifiées

A La protéine FANCG pleine longueur, d’une taille de 68 kDa, a été purifiée suite à l’infection de cellules Sf9.
B La protéine FANCG pleine longueur portant les étiquettes Flag et His a été purifiée suite à son expression en bactéries.

2. Liaison de FANCG à l’ADN

Les caractéristiques biochimiques de FANCG ne sont pas connues. Il est par contre connu que FANCG est localisé à la chromatine lorsqu’il est en complexe avec FANCA (Qiao et al., 2001). Bien que la capacité de FANCA à lier l’ADN ait été mise en évidence auparavant (Yuan et al., 2012), aucune donnée à ce sujet existe pour FANCG. Un essai de compétition en retard sur gel a donc été réalisé afin d’éclaircir le rôle de FANCG au niveau de la liaison à l’ADN du complexe FANCG-FANCA, mais aussi du complexe B2D2GX3. Cet essai permet de mettre en compétition cinq différents substrats d’ADN. Ceux-ci représentent les différentes structures qu’adopte l’ADN lors de la réparation par HR, soit un ADNss, un ADNds, une SA, une D-Loop et une HJ. Ces cinq substrats sont mis en compétition et FANCG est ajouté au mélange. La séparation des sondes d’ADN sur gel d’acrylamide permet de visualiser les complexes ADN-protéines qui sont retardés sur le
gel dû à la migration plus lente de ces complexes qui sont plus gros. La quantité d’ADN liée à FANCG peut alors être mesurée par la disparition de la radioactivité de chacun des substrats d’ADN. Cette expérience a permis de démontrer que FANCG ne possède pas de domaine de liaison à l’ADN (Figure 16). Les modifications post-traductionnelles présentes sur FANCG n’ont pas d’influence sur la capacité de FANCG à lier l’ADN, car la protéine purifiée en bactéries, tout comme celle contenant des modifications post-traductionnelles purifiée à partir de cellules d’insectes Sf9 ne lie aucun des substrats d’ADN présents dans l’essai. La protéine FANCD2, connue pour lier l’ADN, a servi de contrôle positif lors de ces essais.

Figure 16 : Essai de compétition en retard sur gel

3. Analyse protéomique

Ayant constaté que FANCG ne possède pas la capacité de lier l’ADN, il devient intéressant de s’interroger sur l’identité du partenaire de FANCG l’apportant au niveau du dommage sur l’ADN. De plus, l’existence du complexe B2D2GX3 ayant été démontré à l’aide de co-immunoprécipitation dans des cellules déficientes pour
l’un des composants du complexe ou par système en double-hybride, rien ne prouve que ce complexe contient uniquement quatre composantes. Dans cette optique, l’utilisation de la spectrométrie de masse pour identifier l’ensemble des partenaires potentiels de FANCG est intéressante. Puisque le but est de connaître les interacteurs de FANCG in vivo, la protéine de fusion GFP-FANCG est surexprimée dans des cellules HEK293T. Par la suite, une immunoprécipitation contre la protéine GFP fusionnée à FANCG est réalisée, ce qui permet de retenir FANCG ainsi que ses interacteurs dans la colonne de chromatographie, tout en éliminant par des lavages les protéines n’interagissant pas avec FANCG. Une fois les protéines élues des billes, le tout est envoyé pour analyse en spectrométrie de masse. L’analyse de spectrométrie de masse a gracieusement été réalisée par le Dr Nicolas Bisson et les échantillons envoyés à la plateforme de protéomique du CHU de Québec. Après le retrait des protéines présentes dans l’extrait contrôle ne contenant que le vecteur exprimant la protéine GFP, 644 protéines différentes interagissant avec FANCG ont été identifiées (Tableau A1, Annexes). Parmi les protéines identifiées en spectrométrie de masse, certaines méritent d’être mentionnées. Entre autres, des protéines impliquées dans la voie de Fanconi et dans la HR, dont FANCA et FAAP20, dont l’interaction avec FANCG était déjà connue, mais aussi FANCI et RAD51C ont été identifiées dans cette analyse. Certaines protéines impliquées dans le NHEJ ont aussi été identifiées, telles NONO, SFPQ, Ku70, Ku80 et RIF1. De plus, d’autres protéines de réparation ont été identifiées, telles PARP1, DDB1 et MSH6. Ceci est sans compter CDK1 et CDK4 impliquées au niveau du contrôle du cycle cellulaire, DCAF7, DDX5, DDX6, MCM7 et PCNA impliquées au niveau de la réplication et du stress réplicatif, EF1D, EF1G, EF2, EFTU, EIF3B, EIF3E, EIF3G, IF4A1, IF4A2, IF4G1 et IF4G2 impliquées dans la traduction ainsi que SMC1, SMC4, H2A1, HAT1, HDAC1, HDAC6 et RUVB1 qui sont associées à la chromatine ou à la stabilité de la chromatine qui ont toutes été retrouvées dans l’analyse protéomique.

4. Co-localisation in vivo

4.1 Co-localisation entre FANCG et DNA-PKcs phosphorylé

La présence dans l’analyse protéomique de FANCG de protéines de réparation agissant dans d’autres voies de réparation de l’ADN que la voie de Fanconi, entre autres SFPQ, NONO, Ku70, Ku80, PARP1, DDB1, RIF1 ainsi que MSH6 indique que FANCG peut probablement participer à la réparation de l’ADN dans ces autres voies de réparation. Afin d’investiguer sur ce point, l’utilisation d’un système de visualisation de la réparation in vivo s’est avéré utile. Malgré bien des essais, il n’a pas été possible de visualiser des foyers de réparation de la protéine FANCG endogène. Par contre, les foyers de réparation de FANCG peuvent être visualisés en microscopie à fluorescence en exprimant la protéine myc-FANCG, portée par le vecteur pLenti X1. L’utilisation d’un anticorps contre l’étiquette myc rend cette technique possible. Grâce à ce système, il est devient possible d’étudier la localisation de FANCG par rapport aux autres protéines de réparations, suite à l’induction de dommages par la MMC. Ces foyers sont bien des foyers de réparation de l’ADN, ce qui est confirmé par la co-
localisation de ces derniers avec la protéine γH2AX qui est un marqueur de dommage à l’ADN (Figure 17A, Tanaka et al., 2007).

Figure 17: Co-localisation de FANCG en cellules PD326+v

Co-localisation entre FANCG et les autres protéines de réparation. **A** Co-localisation entre FANCG et γH2AX, un marqueur de cassures double-brin. **B** La protéine DNA-PKcs phosphorylée, impliquée dans la réparation des cassures double-brin par NHEJ, co-localise avec FANCG. **C** FANCG est situé dans les mêmes foyers de réparation que 53BP1, un inhibiteur de résection. **D** Le partenaire de 53BP1, soit RIF1, est également localisé dans les mêmes foyers de réparation que FANCG.
La co-localisation entre myc-FANCG et DNA-PKcs phosphorylé sur le groupe S2056 a été observée dans les cellules PD326+v qui sont déficientes pour l’expression de FANCG endogène (Figure 17B). Ces deux protéines co-localisent avec une fréquence de 77% (Figure 19B). Cette valeur est calculée à la suite du compte du nombre de foyers de FANCG co-localisant avec DNA-PKcs phosphorylé par rapport au nombre de foyers total de FANCG dans la cellule. Ces données s’appuient sur trois expériences indépendantes lors desquelles 25 cellules ont été analysées à chaque fois pour un total de 75 cellules analysées.

Figure 18 : Co-localisation de FANCG et DNA-PKcs phosphorylé en cellules HeLa Fucci

Les cellules HeLa Fucci permettent de déterminer visuellement l’état du cycle cellulaire dans lequel les cellules se trouvent. Lorsque les cellules sont rouges, elles sont en phase G1, alors qu’elles sont vertes en phases S et G2 du cycle. FANCG et DNA-PKcs phosphorylé co-localisent davantage en phase G1 ou dans le reste du cycle cellulaire.

DNA-PKcs phosphorylé est impliqué au niveau de la réparation des CDB de l’ADN par le mécanisme de NHEJ, mécanisme qui agit de façon dominante pour la réparation des CDB en phase G1 et G2 du cycle cellulaire, bien qu’il soit actif tout au long du cycle. Il est alors intéressant de s’interroger sur la dynamique de co-localisation entre FANCG et DNA-PKcs phosphorylé. Pour déterminer si la co-localisation de ces deux protéines est dépendante de l’état du cycle cellulaire dans lequel la cellule se trouve, les cellules HeLa Fucci ont été utilisées. Ce système, développé par la compagnie Amalgaam, permet de visualiser directement en microscopie à fluorescence dans quel état du cycle cellulaire est la cellule. Les cellules HeLa Fucci expriment deux peptides de façon stable. Le premier peptide provient de la protéine cdt1 et est fusionné à la protéine fluorescente orange mKO2 (monomeric version of Kusabira Orange, Sakaue-Sawano et al., 2008). Cdt1 est nécessaire au *licensing* des origines de réplication pour permettre l’initiation de la réplication une seule fois au cours du cycle cellulaire. Bien que cdt1 soit exprimé tout au long du cycle cellulaire, il est rapidement ubiquitiné et dégradé au protéasome dans les phases G2 et S du cycle (Nishitani et al., 2004). Ainsi, les cellules seront oranges uniquement en phase G1 lorsqu’elles expriment mKO2-cdt1. Les cellules en phase S
et G2 du cycle seront de couleur verte en fluorescence, car elles expriment de façon stable la protéine mAG1-Geminin. Geminin est un inhibiteur de cdt1. Une fois la réplication entamée, Geminin se lie aux origines de réplication pour empêcher qu’une seconde ronde de réplication ait lieu (Wohlschlegel et al., 2000). L’activité de Geminin n’étant requise qu’en phases S et G2, celle-ci est dégradée par le protéasome en phase G1. La protéine verte fluorescente mAG1 (monomeric version of Azami Green) fusionnée à Geminin permet de visualiser les cellules en phase S et G2 en microscope à fluorescence selon leur couleur verte (Sakaue-Sawano et al., 2008).

![Figure 19 : Statistiques de co-localisation avec FANCG](image)

Figure 19 : Statistiques de co-localisation avec FANCG

- **A** Co-localisation entre FANCG et DNA-PKcs phosphorylé en fonction du cycle cellulaire dans les cellules HeLa Fucci transféctées avec la construction pLenti-myc-FANCG.
- **B** Co-localisation entre FANCG et d’autres protéines de réparation dans les cellules de patients PD326+v transféctées avec la construction pLenti-myc-FANCG.

La co-localisation entre FANCG et DNA-PKcs en cellules HeLa Fucci a permis de constater qu’une fréquence de co-localisation plus élevée est retrouvée dans les cellules en phase G1 du cycle cellulaire, soit 70% d’événements, que pour les autres phases du cycle où l’on retrouve une fréquence de co-localisation s’élevant à seulement 40% (Figure 18 et 19A). Ces données s’appuient sur trois expériences réalisées de façon indépendantes et au cours desquelles 40 cellules ont été analysées par expérience.

4.2 Co-localisation entre FANCG et RIF1/53BP1

L’analyse protéomique a permis d’identifier la protéine RIF1 comme étant un interacteur de FANCG. Étant donné qu’il a été démontré que FANCG co-localise fortement avec DNA-PKcs phosphorylé, en particulier en phase G1 du cycle cellulaire, il est d’intérêt d’observer si FANCG co-localise également avec RIF1 et 53BP1. En phase G1 du cycle cellulaire, alors que la HR n’est pas possible due à l’absence de chromatide sœur, RIF1
et 53BP1 forment un complexe qui peut lier l'ADN de part et d'autre d'une CDB, ce qui permet d'inhiber la résection et ainsi de favoriser le NHEJ en minimisant la perte d'information génétique (Chapman et al., 2013 ; Escribano-Díaz et al., 2013).

Les expériences de co-localisation entre FANCG et RIF1 ainsi qu'entre FANCG et 53BP1 ont été réalisées de la même façon qu'à la section 4.1. Les données ont aussi été récoltées selon la même méthode. FANCG et RIF1 co-localisent à une fréquence de 83% selon trois expériences indépendantes dans lesquelles 25 cellules ont été analysées à chacune des expériences(Figure 17D et 19B). En ce qui concerne la co-localisation entre FANCG et 53BP1, elle s'élève à une fréquence de 80%, ce qui représente les données recueillies selon l’analyse de 25 cellules par expérience dans trois expériences effectuées de façon indépendante les unes des autres (Figure 17C et 19B).

5. Foyers de réparation en absence de FANCG

Bien que les protéines DNA-PKcs phosphorylée, RIF1 et 53BP1 co-localisent avec FANCG avec une forte intensité, cela ne prouve pas que ces protéines agissent toutes dans une même voie de réparation. Afin de déterminer si FANCG influence directement le niveau de réparation par NHEJ, dans lequel les protéines susmentionnées sont impliquées, l'influence de l'absence de FANCG sur les foyers de réparation de DNA-PKcs phosphorylé et de RIF1 a été mesurée.

Figure 20 : Niveau d'expression de FANCG dans les cellules PD326

L’expression de FANCG dans les cellules PD326, ainsi que dans les cellules complémentées avec l'ADN complémentaire de FANCG a été vérifiée par immunobuvardage contre FANCG.
5.1 Foyers de réparation de DNA-PKcs phosphorylé en absence de FANCG

Dans le but de déterminer si FANCG agit dans la voie de réparation par NHEJ, des cellules de patients déficients pour FANCG (PD326+v) ou complémentées de façon stable avec l'ADNc de FANCG (PD326F+FG) ont été utilisées (Figure 20). Ces deux types de cellules ont été traités ou non avec la NCS qui est un agent radiomimétique, c'est-à-dire qu'il crée des dommages à l'ADN ressemblant aux dommages induits par les IR, entre autres, cet agent induit la formation de plusieurs CDB (Povirk, 1996). Par la suite, les cellules sont fixées et les foyers de réparation de DNA-PKcs phosphorylé sur le groupe T2609 sont visualisés par immunofluorescence (Figure 21A). La quantité de foyers de réparation a été comptée dans 100 cellules par expérience. Cet essai a été réalisé trois fois de façon indépendante. La quantification des foyers DNA-PKcs permet de mettre en évidence une diminution du nombre de foyers DNA-PKcs phosphorylé en absence de FANCG (Figure 21B). Ce qui laisse supposer une efficacité diminuée du mécanisme de NHEJ en absence de FANCG dans la cellule.

Tel que démontré à la section 3, FANCG et RIF1 interagissent ensemble in vivo, en plus de co-localiser aux sites de dommages suite à l'induction de ICL par un traitement à la MMC tel que montré à la section 4.2. Ceci soulève la question à savoir si la diminution de foyers DNA-PKcs phosphorylé est due à l'inefficacité de la réparation par le mécanisme de NHEJ dont RIF1 pourrait être responsable. Tel que discuté plus tôt, RIF1 et 53BP1 forment un complexe qui permet d'inhiber la résection ce qui a pour effet de favoriser la réparation des CDB par le mécanisme de NHEJ. Pour vérifier si FANCG favorise la formation du complexe RIF1-53BP1, la quantité de foyers de RIF1 suite à l'induction de dommages à l'ADN avec la MMC a été vérifiée en présence et en absence de FANCG (Figure 22A-B). La quantification des résultats obtenus suite au compte de 100 cellules par expérience dans trois expériences indépendantes est claire : en absence de FANCG, RIF1 est difficilement recruté aux sites de dommages à l'ADN (Figure 22C-D). Ceci est mis en évidence par la forte majorité de cellules n'ayant aucun foyer de RIF1 en absence de FANCG.
Figure 21: Foyers DNA-PKcs phosphorylé en absence de FANCG

A Les cellules PD326 ont été utilisées pour déterminer la quantité de foyers de DNA-PKcs phosphorylé en présence ou en absence de FANCG, sans induction de dommages (UT) ou suite à un traitement avec la néocarzinostatine (NCS). B Quantification des foyers DNA-PKcs phosphorylé comptés lors de l’expérience présentée en A.
Figure 22: Foyers de réparation de RIF1 en présence et en absence de FANCG en cellules PD326

A Foyers de réparation de RIF1 en présence et en absence de FANCG suite à l’induction de dommages par la mitomycine C. B Foyers de réparation de RIF1 en présence et en absence de FANCG sans induction de dommages à l’ADN. C Quantification des foyers de réparation de RIF1 de l’expérience présentée en A. D Quantification des foyers de RIF1 de l’expérience présentée en B.

6. Cassettes de réparation in vivo

De façon indirecte, en observant les foyers de DNA-PKcs phosphorylé et de RIF1 en absence de FANCG, il est possible de constater que FANCG joue un rôle au niveau de la réparation de l’ADN par le mécanisme de NHEJ. De manière à pouvoir vérifier ce rôle plus directement, les cassettes de réparation DR-GFP, SA-GFP et EJ5-GFP ont été utilisées en cellules HEK293T, avec un ARN interférent contrôle ou contre FANCG. L’efficacité de cet ARN interférent peut être vérifiée par immunobuvardage, ce qui permet de s’assurer que
l’expression de la protéine FANCG est bien diminuée lors de ce traitement (Figure 23A). Ces différents systèmes utilisent tous une GFP inactive et un site de restriction I-SceI qui permet la création d’une CDB unique et la voie de réparation empruntée pour réparer cette CDB permet d’activer spécifiquement la GFP. Le nombre de cellules ayant une protéine GFP activée par la réparation peut être mesuré et quantifié. Ces mesures ont permis de visualiser une diminution de la réparation par HR d’environ 37% à la suite de l’expression de l’ARN interférent contre FANCG (Figure 23B). Puisque la voie de Fanconi dans laquelle FANCG est impliquée est suivie de la réparation de la CDB par HR, ce résultat concorde avec les attentes. Au niveau de la réparation par SSA, les résultats démontrent une augmentation de presque 100% de la réparation par ce mécanisme par rapport au contrôle lorsque FANCG est absent (Figure 23B). Ceci concorde avec l’hypothèse voulant qu’en absence de FANCG, RIF1 ne peut plus bloquer la résection. En présence d’un excès de résection, le mécanisme de réparation par SSA est augmenté surtout dans la phase G1 du cycle cellulaire, où la HR ne peut avoir lieu dû à l’absence de chromatide sœur. Quant à la réparation par le mécanisme NHEJ, tel qu’anticipé précédemment, celui-ci est diminué de 52% en absence de FANCG (Figure 23B). Ce dernier résultat peut aussi s’expliquer par une résection excessive, qui empêche la ligation directe des extrémités cassées.

Figure 23 : Essais de réparation in vivo

A L’efficacité de l’ARN interférent contre FANCG a été vérifiée à chacune des expériences par immunobuvardage. B L’implication de FANCG dans la recombinaison homologue, l’appariement d’extrémités simple-brin ainsi que dans la ligation d’extrémités non-homologues a été mesuré à l’aide de différentes cassettes de réparation exprimées de façon stable dans les cellules HEK293T.
Discussion

Le but de mes travaux de maîtrise était d’élucider les caractéristiques biochimiques de FANCG ainsi que de démontrer sa fonction dans un contexte cellulaire. Au début de ma maîtrise, la fonction de FANCG dans la cellule était peu comprise, mais ces travaux ont permis de déterminer que, bien que FANCG ne possède pas la capacité de lier l’ADN, il est recruté aux sites de dommages à l’ADN. Au niveau de la réparation de l’ADN, suite à un dommage, FANCG peut promouvoir la réparation par NHEJ, ce qui est démontré par une diminution de la réparation selon ce mécanisme en absence de FANCG.

1. FANCG ne lie pas l’ADN

Jusqu’à maintenant les études portant sur FANCG s’intéressaient davantage à ses partenaires, c’est-à-dire aux interactions possibles de FANCG avec d’autres protéines, qu’à ses fonctions elles-mêmes. Ainsi, les fonctions biochimiques et moléculaires de FANCG sont peu, sinon pas connues. Parmi les quelques études qui ont été réalisées à ce sujet, certaines se sont intéressées à la localisation cellulaire de FANCG et des autres protéines de l’AF. La localisation de FANCG au niveau de la chromatine a été montrée précédemment (Qiao et al., 2001). Par contre, cette étude démontrait aussi qu’en absence de FANCA, FANCG était absent de la chromatine, mettant ainsi en évidence la nécessité de FANCA afin de promouvoir le recrutement de FANCG à la chromatine. Les travaux présentés dans ce mémoire démontrent que FANCG par lui-même ne peut pas lier l’ADN et, du même coup, la chromatine. Malgré l’absence de domaine de liaison à l’ADN dans la protéine FANCG, cette dernière peut bel et bien se rendre au site de dommage à l’ADN, ce que nous avons pu visualiser par la co-localisation des foyers de FANCG avec les foyers γH2AX par une technique d’immunofluorescence.

Sachant que FANCG ne peut pas lier l’ADN, il est intéressant de s’interroger à savoir pourquoi cette protéine de réparation de l’ADN ne possède pas de domaine de liaison à l’ADN. Ceci pourrait être un mécanisme de régulation de la réparation faisant que FANCG est recruté à l’ADN seulement dans certaines conditions ou bien, que des modifications post-traductionnelles spécifiques doivent être induites pour que la liaison à l’ADN soit possible. Pour mieux comprendre le mécanisme par lequel FANCG est recruté aux sites de dommages à l’ADN, des essais de liaison à l’ADN avec les protéines purifiées de FANCG en complexe avec ses différents partenaires connus pourraient être réalisés de façon à savoir lequel de ces partenaires a la capacité de recruter FANCG sur l’ADN. FANCA étant connu non-seulement pour interagir avec FANCG, mais aussi comme ayant la capacité de lier l’ADN (Garcia-Higuera et al. 1999 ; Yuan et al., 2012), la protéine FANCA sera purifiée et des essais de compétition en retard sur gel seront réalisés avec FANCG et FANCA ensemble ainsi qu’avec différents substrats d’ADN ce qui indiquera si en présence de FANCA, FANCG peut lier l’ADN. La déplétion des partenaires de FANCG in vivo, par ARN interférant, suivi par la visualisation des foyers de
réparation de FANCG pourrait aussi permettre de découvrir l'identité de la protéine recrutant FANCG au niveau de la chromatine. FANCA étant le partenaire potentiel ayant ce rôle, les expériences futures cibleront d'abord cette protéine.

Les protéines composant le complexe B2D2GX3 pourraient aussi être responsables du recrutement de FANCG sur l'ADN. C'est pour cette raison que nous tenterons de mieux comprendre l'architecture de ce complexe ainsi que sa fonction. De plus, il serait intéressant d’utiliser des cellules déficientes pour les protéines FANCD2, XRCC3 ou BRCA2 et d’observer la localisation cellulaire de FANCG et son recrutement au niveau des dommages à l’ADN.

2. FANCG et le NHEJ

L’impact de FANCG sur la réparation par le NHEJ a été démontré de plus d’une façon dans notre étude. D’abord FANCG et DNA-PKcs phosphorylé co-localisent au niveau des dommages à l’ADN et les analyses protéomiques ont permis de déterminer que FANCG interagit avec les protéines Ku70 et Ku80 (Tableau A1, Annexes), essentielles au recrutement de DNA-PKcs au site de CDB. Ensuite, dans des cellules de patients n’exprimant pas la protéine FANCG endogène, en comparaison avec des cellules complémentées avec l’ADNc de FANCG, il y a une diminution marquée de la quantité de foyers de réparation DNA-PKcs phosphorylé (Figure 21). Finalement, dans des essais de réparation in vivo utilisant une GFP inactive pouvant spécifiquement être activée suite à l’induction d’une CDB unique et réparée par le NHEJ, il a été mis en évidence que l’absence de FANCG diminue de 50% le niveau de réparation par le mécanisme de NHEJ (Figure 23B).

Ce n’est pas la première fois que la voie de Fanconi est associée au NHEJ (Adamo et al., 2010 ; Bunting et al., 2012 ; Pace et al., 2010). Par contre, les associations entre la voie de Fanconi, la HR et le NHEJ faites auparavant ne vont pas dans le même sens que ce qui est proposé par nos travaux. Il a été démontré précédemment que la sensibilité aux agents pontants l’ADN présente chez les cellules des patients atteints de l’AF est due à la réparation aberrante par le mécanisme de NHEJ qui est présente chez ces patients et que la suppression du NHEJ permet de supprimer la sensibilité de ces cellules aux agents pontants (Adamo et al., 2010 ; Pace et al., 2010). Ce qui tend à démontrer que les protéines FANC ont pour rôle de promouvoir la HR et d’inhiber le NHEJ, et qu’en leur absence, le NHEJ aberrant est augmenté, provoquant une augmentation de l’instabilité génomique. Par contre, ces deux études ne concernent pas FANCG, mais d’autres protéines de l’AF, plus précisément FANCD2 et FANCC, et les résultats obtenus ont été généralisés pour l’ensemble des protéines FANC. Ceci ne garantit pas nécessairement que ce qui s’applique pour FANCD2 et FANCC s’applique aussi pour les autres protéines de la famille FANC. Nous pouvons donc affirmer qu’aucune étude
directe n’a jamais montré que FANCG pouvait promouvoir la HR et inhiber le NHEJ comme c’est le cas pour FANCD2 et FANCC.

Les travaux de Bunting et al. tendent à appuyer notre hypothèse en montrant que les souris double mutantes Ku80−/− et FANCD2−/− ne sont pas viables et que la délétion de 53BP1 dans des souris KO FANCD2 augmente la sensibilité de ces souris envers le cisplatine et la MMC (Bunting et al., 2012). Ces résultats suggèrent que les protéines FANC n’ont pas pour rôle d’inhiber le NHEJ, mais plutôt que le NHEJ peut en quelque sorte compléter la voie de Fanconi en compensant le manque de réparation des ICL lorsqu’un des facteurs de la voie de Fanconi est absent. Ceci concorde avec notre hypothèse comme quoi, la voie de Fanconi, en fonction des conditions cellulaires, peut promouvoir la HR ou le NHEJ pour réparer les ICL. Ce modèle est présenté à la Figure 24 et décrit plus loin dans le texte.

Une autre étude, de Nakanishi et al., permet de mieux comprendre le rôle de FANCG dans la réparation des CDB (Nakanishi et al., 2005). Cette étude démontre que FANCA et FANCG peuvent promouvoir la HR, mais que leur absence ne diminue que légèrement la réparation par NHEJ. Le moyen employé pour mesurer le niveau de NHEJ dans cette dernière étude, est un moyen indirect : les auteurs utilisent le système DR-GFP (Pierce et al., 1999) dans lequel ils induisent une CDB avec l’enzyme I-SceI, suite à quoi ils mesurent le niveau de HR par cytométrie en flux. Par la suite, ils amplifient par PCR, avec des amorces spécifiques les produits de réparation et par digestion de l’ADN ainsi amplifié, ils peuvent identifier le mécanisme de réparation qui a été utilisé pour réparer la CDB. Bien qu’indicatif du mode de réparation préféré par la cellule, cette méthode ne mesure pas la quantité absolue de NHEJ dans la cellule, mais le niveau de NHEJ par rapport au niveau de réparation total dans la cellule. Ainsi, si la HR ou le SSA diminuent en même temps que le NHEJ dans les cellules déficientes en FANCG par exemple, l’effet de la diminution de la réparation par NHEJ semble moindre, car le niveau total de réparation diminue aussi. L’emploi d’une méthode statistique plus appropriée aurait probablement permis de mettre en évidence la diminution significative de réparation par NHEJ dans les cellules n’exprimant pas FANCG, mais la méthode employée ne permet de visualiser qu’une légère diminution de la réparation par ce mécanisme. La diminution de la réparation par NHEJ étant faible, les auteurs n’en font qu’à peine mention. La conclusion de notre étude, voulant que l’absence de FANCG diminue de 50% le niveau de réparation par NHEJ (Figure 23B), complète les résultats obtenus précédemment par le groupe de Nakanishi. La méthode utilisant le vecteur EJ5-GFP dans notre étude mesure de façon directe le niveau de réparation par NHEJ dans la cellule, sans égard pour le niveau de HR ce qui permet de mettre en évidence la diminution marquée de la réparation par ce mécanisme. Nous avons aussi observé une diminution de la réparation par la HR avec l’utilisation du système DR-GFP, tout comme le groupe de Nakanishi. FANCG faisant partie de la voie de Fanconi, qui est préalable à la HR lors de la réparation des ICL, il est attendu que l’absence de FANCG entraîne une diminution de la HR.
L’analyse spectrométrique des protéines interagissant avec FANCG a permis d’identifier plusieurs partenaires, parmi lesquels se trouvent des protéines impliquées au niveau de la réparation par NHEJ. Entre autre, Ku70, un effecteur précoce de la réparation par NHEJ a été identifié dans cette analyse (Tableau A1, Annexes). De plus, l’utilisation de cassettes de réparation DR-GFP, SA-GFP et EJ5-GFP dans des cellules traitées avec un ARN interférant contre FANCG ou un ARN interférant contrôle a permis de constater que la réparation par ces trois mécanismes est affectée, de façon différente, lorsque FANCG est absent. En effet, la HR est diminuée, le SSA est fortement augmenté et le NHEJ est diminué en absence de FANCG (Figure 23B). L’équipe de Stark et al., a utilisé les mêmes cassettes de réparation, soit DR-GFP et SA-GFP, pour tester le niveau de réparation dans des cellules déficientes pour la protéine Ku70 ou complémenté de façon transitoire à l’aide de l’ADNc de Ku70 (Stark et al., 2004). Dans ces cellules, l’absence de Ku70 provoque une augmentation de la réparation par HR, survenant en réponse à l’impossibilité d’utiliser le NHEJ pour la réparation des CDB. Étonnamment, une augmentation de la réparation par SSA est aussi observée en absence de Ku70. Le fait que l’absence de FANCG ou de Ku70 ait un effet similaire, en augmentant drastiquement le niveau de réparation par SSA, permet d’appuyer l’hypothèse que ces deux protéines sont impliquées dans la même voie de réparation. Étant donné qu’il est connu que PARP1 et Ku70/80 sont en compétition pour la liaison des extrémités d’ADN brisées lors d’une CDB et que FANCG semble agir dans la même voie de réparation que Ku70, il est très probable que le rôle de FANCG se situe davantage dans la réparation par le mécanisme du NHEJ classique plutôt qu’au niveau du NHEJ-alt (Wang et al., 2006). Par contre, puisque FANCG interagit avec PARP1 selon l’analyse protéomique réalisé sur FANCG pour les travaux de ce mémoire (Tableau A1, Annexe 1), il n’est pas possible d’exclure l’implication de FANCG dans la réparation de type NHEJ-alt, PARP1 étant impliqué dans cette voie (Wang et al., 2006). Afin de déterminer clairement si FANCG agit uniquement dans l’une ou l’autre de ces voies, ou dans les deux, il serait possible d’utiliser des cellules contenant une GFP inactive qui ne peut être activée que par l’un ou l’autre de ces deux mécanismes suite à l’induction d’une CDB spécifique au niveau de la GFP. En inactivant FANCG dans ces cellules, il serait possible de déterminer l’impact de la présence ou de l’absence de FANCG sur ces deux mécanismes et ainsi d’éclaircir le rôle que FANCG y joue.

Il serait maintenant possible de confirmer les expériences faites avec les systèmes DR-GFP, SA-GFP et EJ5-GFP par l’utilisation d’un deuxième ARN interfèrent contre FANCG, de façon à confirmer que l’effet observé sur la réparation est dû à l’absence de FANCG et non à des effet secondaires aux traitements ou à des cibles non désirées du premier ARN interfèrent. De plus, les cellules de patients déficientes pour l’une des protéines de l’AF sont connues pour utiliser de façon préférentielle le mécanisme de réparation par NHEJ, puisque la HR est généralement affectée dans ces cellules. Ainsi, même en supprimant l’un des composants de la voie de réparation du NHEJ, ces cellules n’ont pas tendance à compenser l’absence de NHEJ par l’utilisation accrue de la HR et ce, même si l’expression de la protéine de l’AF originellement déficiente est restaurée.
(Lombardi et al., 2015). Nos expériences de co-localisation avec les facteurs de NHEJ ayant toutes été réalisées dans les cellules de patients PD326 complémenté ou non avec l’ADNc de FANCG, il serait nécessaire de confirmer ces co-localisations dans d’autres lignées cellulaires.

Les cellules de patients n’exprimant pas FANCG ont été utilisées pour étudier l’impact de l’absence de FANCG sur les foyers de réparation de DNA-PKcs phosphorylé. La quantification des foyers DNA-PKcs phosphorylé permet de mettre en évidence une diminution marquée de ces foyers en absence de FANCG comparativement à la quantité de foyers présents lorsque ces mêmes cellules sont complémentées avec l’ADNc de FANCG. DNA-PKcs étant un composant essentiel et précoce lors de la réparation par NHEJ, la diminution des foyers de réparation de cette protéine en absence de FANCG permet de supposer que FANCG agit non seulement dans cette voie de réparation, mais qu’il agit en amont de DNA-PKcs, possiblement comme activateur de la voie. Afin d’être en mesure de bien situer l’étape au cours de laquelle FANCG est requise dans cette voie de réparation, la quantification des foyers de réparation des protéines Ku70 et Ku80 présents dans les cellules déficientes et complémentées avec FANCG devra être réalisée. De plus conséquemment à la préférence des cellules de patients de l’AF pour le NHEJ énoncé plus tôt, ces quantifications devront aussi être réalisées dans des lignées cellulaires différentes où l’expression de FANCG pourra être modulée par l’utilisation d’ARN interférents contre celle-ci.

3. Impact de FANCG sur la résection et le choix de la voie de réparation des cassures double-brin

Plusieurs facteurs influencent le choix de la voie de réparation à utiliser lorsque la cellule doit réparer une CDB. La phase du cycle cellulaire est l’un de ces facteurs et sera discutée plus loin. La position nucléaire du bris, soit au niveau de la membrane nucléaire, dans les pores nucléaires ou plus vers l’intérieur du noyau peut aussi influencer la voie de réparation utilisée entre la HR et le NHEJ alternatif (Lemaître et al., 2014). Parmi les facteurs d’importance dictant ce choix, on retrouve aussi la résection (Ciccia et Elledge, 2010). La résection de l’ADN permet de préparer les extrémités d’ADN lésées en vue de leur réparation. La HR nécessite la résection qui est normalement effectuée par les protéines CtIP, ExoI et le complexe MRN (Ciccia et Elledge, 2010). Le SSA nécessite aussi la résection pour produire des extrémités d’ADN simple-brin capables de s’apparier avec des régions ayant de l’homologie (Hartlerode et Scully, 2009). Par contre, afin d’éviter la perte d’information génétique vitale, la réparation par le mécanisme de NHEJ, au contraire des deux autres mécanismes, doit empêcher la résection d’avoir lieu. Pour ce faire, les protéines Ku70 et Ku80 lient rapidement les extrémités d’ADN endommagées pour recruter et activer la sous-unité catalytique de DNA-PK. De son côté, DNA-PKcs subit une série de phosphorylations qui permettent de maximiser la protection des extrémités libres d’ADN (Ciccia et Elledge, 2010). En plus de ce mécanisme de protection, le complexe hétérodimérique 53BP1-RIF1 peut lier l’ADNds de chaque côté du bris pour éviter qu’il y ait résection
(Chapman et al., 2013). La résection étant très importante pour le choix de la voie de réparation choisie par la cellule pour réparer une CDB, elle doit être finement contrôlée.

Nos résultats ont permis de mettre en évidence la co-localisation entre FANCG et RIF1, ainsi qu’entre FANCG et 53BP1 deux acteurs importants au niveau du contrôle de la résection (Figure 17C-D). Nous avons aussi découvert, lors de l’analyse protéomique de FANCG, que RIF1 interagissait avec FANCG spécifiquement suite à l’induction de dommages à l’ADN par la MMC (Tableau A1, Annexes). Ce résultat indique que l’interaction entre ces deux protéines est probablement dépendante des dommages à l’ADN présents et que sans dommages, les deux protéines n’ont pas d’affinité l’une pour l’autre.

D’autres évidences suggèrent fortement que FANCG est impliqué au niveau du contrôle de la résection et de ce fait, dans la balance entre le NHEJ et la HR. Les analyses protéomiques révèlent une interaction entre FANCG et NONO ainsi qu’entre FANCG et SFPQ (Tableau A1, Annexes). NONO et SFPQ sont des partenaires qui peuvent tout deux lier les PAR produits par PARP1 au site de dommage (Gagné et al., 2008 ; Gagné et al., 2011). De plus, NONO peut stimuler la réparation par NHEJ et inhiber la HR (Krietsch et al., 2012). NONO est donc un régulateur de la balance existant entre la réparation par NHEJ et la réparation par HR. FANCG pourrait donc agir sur cette balance par l’intermédiaire de NONO. Cette hypothèse est plausible, car elle permet de situer FANCG au niveau de l’initiation de la réparation dans la séquence d’événements menant à la complétion de la réparation par NHEJ et tel qu’énoncé précédemment, FANCG, dans ce modèle, agit bien en amont de DNA-PKcs.

Malgré le fait qu’il a été possible de voir un effet sur le recrutement de DNAPKcs phosphorylé au site de dommage en absence de FANCG, nous n’avons pas prouvé que FANCG agit uniquement au niveau du NHEJ classique impliquant Ku70/80, DNAPKcs, Artemis, XRCC4, Ligase IV et XLF. FANCG interagit avec PARP1 qui est impliqué dans le NHEJ-alt, mécanisme qui nécessite aussi une résection très limitée, mais cette voie implique des protéines différentes de la voie classique soit le complexe MRN, CtIP, la Ligase III et XRCC1. Le niveau de co-localisation entre FANCG et ces protéines pourrait être déterminé de façon à situer FANCG dans l’une ou l’autre de ces voies ou encore à la croisée entre celles-ci.

Récemment, Zhu et al., ont été en mesure d’identifier l’ubiquitination de FANCG, en plus de déterminer que cette ubiquitination est nécessaire pour que FANCG puisse interagir avec le complexe Rap80-BRCA1 (Zhu et al., 2014). Le rôle du complexe Rap80-BRCA1 est d’inhiber la résection, en absence de HR, de façon à éviter la perte d’information et ainsi, l’instabilité génétique (Hu et al, 2011). Ceci vient appuyer l’hypothèse comme quoi le rôle de FANCG dans la réparation par NHEJ est lié au contrôle de la résection et du même coup, au choix de la voie de réparation à emprunter.
Nous proposons que FANCG agit davantage dans la promotion du NHEJ, car il semble être impliqué dans l'inhibition de la résection au site de CDB. L'analyse protéomique ayant mis FANCG en relation avec plusieurs protéines d'importance dans la promotion du NHEJ, il est logique de proposer un rôle majeur de FANCG dans la promotion de cette voie de réparation. Le rôle de FANCG au niveau de la HR semble de moindre importance en comparaison à son rôle dans le NHEJ (Figure 23B). De surcroît, l'analyse protéomique ne relève la présence que de très peu de facteurs impliqués dans la HR, soit seulement RAD51C.

Pour aller plus loin et prouver que FANCG est impliqué dans le contrôle de la résection, les cellules de patients n'exprimant pas FANCG ou complémentées avec l'ADNc de FANCG ont été utilisées pour quantifier les foyers de réparation de RIF1. Cette méthode permet de savoir si FANCG aide à la formation de foyers de réparation de RIF1, s'il n'a pas d'effet sur eux ou s'il inhibe leur formation. Une diminution de la quantité de foyers de RIF1 a été observée en absence de FANCG. Le contrôle de la résection pourrait donc être contrôlé par FANCG qui recrute le complexe 53BP1-RIF1 au site de dommage par son interaction avec RIF1 à la suite de l'induction de dommages à l'ADN. FANCG favoriserait ainsi l'inhibition de la résection. Cette affirmation permet d'expliquer l'augmentation considérable de la réparation par SSA observée en absence de FANCG in vivo par l’utilisation de la cassette de réparation SA-GFP. Ainsi, l’absence de FANCG, un inhibiteur de résection, permet d’augmenter le niveau de résection et ainsi de favoriser le SSA, particulièrement dans les phases G1 et G2 du cycle cellulaire où la HR n’est pas possible ou non utilisée (Karanam et al., 2012).

4. L’importance du cycle cellulaire pour la réparation

Les travaux réalisés permettent de démontrer qu’en plus de son rôle dans la voie de Fanconi, FANCG est impliqué dans la réparation par NHEJ. Nous nous sommes alors interrogés à savoir de quelle façon l’activité de FANCG peut être régulée. La voie de Fanconi et le NHEJ étant régulés par l’état du cycle cellulaire dans laquelle la cellule se trouve, nous avons posé l’hypothèse que l’activité de FANCG est aussi régulée par le cycle cellulaire. L’utilisation de cellules HeLa Fucci qui permettent de déterminer visuellement la phase du cycle cellulaire dans laquelle la cellule se trouve a permis de répondre à cette interrogation. Ces cellules ont été utilisées pour visualiser la co-localisation entre FANCG et DNA-PKcs phosphorylé en fonction de la phase du cycle cellulaire. Puisque le NHEJ est utilisé dans l’ensemble du cycle cellulaire, des foyers de réparation de ces deux protéines ont été observés dans toutes les phases du cycle cellulaire et leur co-localisation a été quantifiée en fonction de la phase du cycle dans laquelle la cellule contenant ces foyers se trouve. Cette quantification a permis de constater qu’en phase G1, 70% des foyers FANCG co-localisent avec DNA-PKcs phosphorylé, alors que dans les phases S et G2, ils ne co-localisent qu’à 40%. La co-localisation entre ces deux protéines est donc influencée par le cycle cellulaire. La réparation par HR étant utilisée davantage en phase S qu’en phase G2, il serait intéressant de pouvoir différencier ces deux phases l’une de l’autre. Ceci pourrait être réalisé en synchronisant les cellules de façon à ce qu’elles soient toutes dans la même phase au
Figure 24: Modèle exposant le rôle de FANCG dans la réparation de l'ADN
mêmes moments, et en observant la co-localisation dans chacune des phases. De plus, il est possible, lorsque les cellules sont synchronisées, d’induire les dommages à l’ADN dans une phase choisie du cycle. Il serait alors possible d’induire des dommages à l’ADN dans les différentes phases et d’observer si la co-localisation entre FANCG et DNA-PKcs phosphorylé varie en fonction du moment auquel le dommage est induit ou du moment auquel le dommage à l’ADN est réparé. La co-localisation entre FANCG et RIF1, ainsi qu’entre FANCG et 53BP1 est probablement aussi dépendante du cycle cellulaire. Pour mettre cette hypothèse à l’épreuve, les cellules HeLa Fucci seront utilisées pour quantifier ces deux événements de co-localisation en fonction de la phase du cycle cellulaire dans laquelle la cellule se trouve.

L’ensemble de ces informations permet de proposer le modèle présenté à la Figure 24. Dans ce modèle, FANCG permet de réguler la réparation en fonction du cycle cellulaire. Ainsi, lorsque les cellules sont en phase S, la réparation des ICL détectés lors de la réplication se produit selon la voie de Fanconi généralement acceptée, et la CDB créée dans ce processus est réparée par la HR, la chromatide sœur étant disponible. Par contre, lorsque les cellules sont en phase G1 du cycle cellulaire, les ICL rencontrés par la machinerie de transcription doivent aussi être réparés car ils empêchent la séparation des brins d’ADN et ainsi le passage des ribosomes en traduction. Il existe des évidences démontrant que les ICL peuvent être réparés selon un mécanisme indépendant de la réplication, mais dépendant de la transcription. Dans le cas de ce type de réparation, aucun duplex homologue n’est présent, la réparation n’est donc pas réalisée par HR (Enoiu et al., 2012; Wang et al., 2001). Selon le modèle proposé ici, le ICL détecté lors de la traduction entraîne le recrutement des protéines de la voie de Fanconi. Celles-ci vont générer une CDB afin de relarguer le dommage, mais, en absence de chromosome homologue la HR ne peut être employée pour la réparation de cette cassure. FANCG, déjà présent au site de dommage pourrait alors catalyser le recrutement de PARP1 au site de dommage, FANCG ne liant pas le PAR formé par la PARP1 (Gagné et al., 2012) et celle-ci ayant été identifiée comme interacteur de FANCG dans l’analyse protéomique. Le PAR formé pourrait alors recruter SFPQ et NONO qui se lient à FANCG au site de dommage, favorisant le NHEJ et le recrutement de Ku70 et Ku80. Parallèlement, la résection serait inhibée à la suite du recrutement de 53BP1-RIF1 sur l’ADNds par l’intermédiaire de FANCG. Il semble impossible que FANCG puisse lier toutes ces protéines en même temps. Les TPR présents sur FANCG pourraient moduler la séquence d’événements en modulant l’affinité de FANCG pour les différentes protéines dans son environnement.

Cette modulation de l’affinité par les TPR pourrait du même coup expliquer la difficulté à localiser les sites exacts utilisés par FANCG pour lier ses différents interacteurs qu’ont rencontrée différents groupes travaillant avec FANCG. D’ailleurs, nous nous sommes intéressés à la relation existant entre FANCG et XRCC3 ayant été découverte précédemment (Hussain et al., 2006). Il a été montré que la mutation L71P communément retrouvée chez les patients FANCG, ainsi que la mutation G216Q au niveau du TPR1 de FANCG abolissent
cette interaction (Hussain et al., 2006 ; Wilson et al, 2010). Nos travaux ont permis de déterminer que la partie N-terminale de FANCG (acide aminé 1 à 293) est responsable de l’interaction avec XRCC3 (Figure A1, Annexes). Par contre, nous avons aussi montré que les mutations L71P et G216Q n’abolissent pas cette interaction (Figure A1, Annexes). Ces résultats contredisent les études précédentes (Hussain et al., 2006 ; Wilson et al, 2010) ce qui met en évidence la grande difficulté à identifier les domaines de liaison de FANCG avec les autres protéines. De plus, nous avons découvert que FANCG pouvait interagir avec lui-même (Figure A2, Annexes), ce qui pourrait expliquer la grande variation dans les résultats obtenus par différents groupes. Il est possible que cette interaction de FANCG avec lui-même soit un moyen de réguler son activité ainsi que de moduler ses interactions avec les autres protéines. Il existe des protéines de réparation de l’ADN qui peuvent s’autoréguler par dimérisation. C’est le cas de PALB2 qui est inactif en tant que dimère, mais en tant que monomère, peut lier BRCA1, RAD51 et BRCA2 et activer la HR (Buisson et Masson, 2012). La modulation de l’activité de FANCG par l’auto-interaction pourrait expliquer la difficulté à identifier les domaines d’interaction de FANCG, car si le domaine d’auto-interaction est disponible, la protéine dimérise et l’interaction avec XRCC3 par exemple, est perdue. Par contre, une mutation affectant l’auto-interaction, peut permettre de visualiser les interactions réelles entre protéines. Afin de déterminer si l’auto-interaction de FANCG contrôle son activité, le domaine responsable de cette auto-interaction doit d’abord être identifié. Par la suite, il sera possible de déterminer les mutations affectant réellement les interactions entre FANCG et les autres protéines.

Le modèle proposé doit être validé par davantage de preuves. Dans cette optique, la co-localisation entre FANCG et RIF1 en fonction de la phase du cycle cellulaire sera observée. De plus, un plasmide portant un ICL unique sera utilisé pour évaluer si la réparation des ICL par FANCG est dépendante de la réplication et dans quelle proportion. Ces expériences apporteront la lumière sur le rôle de FANCG dans les différents mécanismes de réparation utilisés en fonction de la phase du cycle cellulaire.
Conclusion

Bien que rare, l’AF affecte profondément la vie des personnes atteintes et diminue leur espérance de vie. Une meilleure compréhension des mécanismes moléculaires responsables de cette maladie est vitale pour la compréhension des symptômes cliniques observés. En plus de venir en aide aux gens atteints de l’AF, la compréhension de la fonction spécifique de chacun des gènes de la famille FANC est primordiale pour la population en général, car une mutation hétérozygote de l’un de ces gènes, bien que ne provoquant pas la maladie, est associée à une incidence accrue à développer un cancer. Le développement de nouveaux traitements contre le cancer passe par l’étude des gènes impliqués dans son développement et les gènes de l’AF en sont des acteurs importants. FANCG étant un composant du Complex e Cœur de AF, l’élucidation de ces différentes caractéristiques, autant moléculaires que cellulaires est vitale.

L’étude réalisée a permis de mettre en évidence l’importance de FANCG au niveau de la réparation de l’ADN par différents mécanismes et ainsi de confirmer l’hypothèse de départ comme quoi FANCG a des fonctions additionnelles à ces fonctions au niveau du Complex e Cœur de la voie de Fanconi. Bien plus qu’une simple protéine d’échafaudage, FANCG préserve l’information génétique en régulant la balance entre le NHEJ et la HR pour que ces deux mécanismes ne soient utilisés qu’au moment opportun. L’absence de FANCG dans la cellule dérègule l’ensemble des mécanismes de réparation des CDB, démontrant ainsi son importance dans la réparation de ces bris hautement nocifs pour la cellule. L’exploration de FANCG n’en est qu’à ses débuts et sa fonction sera précisée au cours du temps tout comme l’implication de la réplication dans cette fonction.
Bibliographie

Shibata, A., Conrad, S., Birraux, J., Geuting, V., Barton, O., Ismail, A., Kakaroukgas, A., Meek, K., Taucher

Figure A 1: Interaction entre FANCG et XRCC3

L’immunoprécipitation de Flag-XRCC3 surexprimé avec différentes constructions de FANCG marquées avec l’étiquette myc en cellules HEK293T a permis de mettre en évidence l’interaction entre ces deux protéines. A L’immunoprécipitation de Flag-XRCC3 permet de co-précipiter myc-FANCG. B La construction myc-FANCG-P1 peut co-précipiter suite à l’immunoprécipitation de Flag-XRCC3, de même que les constructions myc-FANCG-P1 muté au niveau de l’acide aminé L71P ou contenant une mutation dans le TPR1, G216Q. C À la suite de l’induction de dommages à l’ADN par un traitement à la mitomycine C pour une durée de 18h, les différentes constructions de FANCG peuvent être co-précipitées avec Flag-XRCC3. FANCG-P1 correspond à la partie N-terminale de FANCG comprenant les acides aminés 1 à 293.
Figure A 2: Interaction de FANCG avec lui-même

A La co-infection de cellules Sf9 avec les baculovirus GST-FANCG-TAP et Flag-FANCG-HA, suivie d’une immunopräcipitation contre GST permet de co-précipiter Flag-FANCG-HA. B La co-infection de cellules Sf9 avec les baculovirus GST-FANCG-TAP et Flag-FANCG-HA, suivie d’une immunopräcipitation contre l’étiquette Flag permet de co-précipiter GST-FANCG-TAP. C Les constructions myc-FANCG et Flag-FANCG sont surexprimées dans les cellules Sf9, suite à quoi l’immunopräcipitation de Flag-FANCG permet de co-précipiter myc-FANCG.
Tableau A 1: Liste des interacteurs de FANCG identifiés lors de l’analyse protéomique

<table>
<thead>
<tr>
<th>Identified Proteins (662/663)</th>
<th>Accession Number</th>
<th>Molecular Weight</th>
<th>pEGFP-C1 - UT</th>
<th>pEGFP-C1 - MMC</th>
<th>GFP-FANCG - UT</th>
<th>GFP-FANCG - MMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Flag-GFP (Nicolas Bisson 2013-04-02)</td>
<td>3Flag-GFP</td>
<td>30 kDa</td>
<td>23</td>
<td>23</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>FANCG_HUMAN Fanconi anemia group G protein [Homo sapiens (Human) [9606]]</td>
<td>O15287</td>
<td>69 kDa</td>
<td>17</td>
<td>0</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>TUBA1B_HUMAN Tubulin alpha-1B chain [Homo sapiens (Human) [9606]]</td>
<td>P07437 (+2)</td>
<td>50 kDa</td>
<td>2</td>
<td>4</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>TBA1B_HUMAN Tubulin alpha-1B chain [Homo sapiens (Human) [9606]]</td>
<td>P68363</td>
<td>50 kDa</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>ADT2_HUMAN ADP/ATP translocase 2 [Homo sapiens (Human) [9606]]</td>
<td>P05141</td>
<td>33 kDa</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Q59EJ3_HUMAN Heat shock 70kDa protein 1A variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q72627 (+1)</td>
<td>482 kDa</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>48</td>
</tr>
<tr>
<td>Q53HM9_HUMAN Heat shock cognate 71 kDa protein [Homo sapiens (Human) [9606]]</td>
<td>P11142</td>
<td>71 kDa</td>
<td>6</td>
<td>4</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>HSF90B_HUMAN Heat shock protein HSP 90-beta [Homo sapiens (Human) [9606]]</td>
<td>P08238 (+1)</td>
<td>83 kDa</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>VIME_HUMAN Vimentin [Homo sapiens (Human) [9606]]</td>
<td>P08670</td>
<td>54 kDa</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>IRS4_HUMAN Insulin receptor substrate 4 [Homo sapiens (Human) [9606]]</td>
<td>O14654</td>
<td>134 kDa</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>L0R5A1_HUMAN Alternative protein CSF2RB [Homo sapiens (Human) [9606]]</td>
<td>L0R5A1</td>
<td>12 kDa</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EF2_HUMAN Elongation factor 2 [Homo sapiens (Human) [9606]]</td>
<td>P13639</td>
<td>95 kDa</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>CH60_HUMAN 60 kDa heat shock protein, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P10809 (+1)</td>
<td>61 kDa</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Q5T8D1_HUMAN ATP-dependent zinc metalloprotease YME1L1 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q5T8D1 (+3)</td>
<td>76 kDa</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>PRKDC_HUMAN DNA-dependent protein kinase catalytic subunit [Homo sapiens (Human) [9606]]</td>
<td>P78527 (+1)</td>
<td>469 kDa</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>PRS8_HUMAN 26S protease regulatory subunit 8 [Homo sapiens (Human) [9606]]</td>
<td>P62195</td>
<td>46 kDa</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>PYR1_HUMAN CAD protein [Homo sapiens (Human) [9606]]</td>
<td>P27708</td>
<td>243 kDa</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>GTF2I_HUMAN General transcription factor II-I [Homo sapiens (Human) [9606]]</td>
<td>P78347 (+3)</td>
<td>112 kDa</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>PSMD2_HUMAN 26S proteasome non-ATPase regulatory subunit 2 [Homo sapiens (Human) [9606]]</td>
<td>Q13200</td>
<td>100 kDa</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>PRS7_HUMAN 26S protease regulatory subunit 7 [Homo sapiens (Human) [9606]]</td>
<td>P35998</td>
<td>49 kDa</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>HS90A_HUMAN Heat shock protein HSP 90-alpha [Homo sapiens (Human) [9606]]</td>
<td>P07900</td>
<td>85 kDa</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Q8W6P_HUMAN Class IV beta tubulin [Homo sapiens (Human) [9606]]</td>
<td>Q8W6P6</td>
<td>50 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>GRP78_HUMAN 78 kDa glucose-regulated protein [Homo sapiens (Human) [9606]]</td>
<td>P11021</td>
<td>72 kDa</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Category</td>
<td>Accession</td>
<td>Molecular Weight</td>
<td>Estimated KDa</td>
<td>Errors</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>SMC1A_HUMAN</td>
<td>Structural maintenance of chromosomes protein 1A [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q14683</td>
<td>143 kDa</td>
<td>0 0 12 22</td>
<td></td>
</tr>
<tr>
<td>Q15366-2</td>
<td>Isoform 2 of Poly(rC)-binding protein 2 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q15366-2 (+2)</td>
<td>39 kDa</td>
<td>0 0 11 13</td>
<td></td>
</tr>
<tr>
<td>Q75KX8_HUMAN</td>
<td>Putative uncharacterized protein SLC25A13 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q75KX8 (+3)</td>
<td>74 kDa</td>
<td>0 0 15 14</td>
<td></td>
</tr>
<tr>
<td>G3P_HUMAN</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P04406</td>
<td>36 kDa</td>
<td>0 0 15 11</td>
<td></td>
</tr>
<tr>
<td>AT1A1_HUMAN</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P05023 (+2)</td>
<td>113 kDa</td>
<td>0 0 14 17</td>
<td></td>
</tr>
<tr>
<td>P14735-2</td>
<td>Isoform 2 of Insulin-degrading enzyme [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P14735-2</td>
<td>44 kDa</td>
<td>0 0 12 13</td>
<td></td>
</tr>
<tr>
<td>RL23_HUMAN</td>
<td>60S ribosomal protein L23 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P62829</td>
<td>15 kDa</td>
<td>0 0 16 6</td>
<td></td>
</tr>
<tr>
<td>Q00325-2</td>
<td>Isoform 8 of Phosphohexose isomerase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q00325 (+3)</td>
<td>40 kDa</td>
<td>0 0 8 9</td>
<td></td>
</tr>
<tr>
<td>ADT3_HUMAN</td>
<td>ATP/ATP translocase 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P12236</td>
<td>33 kDa</td>
<td>0 0 5 18</td>
<td></td>
</tr>
<tr>
<td>DNJA1_HUMAN</td>
<td>DnaJ homolog subfamily A member 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P31689</td>
<td>45 kDa</td>
<td>0 0 11 12</td>
<td></td>
</tr>
<tr>
<td>PSMD3_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>O43242 (+4)</td>
<td>61 kDa</td>
<td>0 0 14 13</td>
<td></td>
</tr>
<tr>
<td>PRS4_HUMAN</td>
<td>26S protease regulatory subunit 4 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P62191 (+2)</td>
<td>49 kDa</td>
<td>0 0 11 12</td>
<td></td>
</tr>
<tr>
<td>PRS6B_HUMAN</td>
<td>26S protease regulatory subunit 6B [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P43686</td>
<td>47 kDa</td>
<td>0 0 12 12</td>
<td></td>
</tr>
<tr>
<td>Q6EVX4_HUMAN</td>
<td>Structural maintenance of chromosomes 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q6EVX4 (+1)</td>
<td>142 kDa</td>
<td>0 0 13 18</td>
<td></td>
</tr>
<tr>
<td>FANCA_HUMAN</td>
<td>Fanconi anemia group A protein [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q01360</td>
<td>163 kDa</td>
<td>0 0 8 20</td>
<td></td>
</tr>
<tr>
<td>MATR3_HUMAN</td>
<td>Matrin-3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P43243 (+1)</td>
<td>95 kDa</td>
<td>0 0 6 18</td>
<td></td>
</tr>
<tr>
<td>SERA_HUMAN</td>
<td>D-3-phosphoglycerate dehydrogenase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q043175</td>
<td>57 kDa</td>
<td>0 0 14 11</td>
<td></td>
</tr>
<tr>
<td>ATPA_HUMAN</td>
<td>ATP synthase subunit alpha, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P25705</td>
<td>60 kDa</td>
<td>0 0 11 10</td>
<td></td>
</tr>
<tr>
<td>TB82B_HUMAN</td>
<td>Tubulin beta-2B chain [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q98V1A</td>
<td>50 kDa</td>
<td>0 0 7 6</td>
<td></td>
</tr>
<tr>
<td>ATD3A_HUMAN</td>
<td>ATPase family AAA domain-containing protein 3A [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q9NV17</td>
<td>71 kDa</td>
<td>0 0 10 13</td>
<td></td>
</tr>
<tr>
<td>PSMD1_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q99460 (+2)</td>
<td>106 kDa</td>
<td>0 0 11 15</td>
<td></td>
</tr>
<tr>
<td>PS2272-2</td>
<td>Isoform 2 of Heterogeneous nuclear ribonucleoprotein M [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P52272-2</td>
<td>74 kDa</td>
<td>0 0 8 17</td>
<td></td>
</tr>
<tr>
<td>PRDX1_HUMAN</td>
<td>Peroxiredoxin 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q06830</td>
<td>22 kDa</td>
<td>0 0 11 10</td>
<td></td>
</tr>
<tr>
<td>Q6N094_HUMAN</td>
<td>Putative uncharacterized protein DKFZp686D01196 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q6N094</td>
<td>53 kDa</td>
<td>0 0 12 10</td>
<td></td>
</tr>
<tr>
<td>B4DWS2_HUMAN</td>
<td>cDNA FLJ55253, highly similar to Actin, cytoplasmic 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>B4DWS2</td>
<td>39 kDa</td>
<td>0 0 9 9</td>
<td></td>
</tr>
<tr>
<td>AIFM1_HUMAN</td>
<td>Apoptosis-inducing factor 1, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>O95831 (+1)</td>
<td>67 kDa</td>
<td>0 0 12 10</td>
<td></td>
</tr>
<tr>
<td>SRPRB_HUMAN</td>
<td>Signal recognition particle receptor subunit beta [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>Q9Y5M8</td>
<td>30 kDa</td>
<td>0 0 12 9</td>
<td></td>
</tr>
<tr>
<td>TERA_HUMAN</td>
<td>Transitional endoplasmic reticulum ATPase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td>P55072</td>
<td>89 kDa</td>
<td>0 0 16 9</td>
<td></td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Accession</td>
<td>MW (kDa)</td>
<td>Log2 Fold Change</td>
<td>P Value</td>
<td>Benjamini Adj P Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>PRS6A_HUMAN</td>
<td>26S protease regulatory subunit 6A [Homo sapiens (Human) [9606]]</td>
<td>P17980 (+1)</td>
<td>49 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSA7_HUMAN</td>
<td>Proteasome subunit alpha type-7 [Homo sapiens (Human) [9606]]</td>
<td>Q14818</td>
<td>28 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SYEP_HUMAN</td>
<td>Bifunctional glutamate/proline--tRNA ligase [Homo sapiens (Human) [9606]]</td>
<td>P07814</td>
<td>171 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLH1_HUMAN</td>
<td>Clathrin heavy chain 1 [Homo sapiens (Human) [9606]]</td>
<td>Q00610 (+1)</td>
<td>192 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DYHC1_HUMAN</td>
<td>Cytoplasmic dynein 1 heavy chain 1 [Homo sapiens (Human) [9606]]</td>
<td>Q14204</td>
<td>532 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IFA1_HUMAN</td>
<td>Eukaryotic initiation factor 4A-1 [Homo sapiens (Human) [9606]]</td>
<td>P60842 (+3)</td>
<td>46 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E1NZA1_HUMAN</td>
<td>Peroxisome proliferator activated receptor interacting complex protein</td>
<td>E1NZA1</td>
<td>293 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4F2_HUMAN</td>
<td>4F2 cell-surface antigen heavy chain [Homo sapiens (Human) [9606]]</td>
<td>P08195 (+4)</td>
<td>68 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H6VR8_HUMAN</td>
<td>Keratin 1 [Homo sapiens (Human) [9606]]</td>
<td>H6VR8 (+4)</td>
<td>66 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B7Z228_HUMAN</td>
<td>T-complex protein 1 subunit delta [Homo sapiens (Human) [9606]]</td>
<td>B7Z228</td>
<td>52 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R38_HUMAN</td>
<td>60S ribosomal protein L38 [Homo sapiens (Human) [9606]]</td>
<td>P63173</td>
<td>8 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M2OM_HUMAN</td>
<td>Mitochondrial 2-oxoglutarate/malate carrier protein [Homo sapiens (Human) [9606]]</td>
<td>Q02978</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NONO_HUMAN</td>
<td>Non-POU domain-containing octamer-binding protein [Homo sapiens (Human) [9606]]</td>
<td>Q15233 (+1)</td>
<td>54 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AGK_HUMAN</td>
<td>Acylglycerol kinase, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q53H12 (+2)</td>
<td>47 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CKA4_HUMAN</td>
<td>Cytoskeleton-associated protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q07065 (+3)</td>
<td>66 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAGD2_HUMAN</td>
<td>Melanoma-associated antigen D2 [Homo sapiens (Human) [9606]]</td>
<td>Q9UNF1</td>
<td>65 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TBB6_HUMAN</td>
<td>Tubulin beta-6 chain [Homo sapiens (Human) [9606]]</td>
<td>Q9BF75 (+1)</td>
<td>50 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSD13_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 13 [Homo sapiens (Human) [9606]]</td>
<td>Q9UNM6 (+5)</td>
<td>43 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XP01_HUMAN</td>
<td>Exportin-1 [Homo sapiens (Human) [9606]]</td>
<td>Q14980</td>
<td>123 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RP11_HUMAN</td>
<td>Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 [Homo sapiens (Human) [9606]]</td>
<td>P04843 (+2)</td>
<td>69 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSB1_HUMAN</td>
<td>Proteasome subunit beta type-1 [Homo sapiens (Human) [9606]]</td>
<td>P02618 (+1)</td>
<td>26 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS3_HUMAN</td>
<td>40S ribosomal protein S3 [Homo sapiens (Human) [9606]]</td>
<td>P23396</td>
<td>27 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAG6_HUMAN</td>
<td>Large proline-rich protein BAG6 [Homo sapiens (Human) [9606]]</td>
<td>P46379 (+5)</td>
<td>119 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HNRPF_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein F [Homo sapiens (Human) [9606]]</td>
<td>P52597</td>
<td>46 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCBP1_HUMAN</td>
<td>Poly(CJ)-binding protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q15365</td>
<td>37 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AL3A2_HUMAN</td>
<td>Fatty aldehyde dehydrogenase [Homo sapiens (Human) [9606]]</td>
<td>P51648 (+1)</td>
<td>55 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PGRC1_HUMAN</td>
<td>Membrane-associated progesterone receptor component 1 [Homo sapiens (Human) [9606]]</td>
<td>Q00264</td>
<td>22 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene Name</td>
<td>P05388 (+5)</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PS58_HUMAN</td>
<td>Proteasome subunit beta type-5</td>
<td>P28074 (+1)</td>
<td>28 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>GRP75_HUMAN</td>
<td>Stress-70 protein, mitochondrial</td>
<td>P38646 (+3)</td>
<td>74 kDa</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>HNRPU_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein U</td>
<td>Q00839 (+3)</td>
<td>91 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>FAS_HUMAN</td>
<td>Fatty acid synthase [Homo sapiens (Human) [9606]]</td>
<td>P49327</td>
<td>273 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TCPG_HUMAN</td>
<td>T-complex protein 1 subunit gamma</td>
<td>P49368 (+2)</td>
<td>61 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>PSMD6_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 6 [Homo sapiens (Human) [9606]]</td>
<td>Q15008 (+1)</td>
<td>46 kDa</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>TIM50_HUMAN</td>
<td>Mitochondrial import inner membrane translocase subunit TIM50 [Homo sapiens (Human) [9606]]</td>
<td>Q32CQ8 (+1)</td>
<td>40 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>PSDE_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 14 [Homo sapiens (Human) [9606]]</td>
<td>Q00487</td>
<td>35 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>RS14_HUMAN</td>
<td>40S ribosomal protein S14 [Homo sapiens (Human) [9606]]</td>
<td>P62263</td>
<td>16 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Q495Y4_HUMAN</td>
<td>RHBDL3 protein [Homo sapiens (Human) [9606]]</td>
<td>Q495Y4 (+1)</td>
<td>9 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>FBXV16_HUMAN</td>
<td>Sodium-dependent neutral amino acid transporter B(0)AT2 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>F8VX16</td>
<td>43 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>GNAI3_HUMAN</td>
<td>Guanine nucleotide-binding protein G(k) subunit alpha [Homo sapiens (Human) [9606]]</td>
<td>P08754</td>
<td>41 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>DDX5_HUMAN</td>
<td>Probable ATP-dependent RNA helicase DDX5 [Homo sapiens (Human) [9606]]</td>
<td>P17844 (+6)</td>
<td>69 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NPM_HUMAN</td>
<td>Nucleophosmin [Homo sapiens (Human) [9606]]</td>
<td>P06748 (+1)</td>
<td>33 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>SRPR_HUMAN</td>
<td>Signal recognition particle receptor subunit alpha [Homo sapiens (Human) [9606]]</td>
<td>P08240 (+2)</td>
<td>70 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>PCNA_HUMAN</td>
<td>Proliferating cell nuclear antigen [Homo sapiens (Human) [9606]]</td>
<td>P12004 (+1)</td>
<td>29 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Q59EH7_HUMAN</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 7 variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q59EH7 (+1)</td>
<td>55 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>H7C463_HUMAN</td>
<td>Mitochondrial inner membrane protein (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>H7C463</td>
<td>68 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>BIRC6_HUMAN</td>
<td>Baculoviral IAP repeat-containing protein 6 [Homo sapiens (Human) [9606]]</td>
<td>Q9NR09</td>
<td>530 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EPHA4_HUMAN</td>
<td>Ephrin type-A receptor 4 [Homo sapiens (Human) [9606]]</td>
<td>P54764 (+3)</td>
<td>110 kDa</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PSD12_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 12 [Homo sapiens (Human) [9606]]</td>
<td>Q00232</td>
<td>53 kDa</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>SYRC_HUMAN</td>
<td>Arginine--tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>P54136</td>
<td>75 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>FAF2_HUMAN</td>
<td>FAS-associated factor 2 [Homo sapiens (Human) [9606]]</td>
<td>Q96CS3</td>
<td>53 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TECR_HUMAN</td>
<td>Very-long-chain enoyl-CoA reductase [Homo sapiens (Human) [9606]]</td>
<td>Q9RNZ1 (+1)</td>
<td>36 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XRC6_HUMAN</td>
<td>X-ray repair cross-complementing protein 6 [Homo sapiens (Human) [9606]]</td>
<td>P12956</td>
<td>70 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Q0VASS_HUMAN</td>
<td>Histone H4 [Homo sapiens (Human) [9606]]</td>
<td>Q0VASS</td>
<td>11 kDa</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene Name</td>
<td>Organism</td>
<td>Accession Number</td>
<td>Molecular Weight</td>
<td>Identity</td>
<td>Similarity</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>P25786-2</td>
<td>Isoform Long of Proteasome subunit alpha</td>
<td>Homo sapiens</td>
<td>P25786-2 (+1)</td>
<td>30 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>type-1</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDAC2_HUMAN</td>
<td>Voltage-dependent anion-selective channel</td>
<td>Homo sapiens</td>
<td>P45880 (+1)</td>
<td>32 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>protein 2</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPA_HUMAN</td>
<td>Coatamer subunit alpha</td>
<td>Homo sapiens</td>
<td>P53621 (+1)</td>
<td>138 kDa</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP6_HUMAN</td>
<td>ATP synthase subunit beta, mitochondrial</td>
<td>Homo sapiens</td>
<td>P06576</td>
<td>57 kDa</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSD11_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 11</td>
<td>Homo sapiens</td>
<td>O00231 (+1)</td>
<td>47 kDa</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6N093_HUMAN</td>
<td>Putative uncharacterized protein</td>
<td>Homo sapiens</td>
<td>Q6N093</td>
<td>46 kDa</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DKFz6p86l04196 (Fragment)</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1A508_HUMAN</td>
<td>PRSS3 protein</td>
<td>Homo sapiens</td>
<td>A1A508</td>
<td>26 kDa</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCO2_HUMAN</td>
<td>Protein SCO2 homolog, mitochondrial</td>
<td>Homo sapiens</td>
<td>Q43819</td>
<td>30 kDa</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNJA2_HUMAN</td>
<td>DnaJ homolog member</td>
<td>Homo sapiens</td>
<td>Q8WVX9 (+1)</td>
<td>59 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACR1_HUMAN</td>
<td>Fatty acyl-CoA reductase 1</td>
<td>Homo sapiens</td>
<td>P14174</td>
<td>12 kDa</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIF_HUMAN</td>
<td>Macrophage migration inhibitory factor</td>
<td>Homo sapiens</td>
<td>P16615 (+3)</td>
<td>115 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TADBP_HUMAN</td>
<td>TAR DNA-binding protein 43</td>
<td>Homo sapiens</td>
<td>Q13148</td>
<td>45 kDa</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBP2_HUMAN</td>
<td>SUMO-protein ligase RanBP2</td>
<td>Homo sapiens</td>
<td>P49792</td>
<td>358 kDa</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP8_HUMAN</td>
<td>Pre-mRNA-processing-splicing factor 8</td>
<td>Homo sapiens</td>
<td>Q6P2Q9</td>
<td>274 kDa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSA1_HUMAN</td>
<td>Activator of 90 kDa heat shock protein</td>
<td>Homo sapiens</td>
<td>Q96A33</td>
<td>38 kDa</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>ATPase homolog 1</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCD47_HUMAN</td>
<td>Coiled-coil domain-containing protein 47</td>
<td>Homo sapiens</td>
<td>Q9H9B4</td>
<td>36 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBLP_HUMAN</td>
<td>Guanine nucleotide-binding protein subunit</td>
<td>Homo sapiens</td>
<td>P63244</td>
<td>35 kDa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>beta-2-like 1</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A89377_HUMAN</td>
<td>Histone H2B</td>
<td>Homo sapiens</td>
<td>A89377</td>
<td>14 kDa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS2_HUMAN</td>
<td>40S ribosomal protein S2</td>
<td>Homo sapiens</td>
<td>P15880 (+3)</td>
<td>31 kDa</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1433T_HUMAN</td>
<td>14-3-3 protein theta</td>
<td>Homo sapiens</td>
<td>P27348</td>
<td>28 kDa</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL10_HUMAN</td>
<td>60S ribosomal protein L10</td>
<td>Homo sapiens</td>
<td>P27635 (+1)</td>
<td>25 kDa</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAP2B_HUMAN</td>
<td>Lamina-associated polypeptide 2, isoforms</td>
<td>Homo sapiens</td>
<td>P42167</td>
<td>51 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>beta/gamma</td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMN33_HUMAN</td>
<td>Transmembrane protein 33</td>
<td>Homo sapiens</td>
<td>P57088 (+1)</td>
<td>28 kDa</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6NVW7_HUMAN</td>
<td>Importin subunit alpha</td>
<td>Homo sapiens</td>
<td>Q6NVW7</td>
<td>58 kDa</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Human) [9606]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Name</td>
<td>Description</td>
<td>Accession Number</td>
<td>Mass (kDa)</td>
<td>Precursor Charge (+)</td>
<td>Net Charge</td>
<td>Clone Number</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HS105_HUMAN</td>
<td>Heat shock protein 105 kDa [Homo sapiens (Human) [9606]]</td>
<td>Q92598 (+5)</td>
<td>97 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>AUP1_HUMAN</td>
<td>Ancient ubiquitous protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y679 (+2)</td>
<td>53 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RL4_HUMAN</td>
<td>60S ribosomal protein L4 [Homo sapiens (Human) [9606]]</td>
<td>P36578 (+1)</td>
<td>48 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MYO1B_HUMAN</td>
<td>Unconventional myosin-Ib [Homo sapiens (Human) [9606]]</td>
<td>O43795 (+3)</td>
<td>132 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>monoclonal antibody CR8033</td>
<td>light chain [Homo sapiens (Human) [9606]]</td>
<td>UP10002782C76</td>
<td>23 kDa</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HDAC1_HUMAN</td>
<td>Histone deacetylase 1 [Homo sapiens (Human) [9606]]</td>
<td>Q13547 (+1)</td>
<td>55 kDa</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>DPM1_HUMAN</td>
<td>Dolichol-phosphate mannosyltransferase [Homo sapiens (Human) [9606]]</td>
<td>O60762 (+2)</td>
<td>30 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PSA4_HUMAN</td>
<td>Proteasome subunit alpha type-4 [Homo sapiens (Human) [9606]]</td>
<td>P25789</td>
<td>29 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PHB_HUMAN</td>
<td>Prohibitin [Homo sapiens (Human) [9606]]</td>
<td>P35232 (+2)</td>
<td>30 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>SC61B_HUMAN</td>
<td>Protein transport protein Sec61 subunit beta [Homo sapiens (Human) [9606]]</td>
<td>P60468</td>
<td>10 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GHC1_HUMAN</td>
<td>Mitochondrial glutamate carrier 1 [Homo sapiens (Human) [9606]]</td>
<td>Q09H936</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DDX21_HUMAN</td>
<td>Nucleolar RNA helicase 2 [Homo sapiens (Human) [9606]]</td>
<td>Q9RN30</td>
<td>87 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PSMD4_HUMAN</td>
<td>26S proteasome non-ATPase regulatory subunit 4 [Homo sapiens (Human) [9606]]</td>
<td>P55036</td>
<td>41 kDa</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FBV21_HUMAN</td>
<td>Heat shock 70 kDa protein 1A/1B [Homo sapiens (Human) [9606]]</td>
<td>F8V214</td>
<td>68 kDa</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B4DZT3_HUMAN</td>
<td>cDNA FLJ50934, highly similar to Lamin-B1 [Homo sapiens (Human) [9606]]</td>
<td>B4DZT3</td>
<td>43 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>RAD21_HUMAN</td>
<td>Double-strand-break repair protein rad21 homolog [Homo sapiens (Human) [9606]]</td>
<td>O60216</td>
<td>72 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>BAG2_HUMAN</td>
<td>BAG family molecular chaperone regulator 2 [Homo sapiens (Human) [9606]]</td>
<td>O95816 (+2)</td>
<td>24 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PSB4_HUMAN</td>
<td>Proteasome subunit beta type-4 [Homo sapiens (Human) [9606]]</td>
<td>P28070</td>
<td>29 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>HNRH1_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein H [Homo sapiens (Human) [9606]]</td>
<td>P31943 (+3)</td>
<td>49 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MCM7_HUMAN</td>
<td>DNA replication licensing factor MCM7 [Homo sapiens (Human) [9606]]</td>
<td>P33993 (+4)</td>
<td>81 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SYIC_HUMAN</td>
<td>Isoleucine–tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>P41252 (+1)</td>
<td>145 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Q08211-2_HUMAN</td>
<td>2 isoform 2 of ATP-dependent RNA helicase A [Homo sapiens (Human) [9606]]</td>
<td>Q08211-2</td>
<td>141 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MYO1C_HUMAN</td>
<td>Unconventional myosin-Ic [Homo sapiens (Human) [9606]]</td>
<td>Q00159 (+3)</td>
<td>122 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HSP76_HUMAN</td>
<td>Heat shock 70 kDa protein 6 [Homo sapiens (Human) [9606]]</td>
<td>P17066 (+3)</td>
<td>71 kDa</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSA2_HUMAN</td>
<td>Proteasome subunit alpha type-2 [Homo sapiens (Human) [9606]]</td>
<td>P25787 (+1)</td>
<td>26 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SYQ_HUMAN</td>
<td>Glutamine–tRNA ligase [Homo sapiens (Human) [9606]]</td>
<td>P47897 (+3)</td>
<td>88 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FKB8_HUMAN</td>
<td>Peptidyl-prolyl cis-trans isomerase FKBP8 [Homo sapiens (Human) [9606]]</td>
<td>Q14318 (+2)</td>
<td>45 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IMB1_HUMAN</td>
<td>Importin subunit beta-1 [Homo sapiens (Human) [9606]]</td>
<td>Q14974 (+1)</td>
<td>97 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Protein ID</td>
<td>MW (kDa)</td>
<td>Score 1</td>
<td>Score 2</td>
<td>Score 3</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>PGAM5_HUMAN</td>
<td>Serine/threonine-protein phosphatase PGAM5, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q96HS1</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHB2_HUMAN</td>
<td>Prohibitin-2 [Homo sapiens (Human) [9606]]</td>
<td>Q96623</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>DIC_HUMAN</td>
<td>Mitochondrial dicarboxylate carrier [Homo sapiens (Human) [9606]]</td>
<td>Q9UBX3</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>UBB_HUMAN</td>
<td>Polyubiquitin-B [Homo sapiens (Human) [9606]]</td>
<td>P0CG47</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ADT1_HUMAN</td>
<td>ADP/ATP translocase 1 [Homo sapiens (Human) [9606]]</td>
<td>P12235</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHB2_HUMAN</td>
<td>Prohibitin-2 [Homo sapiens (Human) [9606]]</td>
<td>O00571</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K1967_HUMAN</td>
<td>DBC1 complex subunit KIA1967 [Homo sapiens (Human) [9606]]</td>
<td>Q8N163</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q6Z5G1-2</td>
<td>Isoform 2 of RING finger protein 156 [Homo sapiens (Human) [9606]]</td>
<td>Q6Z5G1-2</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>XRCC5_HUMAN</td>
<td>X-ray repair cross-complementing protein 5 [Homo sapiens (Human) [9606]]</td>
<td>P13010</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RL13_HUMAN</td>
<td>60S ribosomal protein L13 [Homo sapiens (Human) [9606]]</td>
<td>P26373</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>RL12_HUMAN</td>
<td>60S ribosomal protein L12 [Homo sapiens (Human) [9606]]</td>
<td>P30050</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S5RD_HUMAN</td>
<td>Translocon-associated protein subunit delta [Homo sapiens (Human) [9606]]</td>
<td>P51571</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AIMP2_HUMAN</td>
<td>Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 [Homo sapiens (Human) [9606]]</td>
<td>Q13155</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>RBBP7_HUMAN</td>
<td>Histone-binding protein RBBP7 [Homo sapiens (Human) [9606]]</td>
<td>Q16576</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Q5R370_HUMAN</td>
<td>Calycin binding protein [Homo sapiens (Human) [9606]]</td>
<td>Q5R370</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SMC4_HUMAN</td>
<td>Structural maintenance of chromosomes protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q9NTJ3</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EF1G_HUMAN</td>
<td>Elongation factor 1-gamma [Homo sapiens (Human) [9606]]</td>
<td>P26641</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RS11_HUMAN</td>
<td>40S ribosomal protein S11 [Homo sapiens (Human) [9606]]</td>
<td>P62280</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TIF1B_HUMAN</td>
<td>Transcription intermediary factor 1-beta [Homo sapiens (Human) [9606]]</td>
<td>Q13263</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DRS7B_HUMAN</td>
<td>Dehydrogenase/reductase SDR family member 7B [Homo sapiens (Human) [9606]]</td>
<td>Q6IAN0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NUP93_HUMAN</td>
<td>Nuclear pore complex protein Nup93 [Homo sapiens (Human) [9606]]</td>
<td>Q8N1F7</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>P14618-2</td>
<td>Isomorph M1 of Pyruvate kinase isozymes M1/M2 [Homo sapiens (Human) [9606]]</td>
<td>P14618-2</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CDK1_HUMAN</td>
<td>Cyclin-dependent kinase 1 [Homo sapiens (Human) [9606]]</td>
<td>P06493</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RL18_HUMAN</td>
<td>60S ribosomal protein L18 [Homo sapiens (Human) [9606]]</td>
<td>Q07020</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ILF2_HUMAN</td>
<td>Interleukin enhancer-binding factor 2 [Homo sapiens (Human) [9606]]</td>
<td>Q12905</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PSA5_HUMAN</td>
<td>Proteasome subunit alpha type-5 [Homo sapiens (Human) [9606]]</td>
<td>P28066</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>LDHB_HUMAN</td>
<td>L-lactate dehydrogenase B chain [Homo sapiens (Human) [9606]]</td>
<td>P07195</td>
<td>37</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Name</td>
<td>PDB</td>
<td>MW</td>
<td>LogP</td>
<td>TPS</td>
<td>ID</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>TCPA_HUMAN</td>
<td>T-complex protein 1 subunit alpha [Homo sapiens (Human) [9606]]</td>
<td>P17987</td>
<td>60 kDa</td>
<td>0</td>
<td>5</td>
<td>-36</td>
</tr>
<tr>
<td>RS18_HUMAN</td>
<td>40S ribosomal protein S18 [Homo sapiens (Human) [9606]]</td>
<td>P62269</td>
<td>18 kDa</td>
<td>0</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>PABP1_HUMAN</td>
<td>Polyadenylate-binding protein 1 [Homo sapiens (Human) [9606]]</td>
<td>P11940</td>
<td>71 kDa</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SPC52_HUMAN</td>
<td>Signal peptidase complex subunit 2 [Homo sapiens (Human) [9606]]</td>
<td>Q15005</td>
<td>25 kDa</td>
<td>0</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>IF4G1_HUMAN</td>
<td>Eukaryotic translation initiation factor 4 gamma 1 [Homo sapiens (Human) [9606]]</td>
<td>Q04637</td>
<td>175 kDa</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>PS33_HUMAN</td>
<td>Cellular tumor antigen p53 [Homo sapiens (Human) [9606]]</td>
<td>Q16000</td>
<td>71 kDa</td>
<td>0</td>
<td>3</td>
<td>-36</td>
</tr>
<tr>
<td>CKB55_HUMAN</td>
<td>Cytokeleton-associated protein 5 [Homo sapiens (Human) [9606]]</td>
<td>Q14008</td>
<td>226 kDa</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SYLC_HUMAN</td>
<td>Leucine--tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>Q9P2J5</td>
<td>134 kDa</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>DHX15_HUMAN</td>
<td>Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 [Homo sapiens (Human) [9606]]</td>
<td>Q43143</td>
<td>91 kDa</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>GSE9H4_HUMAN</td>
<td>Dynactin 1 (P150, glued homolog, Drosophila), isoform CRA_a [Homo sapiens (Human) [9606]]</td>
<td>GSE9H4</td>
<td>127 kDa</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>LPPRC_HUMAN</td>
<td>Leucine-rich PPR motif-containing protein, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P42704</td>
<td>158 kDa</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>S27A4_HUMAN</td>
<td>Long-chain fatty acid transport protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q6P1M0</td>
<td>72 kDa</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TRAP1_HUMAN</td>
<td>Heat shock protein 75 kDa, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q12931</td>
<td>80 kDa</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ENOA_HUMAN</td>
<td>Alpha-enolase [Homo sapiens (Human) [9606]]</td>
<td>P06733</td>
<td>47 kDa</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>KCNN1_HUMAN</td>
<td>Small conductance calcium-activated potassium channel protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q92952</td>
<td>50 kDa</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>USMG5_HUMAN</td>
<td>Up-regulated during skeletal muscle growth protein 5 [Homo sapiens (Human) [9606]]</td>
<td>Q96IX5</td>
<td>6 kDa</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PPIA_HUMAN</td>
<td>Peptidyl-prolyl cis-trans isomerase A [Homo sapiens (Human) [9606]]</td>
<td>P62937</td>
<td>18 kDa</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>R54X_HUMAN</td>
<td>40S ribosomal protein S4, X isoform [Homo sapiens (Human) [9606]]</td>
<td>P62701</td>
<td>30 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>EMD_HUMAN</td>
<td>Emerin [Homo sapiens (Human) [9606]]</td>
<td>P50402</td>
<td>29 kDa</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Q59FF0_HUMAN</td>
<td>EBNA-2 co-activator variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q59FF0</td>
<td>107 kDa</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>RUV1_HUMAN</td>
<td>Ruv8-like 1 [Homo sapiens (Human) [9606]]</td>
<td>Q92Y65</td>
<td>50 kDa</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RL27A_HUMAN</td>
<td>60S ribosomal protein L27a [Homo sapiens (Human) [9606]]</td>
<td>P46776</td>
<td>17 kDa</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ATPG_HUMAN</td>
<td>ATP synthase subunit gamma, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P36542</td>
<td>33 kDa</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PEO_HUMAN</td>
<td>Protein pelota homolog [Homo sapiens (Human) [9606]]</td>
<td>Q9BRX2</td>
<td>43 kDa</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Q6IBT3_HUMAN</td>
<td>CCT7 protein [Homo sapiens (Human) [9606]]</td>
<td>Q6IBT3</td>
<td>59 kDa</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SSR1A_HUMAN</td>
<td>Translocon-associated protein subunit alpha [Homo sapiens (Human) [9606]]</td>
<td>P43307</td>
<td>32 kDa</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TBB8_HUMAN</td>
<td>Tubulin beta-8 chain [Homo sapiens (Human) [9606]]</td>
<td>Q3ZCM7</td>
<td>50 kDa</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Protein Name</td>
<td>Accession</td>
<td>Mass (kDa)</td>
<td>MWF</td>
<td>MWAV</td>
<td>MWCV</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>CHD4_HUMAN</td>
<td>Chromodomain-helicase-DNA-binding protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q14839 (+4)</td>
<td>218</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K7ER3_HUMAN</td>
<td>265 proteasome non-ATPase regulatory subunit 8 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>K7ER3</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Fab light chain [Homo sapiens [9606]]</td>
<td>UpI001E07C6D</td>
<td></td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAN_HUMAN</td>
<td>GTP-binding nuclear protein Ran [Homo sapiens (Human) [9606]]</td>
<td>P62826 (+3)</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>US51_HUMAN</td>
<td>116 kDa US small nuclear ribonucleoprotein component [Homo sapiens (Human) [9606]]</td>
<td>Q15029 (+6)</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>QST6W2_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein K (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>QST6W2 (+4)</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ATP0_HUMAN</td>
<td>ATP synthase subunit O, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P48047</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Q8IZR7_HUMAN</td>
<td>Corin (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q8IZR7 (+1)</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Q53HJ4_HUMAN</td>
<td>Minichromosome maintenance protein 3 variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q53HJ4</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EFTU_HUMAN</td>
<td>Elongation factor Tu, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P49411</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>UN45A_HUMAN</td>
<td>Protein unc-45 homolog A [Homo sapiens (Human) [9606]]</td>
<td>Q9H3J1 (+1)</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TBA1A_HUMAN</td>
<td>Tubulin alpha-1A chain [Homo sapiens (Human) [9606]]</td>
<td>Q71U36</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RL7A_HUMAN</td>
<td>60S ribosomal protein L7a [Homo sapiens (Human) [9606]]</td>
<td>P62424 (+1)</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>UBR5_HUMAN</td>
<td>E3 ubiquitin-protein ligase UBR5 [Homo sapiens (Human) [9606]]</td>
<td>O95071 (+3)</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RSMB_HUMAN</td>
<td>Small nuclear ribonucleoprotein-associated proteins B and B'apos; [Homo sapiens (Human) [9606]]</td>
<td>P14678 (+10)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IPO4_HUMAN</td>
<td>Importin-4 [Homo sapiens (Human) [9606]]</td>
<td>Q8TEX9 (+2)</td>
<td>119</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TXTP_HUMAN</td>
<td>Tricarboxylate transport protein, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P53007 (+2)</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>RLA2_HUMAN</td>
<td>60S acidic ribosomal protein P2 [Homo sapiens (Human) [9606]]</td>
<td>P05387</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NOPS5_HUMAN</td>
<td>Nucleolar protein 58 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y2X3</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Keratin, type I cytoskeletal 10 n=1 Tax=Homo sapiens RepI=K1C10_HUMAN</td>
<td>P13645</td>
<td>60</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A8K7H3_HUMAN</td>
<td>cDNA FLJ77670, highly similar to Homo sapiens ribosomal protein S15a (RPS15A), mRNA [Homo sapiens (Human) [9606]]</td>
<td>A8K7H3</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>NSMA3_HUMAN</td>
<td>Sphingomyelin phosphodiesterase 4 [Homo sapiens (Human) [9606]]</td>
<td>Q9NX4E (+2)</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HAT1_HUMAN</td>
<td>Histone acetyltransferase type B catalytic subunit [Homo sapiens (Human) [9606]]</td>
<td>O14929</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S61A1_HUMAN</td>
<td>Protein transport protein Sec61 subunit alpha isoform 1 [Homo sapiens (Human) [9606]]</td>
<td>P61619 (+1)</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PO210_HUMAN</td>
<td>Nuclear pore membrane glycoprotein 210 [Homo sapiens (Human) [9606]]</td>
<td>Q8TEM1</td>
<td>205</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PRP19_HUMAN</td>
<td>Pre-mRNA-processing factor 19 [Homo sapiens (Human) [9606]]</td>
<td>Q9UMS4 (+1)</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RSS_HUMAN</td>
<td>40S ribosomal protein S5 [Homo sapiens (Human) [9606]]</td>
<td>P46782 (+4)</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Accession</td>
<td>Nominal Molecular Weight</td>
<td>Signal Intensity</td>
<td>Incl. Score</td>
<td>Score</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>RL11_HUMAN</td>
<td>60S ribosomal protein L11 [Homo sapiens (Human) [9606]]</td>
<td>P62913</td>
<td>20 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Q6ICQ4_HUMAN</td>
<td>RPLP1 protein (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q6ICQ4</td>
<td>11 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Q96DV6_HUMAN</td>
<td>40S ribosomal protein S6 [Homo sapiens (Human) [9606]]</td>
<td>Q96DV6</td>
<td>29 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SC11A_HUMAN</td>
<td>Signal peptidase complex catalytic subunit SEC11A [Homo sapiens (Human) [9606]]</td>
<td>P67812</td>
<td>21 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SMD3_HUMAN</td>
<td>Small nuclear ribonucleoprotein Sm D3 [Homo sapiens (Human) [9606]]</td>
<td>P62318</td>
<td>(+1) 14 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ABCD3_HUMAN</td>
<td>ATP-binding cassette sub-family D member 3 [Homo sapiens (Human) [9606]]</td>
<td>P28288</td>
<td>(+3) 75 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TIM23_HUMAN</td>
<td>Mitochondrial import inner membrane translocase subunit Tim23 [Homo sapiens (Human) [9606]]</td>
<td>O14925</td>
<td>22 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RS20_HUMAN</td>
<td>40S ribosomal protein S20 [Homo sapiens (Human) [9606]]</td>
<td>P60866</td>
<td>(+1) 13 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FUBP2_HUMAN</td>
<td>Far upstream element-binding protein 2 [Homo sapiens (Human) [9606]]</td>
<td>Q92945</td>
<td>73 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>RL6_HUMAN</td>
<td>60S ribosomal protein L6 [Homo sapiens (Human) [9606]]</td>
<td>Q02878</td>
<td>(+5) 33 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TCPE_HUMAN</td>
<td>T-complex protein 1 subunit epsilon [Homo sapiens (Human) [9606]]</td>
<td>P48643</td>
<td>(+3) 60 kDa</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>RL24_HUMAN</td>
<td>60S ribosomal protein L24 [Homo sapiens (Human) [9606]]</td>
<td>P83731</td>
<td>(+2) 18 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CN37_HUMAN</td>
<td>2apos,:3apos:cyclic-nucleotide 3apos:phosphodiesterase [Homo sapiens (Human) [9606]]</td>
<td>P09543</td>
<td>48 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O95347-2_HUMAN</td>
<td>Isoform 2 of Structural maintenance of chromosomes protein 2 [Homo sapiens (Human) [9606]]</td>
<td>O95347-2</td>
<td>125 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PYRG1_HUMAN</td>
<td>CTP synthase 1 [Homo sapiens (Human) [9606]]</td>
<td>P17812</td>
<td>67 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TCPB8_HUMAN</td>
<td>T-complex protein 1 subunit beta [Homo sapiens (Human) [9606]]</td>
<td>P78371</td>
<td>(+1) 57 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>NTPCR_HUMAN</td>
<td>Cancer-related nucleoside-triphosphatase [Homo sapiens (Human) [9606]]</td>
<td>Q985D7</td>
<td>21 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CALX_HUMAN</td>
<td>Calnexin [Homo sapiens (Human) [9606]]</td>
<td>P27824</td>
<td>68 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HNRPC_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoproteins C1/C2 [Homo sapiens (Human) [9606]]</td>
<td>P07910</td>
<td>(+9) 34 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ATPK_HUMAN</td>
<td>ATP synthase subunit f, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P56134</td>
<td>11 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AIMPI_HUMAN</td>
<td>Aminoaoyl tRNA synthase complex-interacting multifunctional protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q12904</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MSH6_HUMAN</td>
<td>DNA mismatch repair protein Msh6 [Homo sapiens (Human) [9606]]</td>
<td>P52701</td>
<td>(+2) 153 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EIF3B_HUMAN</td>
<td>Eukaryotic translation initiation factor 3 subunit B [Homo sapiens (Human) [9606]]</td>
<td>P55884</td>
<td>(+5) 92 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P63092-2_HUMAN</td>
<td>Isoform Gnas-2 of Guanine nucleotide-binding protein G(s) subunit alpha isoforms short [Homo sapiens (Human) [9606]]</td>
<td>P63092-2</td>
<td>(+2) 44 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SYFA_HUMAN</td>
<td>Phenylalanine--tRNA ligase alpha subunit [Homo sapiens (Human) [9606]]</td>
<td>Q9Y285</td>
<td>(+2) 58 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1433E_HUMAN</td>
<td>14-3-3 protein epsilon [Homo sapiens (Human) [9606]]</td>
<td>P62258</td>
<td>(+3) 29 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>UBP11_HUMAN</td>
<td>Ubiquitin carboxyl-terminal hydrolase 11 [Homo sapiens (Human) [9606]]</td>
<td>P51784</td>
<td>110 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Accession</td>
<td>Name</td>
<td>Description</td>
<td>Source</td>
<td>Change</td>
<td>MW (kDa)</td>
<td>TPS</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Q5T3Q7_HUMAN</td>
<td>Q5T3Q7_HUMAN HEAT repeat containing 1 [Homo sapiens (Human) [9606]]</td>
<td>Q5T3Q7 (+2)</td>
<td>233 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q9BYF3_HUMAN</td>
<td>Q9BYF3_Human Ribosomal protein L36 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q9BYF3</td>
<td>372 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O76094-2</td>
<td>O76094-2 Isoform 2 of Signal recognition particle 72 kDa protein [Homo sapiens (Human) [9606]]</td>
<td>O76094-2 (+5)</td>
<td>133 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RL10A_HUMAN</td>
<td>RL10A_HUMAN 60S ribosomal protein L10a [Homo sapiens (Human) [9606]]</td>
<td>P62906</td>
<td>25 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NU155_HUMAN</td>
<td>NU155_Human Nuclear pore complex protein Nup155 [Homo sapiens (Human) [9606]]</td>
<td>O75694 (+1)</td>
<td>155 kDa</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O19617_HUMAN</td>
<td>O19617_HUMAN HLA class I antigen [Homo sapiens (Human) [9606]]</td>
<td>O19617 (+70)</td>
<td>41 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RL27_HUMAN</td>
<td>RL27_HUMAN 60S ribosomal protein L27 [Homo sapiens (Human) [9606]]</td>
<td>P61353 (+3)</td>
<td>16 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HDAC6_HUMAN</td>
<td>HDAC6_HUMAN Histone deacetylase 6 [Homo sapiens (Human) [9606]]</td>
<td>Q9UBN7 (+2)</td>
<td>131 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PSB3_HUMAN</td>
<td>PSB3_HUMAN Proteasome subunit beta type-3 [Homo sapiens (Human) [9606]]</td>
<td>P49720 (+1)</td>
<td>23 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PS1148-2</td>
<td>PS1148-2 Isoform 2 of Ras-related protein Rab-5C [Homo sapiens (Human) [9606]]</td>
<td>P51148 (+1)</td>
<td>27 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SQSTM_HUMAN</td>
<td>SQSTM_HUMAN Sequestosome-1 [Homo sapiens (Human) [9606]]</td>
<td>Q13501 (+1)</td>
<td>48 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Q53GA7_HUMAN</td>
<td>Q53GA7_HUMAN Tubulin alpha variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q53GA7 (+1)</td>
<td>50 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>NUDC_HUMAN</td>
<td>NUDC_HUMAN Nuclear migration protein nudC [Homo sapiens (Human) [9606]]</td>
<td>Q9Y266</td>
<td>38 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RSAA_HUMAN</td>
<td>RSAA_HUMAN 40S ribosomal protein SA [Homo sapiens (Human) [9606]]</td>
<td>P08865 (+1)</td>
<td>33 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>P49458-2</td>
<td>P49458-2 Isoform 2 of Signal recognition particle 9 kDa protein [Homo sapiens (Human) [9606]]</td>
<td>P49458-2 (+3)</td>
<td>9 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PTPM1_HUMAN</td>
<td>PTPM1_HUMAN Phosphatidyglycerophosphatase and protein-tyrosine phosphatase 1 [Homo sapiens (Human) [9606]]</td>
<td>Q8WUK0 (+2)</td>
<td>23 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>NU205_HUMAN</td>
<td>NU205_HUMAN Nuclear pore complex protein Nup205 [Homo sapiens (Human) [9606]]</td>
<td>Q92621</td>
<td>228 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EF1D_HUMAN</td>
<td>EF1D_HUMAN Elongation factor 1 [Homo sapiens (Human) [9606]]</td>
<td>P29692 (+4)</td>
<td>31 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Q8N490_HUMAN</td>
<td>Q8N490_HUMAN Elongation factor 1 [Homo sapiens (Human) [9606]]</td>
<td>P29692 (+4)</td>
<td>31 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Q8N490_HUMAN</td>
<td>Q8N490_HUMAN Isoform 2 of Probable hydrolase PNKD [Homo sapiens (Human) [9606]]</td>
<td>Q8N490-2</td>
<td>15 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q8EDP6-2</td>
<td>Q8EDP6-2 Isoform 2 of Cullin-associated NEDD8-dissociated protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q8EDP6-2 (+2)</td>
<td>118 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NOP56_HUMAN</td>
<td>NOP56_HUMAN Nucleolar protein 56 [Homo sapiens (Human) [9606]]</td>
<td>Q00567 (+2)</td>
<td>66 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RL7_HUMAN</td>
<td>RL7_HUMAN 60S ribosomal protein L7 [Homo sapiens (Human) [9606]]</td>
<td>P18124</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q8TDR3_HUMAN</td>
<td>Q8TDR3_HUMAN DEAD-box corepressor DP103 [Homo sapiens (Human) [9606]]</td>
<td>Q8TDR3 (+3)</td>
<td>92 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ERAI1_HUMAN</td>
<td>ERAI1_HUMAN GTPase Era, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>O75616 (+3)</td>
<td>48 kDa</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GB1_HUMAN</td>
<td>GB1_HUMAN Guanine nucleotide-binding protein G(11)/G(13)/G(T) subunit beta-1 [Homo sapiens (Human) [9606]]</td>
<td>P62873 (+2)</td>
<td>37 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1433Z_HUMAN</td>
<td>1433Z_HUMAN 14-3-3 protein zeta/delta [Homo sapiens (Human) [9606]]</td>
<td>P63104 (+1)</td>
<td>28 kDa</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Q8IV97_HUMAN</td>
<td>Q8IV97_HUMAN Solute carrier family 7 (Cationic amino acid transporter, y+ system), member 5 [Homo sapiens (Human) [9606]]</td>
<td>Q8IV97-7</td>
<td>55 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Function</td>
<td>Accession Number</td>
<td>M/Z</td>
<td>Fold Change</td>
<td>p Value</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>PSA3_HUMAN</td>
<td>Proteasome subunit alpha type-3 (Homo sapiens, Human) [9606]</td>
<td>Proteasome</td>
<td>P25788 (+2)</td>
<td>28 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 4 n=1 Tax=Homo sapiens RepId=K2C4_HUMAN</td>
<td>P19013 (+7)</td>
<td>57 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H90B2_HUMAN</td>
<td>Putative heat shock protein HSP 90-beta 2 (Homo sapiens, Human) [9606]</td>
<td>HSP</td>
<td>Q58F8</td>
<td>44 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TEL02_HUMAN</td>
<td>Telomere length regulation protein TEL2 homolog (Homo sapiens, Human) [9606]</td>
<td>Telomere</td>
<td>Q9YR8</td>
<td>92 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WDR6_HUMAN</td>
<td>WDR6_HUMAN WD repeat-containing protein 6 (Homo sapiens, Human) [9606]</td>
<td>WD repeat</td>
<td>Q9NNW5 (+1)</td>
<td>122 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US20_HUMAN</td>
<td>US small nuclear ribonucleoprotein 200 kDa helicase (Homo sapiens, Human) [9606]</td>
<td>US</td>
<td>Q75643</td>
<td>245 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDKA_HUMAN</td>
<td>Nucleoside diphosphate kinase A (Homo sapiens, Human) [9606]</td>
<td>Nucleoside diphosphate kinase</td>
<td>P15531 (+1)</td>
<td>17 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CMC1_HUMAN</td>
<td>Calcium-binding mitochondrial carrier protein Aralar1 (Homo sapiens, Human) [9606]</td>
<td>Calcium-binding mitochondrial carrier</td>
<td>Q75746 (+3)</td>
<td>75 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SFXN4_HUMAN</td>
<td>Sideroflexin-4 (Homo sapiens, Human) [9606]</td>
<td>Sideroflexin</td>
<td>Q6P4A7 (+1)</td>
<td>38 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q9UN86-2</td>
<td>Isomor 8 of Ras GTPase-activating protein-binding protein 2 (Homo sapiens, Human) [9606]</td>
<td>Ras GTPase-activating protein-binding</td>
<td>Q9UN86-2 (+1)</td>
<td>51 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RBM39_HUMAN</td>
<td>RNA-binding protein 39 (Homo sapiens, Human) [9606]</td>
<td>RNA-binding</td>
<td>Q14498 (+9)</td>
<td>59 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DNJ86_HUMAN</td>
<td>DnaJ homolog B member 6 (Homo sapiens, Human) [9606]</td>
<td>DnaJ homolog</td>
<td>O75190 (+4)</td>
<td>36 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q59GP4_HUMAN</td>
<td>Hsp70 homolog (Bacterial acetylactate synthase)-like isoform 1 variant (Fragment) (Homo sapiens, Human) [9606]</td>
<td>Hsp70 homolog</td>
<td>Q59GP4 (+1)</td>
<td>46 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDUAA4_HUMAN</td>
<td>NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 (Homo sapiens, Human) [9606]</td>
<td>NADH dehydrogenase</td>
<td>O00483</td>
<td>9 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q5T8N1_HUMAN</td>
<td>Nuclear pore complex protein Nup133 (Homo sapiens, Human) [9606]</td>
<td>Nuclear pore complex</td>
<td>Q5T8N1 (+3)</td>
<td>118 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q59F66_HUMAN</td>
<td>DEAD box polypeptide p82 variant (Fragment) (Homo sapiens, Human) [9606]</td>
<td>DEAD box polypeptide</td>
<td>Q59F66 (+2)</td>
<td>81 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AURKB_HUMAN</td>
<td>Aurora kinase B (Homo sapiens, Human) [9606]</td>
<td>Aurora kinase</td>
<td>Q96GD4 (+1)</td>
<td>39 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UBXN1_HUMAN</td>
<td>UBX domain-containing protein 1 (Homo sapiens, Human) [9606]</td>
<td>UBX domain-containing</td>
<td>Q04323 (+2)</td>
<td>33 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SF3B1_HUMAN</td>
<td>Splicing factor 3B subunit 1 (Homo sapiens, Human) [9606]</td>
<td>Splicing factor</td>
<td>Q75533 (+1)</td>
<td>146 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CDK4_HUMAN</td>
<td>Cyclin-dependent kinase 4 (Homo sapiens, Human) [9606]</td>
<td>Cyclin-dependent kinase</td>
<td>P11802 (+1)</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H2A1_HUMAN</td>
<td>Histone H2A type 1 (Homo sapiens, Human) [9606]</td>
<td>Histone</td>
<td>P0C0S8 (+11)</td>
<td>14 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HNRPM_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein M (Homo sapiens, Human) [9606]</td>
<td>Heterogeneous nuclear ribonucleoprotein</td>
<td>P52272</td>
<td>78 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS16_HUMAN</td>
<td>40S ribosomal protein S16 (Homo sapiens, Human) [9606]</td>
<td>40S ribosomal protein</td>
<td>P62249 (+2)</td>
<td>16 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P211A_HUMAN</td>
<td>Nuclear envelope pore membrane protein POM 121 (Homo sapiens, Human) [9606]</td>
<td>Nuclear envelope pore membrane</td>
<td>Q96HA1 (+5)</td>
<td>128 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RMD3_HUMAN</td>
<td>Regulator of microtubule dynamics protein 3 (Homo sapiens, Human) [9606]</td>
<td>Regulator of microtubule dynamics</td>
<td>Q96TC7 (+2)</td>
<td>52 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SPTC1_HUMAN</td>
<td>Serine palmitoyltransferase 1 (Homo sapiens, Human) [9606]</td>
<td>Serine palmitoyltransferase</td>
<td>O15269</td>
<td>53 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>L-lactate dehydrogenase A chain (Homo sapiens, Human) [9606]</td>
<td>L-lactate dehydrogenase</td>
<td>P00338</td>
<td>37 kDa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>KDa</td>
<td>p-value</td>
<td>q-value</td>
<td>p-value adj</td>
<td>q-value adj</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Q6DC98_HUMAN</td>
<td>LMNB1 protein (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SC22B_HUMAN</td>
<td>Vesicle-trafficking protein SEC22b [Homo sapiens (Human) [9606]]</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>DHCR7_HUMAN</td>
<td>7-dehydrocholesterol reductase [Homo sapiens (Human) [9606]]</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>UMPS_HUMAN</td>
<td>Uridine 5'-diphospho-5'-monophosphate synthase [Homo sapiens (Human) [9606]]</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MELT_HUMAN</td>
<td>Ventricular zone-expressed PH domain-containing protein homolog 1 [Homo sapiens (Human) [9606]]</td>
<td>95</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRDX2_HUMAN</td>
<td>Peroxiredoxin-2 [Homo sapiens (Human) [9606]]</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>F115A_HUMAN</td>
<td>Protein FAM115A [Homo sapiens (Human) [9606]]</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>FANCI_HUMAN</td>
<td>Fanconi anemia group I protein [Homo sapiens (Human) [9606]]</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PARK7_HUMAN</td>
<td>Protein DJ-1 [Homo sapiens (Human) [9606]]</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>RU2A_HUMAN</td>
<td>U2 small nuclear ribonucleoprotein A [Homo sapiens (Human) [9606]]</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TCOF_HUMAN</td>
<td>Treacle protein [Homo sapiens (Human) [9606]]</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COF1_HUMAN</td>
<td>Coflin-1 [Homo sapiens (Human) [9606]]</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>D3RAB2_HUMAN</td>
<td>Dihydrofolate reductase [Homo sapiens (Human) [9606]]</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>UBA2_HUMAN</td>
<td>Ubiquitin-associated domain-containing protein 2 [Homo sapiens (Human) [9606]]</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q8N2L6_HUMAN</td>
<td>cDNA FLJ109138 fis, clone HEMBB1000905, weakly similar to TRANSCRIPTIONAL REPRESSOR RCO-1 [Homo sapiens (Human) [9606]]</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SC16A_HUMAN</td>
<td>Protein transport protein Sec16A [Homo sapiens (Human) [9606]]</td>
<td>234</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SF3B3_HUMAN</td>
<td>Splicing factor 3B subunit 3 [Homo sapiens (Human) [9606]]</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FLNA_HUMAN</td>
<td>Filamin-A [Homo sapiens (Human) [9606]]</td>
<td>281</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RL15_HUMAN</td>
<td>6OS ribosomal protein L15 [Homo sapiens (Human) [9606]]</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B4DXZ6_HUMAN</td>
<td>Fragile X mental retardation syndrome-related protein 1 [Homo sapiens (Human) [9606]]</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>YTH2_HUMAN</td>
<td>YTH domain family protein 2 [Homo sapiens (Human) [9606]]</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RL3_HUMAN</td>
<td>6OS ribosomal protein L3 [Homo sapiens (Human) [9606]]</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NDK3_HUMAN</td>
<td>Nucleoside diphosphate kinase 3 [Homo sapiens (Human) [9606]]</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CB047_HUMAN</td>
<td>Uncharacterized protein C2orf47, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>E9PIE4_HUMAN</td>
<td>Mitochondrial carrier homolog 2 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>LBR_HUMAN</td>
<td>Lamin-B receptor [Homo sapiens (Human) [9606]]</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SENP3_HUMAN</td>
<td>Sentrin-specific protease 3 [Homo sapiens (Human) [9606]]</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Accession</td>
<td>MW (kDa)</td>
<td>P-value</td>
<td>q-value</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>T126A_HUMAN</td>
<td>Transmembrane protein 126A [Homo sapiens (Human) [9606]]</td>
<td>Q9H061</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OST48_HUMAN</td>
<td>Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit [Homo sapiens (Human) [9606]]</td>
<td>P39666 (+4)</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ABD12_HUMAN</td>
<td>Monoacylglycerol lipase ABHD12 [Homo sapiens (Human) [9606]]</td>
<td>Q8N2K0</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATP5L_HUMAN</td>
<td>ATP synthase subunit g, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>O75964 (+1)</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RS23_HUMAN</td>
<td>40S ribosomal protein S23 [Homo sapiens (Human) [9606]]</td>
<td>P62266</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ICK_HUMAN</td>
<td>Serine/threonine-protein kinase ICK [Homo sapiens (Human) [9606]]</td>
<td>Q9UFZ9 (+2)</td>
<td>71</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TTF2_HUMAN</td>
<td>Transcription termination factor 2 [Homo sapiens (Human) [9606]]</td>
<td>Q9UNY4</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FBRL_HUMAN</td>
<td>rRNA 2'O-methyltransferase fibrillarin [Homo sapiens (Human) [9606]]</td>
<td>P22087 (+8)</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CD2A2_HUMAN</td>
<td>Cyclin-dependent kinase inhibitor 2A, isoform 4 [Homo sapiens (Human) [9606]]</td>
<td>QBN726</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TMCO1_HUMAN</td>
<td>Transmembrane and coiled-coil domain-containing protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q9UM00 (+3)</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HCFC1_HUMAN</td>
<td>Host cell factor 1 [Homo sapiens (Human) [9606]]</td>
<td>P51610 (+2)</td>
<td>209</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PSB2_HUMAN</td>
<td>Proteasome subunit beta-type-2 [Homo sapiens (Human) [9606]]</td>
<td>P49721 (+1)</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GNAI2_HUMAN</td>
<td>Guanine nucleotide-binding protein G(i) subunit alpha-2 [Homo sapiens (Human) [9606]]</td>
<td>P04899 (+1)</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PSB6_HUMAN</td>
<td>Proteasome subunit beta-type-6 [Homo sapiens (Human) [9606]]</td>
<td>P28072</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BASI_HUMAN</td>
<td>Basigin [Homo sapiens (Human) [9606]]</td>
<td>P35613 (+5)</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NP111_HUMAN</td>
<td>Nucleosome assembly protein 1-like 1 [Homo sapiens (Human) [9606]]</td>
<td>P55209 (+7)</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MBB1A_HUMAN</td>
<td>Myb-binding protein 1A [Homo sapiens (Human) [9606]]</td>
<td>Q9BQG0 (+2)</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q6GMW3_HUMAN</td>
<td>IgL@ protein [Homo sapiens (Human) [9606]]</td>
<td>Q6GMW3 (+23)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B3 [IGV4-1]</td>
<td>light chain [Homo sapiens [9606]]</td>
<td>UPI00021CAA9</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RS7_HUMAN</td>
<td>40S ribosomal protein S7 [Homo sapiens (Human) [9606]]</td>
<td>P62081 (+1)</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>UBE3C_HUMAN</td>
<td>Ubiquitin-protein ligase E3C [Homo sapiens (Human) [9606]]</td>
<td>Q15386 (+1)</td>
<td>124</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NU188_HUMAN</td>
<td>Nucleoporin NUP188 homolog [Homo sapiens (Human) [9606]]</td>
<td>Q5SRE5 (+1)</td>
<td>196</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H3BUH7_HUMAN</td>
<td>Fructose-bisphosphate aldolase A [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>H3BUH7 (+2)</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NDU53_HUMAN</td>
<td>NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>O75489 (+1)</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q8TA92_HUMAN</td>
<td>Similar to AFG3 ATPase family gene 3-like 2 (Yeast) [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>Q8TA92 (+1)</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A4D110_HUMAN</td>
<td>Ubiquitin-like protein 4A [Homo sapiens (Human) [9606]]</td>
<td>P11441 (+1)</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A4D110_HUMAN</td>
<td>Putative uncharacterized protein [Homo sapiens (Human) [9606]]</td>
<td>A4D110</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GeneName</td>
<td>Description</td>
<td>Accession</td>
<td>MW</td>
<td>Retention Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBAL3_HUMAN</td>
<td>Tubulin alpha chain-like 3 [Homo sapiens (Human) [9606]]</td>
<td>A6NH2 (+1)</td>
<td>50 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACOD_HUMAN</td>
<td>Acyl-CoA desaturase [Homo sapiens (Human) [9606]]</td>
<td>O00767 (+1)</td>
<td>42 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIDPT_HUMAN</td>
<td>CDP-diacylglycerol--inositol 3-phosphatidylinositol transferase [Homo sapiens (Human) [9606]]</td>
<td>O14735 (+5)</td>
<td>24 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O60251_HUMAN</td>
<td>Ribosomal protein L28 [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>O60251 (+8)</td>
<td>16 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTND1_HUMAN</td>
<td>Catenin delta-1 [Homo sapiens (Human) [9606]]</td>
<td>O60716 (+7)</td>
<td>108 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P17S42-3</td>
<td>Isoform PP22-TAL1 of T-cell acute lymphocytic leukemia protein 1 [Homo sapiens (Human) [9606]]</td>
<td>P17S42-3 (+3)</td>
<td>88 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIMT_HUMAN</td>
<td>Protein-L-isopentapeptide(D-aspartate) O-methyltransferase [Homo sapiens (Human) [9606]]</td>
<td>P22061 (+1)</td>
<td>25 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERPH_HUMAN</td>
<td>Serpin H1 [Homo sapiens (Human) [9606]]</td>
<td>P50454 (+4)</td>
<td>46 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSRAD_HUMAN</td>
<td>Double-stranded RNA-specific adenosine deaminase [Homo sapiens (Human) [9606]]</td>
<td>P55265 (+8)</td>
<td>136 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUMO3_HUMAN</td>
<td>Small ubiquitin-related modifier 3 [Homo sapiens (Human) [9606]]</td>
<td>P55854 (+8)</td>
<td>12 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL30_HUMAN</td>
<td>60S ribosomal protein L30 [Homo sapiens (Human) [9606]]</td>
<td>P62888</td>
<td>13 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHDR1_HUMAN</td>
<td>KH domain-containing, RNA-binding, signal transduction-associated protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q07666 (+4)</td>
<td>48 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBB2A_HUMAN</td>
<td>Tubulin beta-2A chain [Homo sapiens (Human) [9606]]</td>
<td>Q13885</td>
<td>50 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3S5X8_HUMAN</td>
<td>DPM3 protein [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>Q3S5X8 (+1)</td>
<td>12 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QST454_HUMAN</td>
<td>MMS19 nucleotide excision repair protein homolog [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>QST454 (+7)</td>
<td>34 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATD3B_HUMAN</td>
<td>ATPase family AAA domain-containing protein 3B [Homo sapiens (Human) [9606]]</td>
<td>QST9A4</td>
<td>73 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSTG37_HUMAN</td>
<td>DNA methyltransferase 1 associated protein 1 [Fragment] [Homo sapiens (Human) [9606]]</td>
<td>QSTG37</td>
<td>10 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNJ13_HUMAN</td>
<td>DnaJ homolog subfamily A member 3, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q96EY1 (+2)</td>
<td>52 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3E51_HUMAN</td>
<td>Solute carrier family 35 member E1 [Homo sapiens (Human) [9606]]</td>
<td>Q96K37</td>
<td>44 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALG1_HUMAN</td>
<td>Chitobiosyl-diphosphodiol-beta-mannosyltransferase [Homo sapiens (Human) [9606]]</td>
<td>Q9BT22</td>
<td>53 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFXN3_HUMAN</td>
<td>Sideroflexin-3 [Homo sapiens (Human) [9606]]</td>
<td>Q9BWM7 (+1)</td>
<td>36 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9P129_HUMAN</td>
<td>PRO2242 [Homo sapiens (Human) [9606]]</td>
<td>Q9P1D9</td>
<td>8 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJB1L_HUMAN</td>
<td>DnaJ homolog subfamily B member 11 [Homo sapiens (Human) [9606]]</td>
<td>Q9UB54 (+1)</td>
<td>41 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRG_HUMAN</td>
<td>Translocon-associated protein subunit gamma [Homo sapiens (Human) [9606]]</td>
<td>Q9UNL2 (+2)</td>
<td>21 kDa</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DERL1_HUMAN</td>
<td>Derlin-1 [Homo sapiens (Human) [9606]]</td>
<td>Q9BUU8 (+3)</td>
<td>29 kDa</td>
<td>0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11362-4</td>
<td>Isoform 8 of Fibroblast growth factor receptor 1 [Homo sapiens (Human) [9606]]</td>
<td>P11362-4</td>
<td>82 kDa</td>
<td>0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS10_HUMAN</td>
<td>40S ribosomal protein S10 [Homo sapiens (Human) [9606]]</td>
<td>P46783 (+4)</td>
<td>19 kDa</td>
<td>0 0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Name</td>
<td>Uniprot ID</td>
<td>MLookID</td>
<td>MLookLabel</td>
<td>Mass [kDa]</td>
<td>TLook</td>
<td>TLookLabel</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>TEBP_HUMAN Prostaglandin E synthase 3 [Homo sapiens (Human) [9606]]</td>
<td>Q15185</td>
<td>(+3)</td>
<td></td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHC24_HUMAN Delta(24)-sterol reductase [Homo sapiens (Human) [9606]]</td>
<td>Q15392</td>
<td>(+3)</td>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DDX6_HUMAN Probable ATP-dependent RNA helicase DDX6 [Homo sapiens (Human) [9606]]</td>
<td>P26196</td>
<td></td>
<td></td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RL35A_HUMAN 60S ribosomal protein L35a [Homo sapiens (Human) [9606]]</td>
<td>P18077</td>
<td></td>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B4D1Z0_HUMAN cDNA FUS8191, highly similar to Homo sapiens phosphatidylinositol 4-kinase type 2 beta (PI4K2B), mRNA [Homo sapiens (Human) [9606]]</td>
<td>B4D1Z0</td>
<td></td>
<td></td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PARP1_HUMAN Poly [ADP-ribose] polymerase 1 [Homo sapiens (Human) [9606]]</td>
<td>P09874</td>
<td>(+2)</td>
<td></td>
<td>113</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DDX6_HUMAN Probable ATP-dependent RNA helicase DDX6 [Homo sapiens (Human) [9606]]</td>
<td>Q6UW78</td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NUP85_HUMAN Nuclear pore complex protein Nup85 [Homo sapiens (Human) [9606]]</td>
<td>Q98W27</td>
<td>(+1)</td>
<td></td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDUS2_HUMAN NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q75306</td>
<td>(+3)</td>
<td></td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PTBP1_HUMAN Polypyrimidine tract-binding protein 1 [Homo sapiens (Human) [9606]]</td>
<td>P26599</td>
<td>(+2)</td>
<td></td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RBM14_HUMAN RNA-binding protein 14 [Homo sapiens (Human) [9606]]</td>
<td>Q96PK6</td>
<td></td>
<td></td>
<td>69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MYH9_HUMAN Myosin-9 [Homo sapiens (Human) [9606]]</td>
<td>P35579</td>
<td></td>
<td></td>
<td>227</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PUR2_HUMAN Trifunctional purine biosynthetic protein adenosine-3 [Homo sapiens (Human) [9606]]</td>
<td>P22102</td>
<td>(+1)</td>
<td></td>
<td>108</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENPP1_HUMAN Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 [Homo sapiens (Human) [9606]]</td>
<td>P22413</td>
<td>(+3)</td>
<td></td>
<td>105</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DCAF7_HUMAN DDB1- and CUL4-associated factor 7 [Homo sapiens (Human) [9606]]</td>
<td>P61962</td>
<td></td>
<td></td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHP1_HUMAN Calcineurin B homologous protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q96563</td>
<td>(+4)</td>
<td></td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PML_HUMAN Protein PML [Homo sapiens (Human) [9606]]</td>
<td>P29590</td>
<td>(+16)</td>
<td></td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keratin, type I cytoskeletal 9 n=1 Tax=Homo sapiens RepID=K1C9_HUMAN</td>
<td>P35527</td>
<td>(+1)</td>
<td></td>
<td>62</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TCPQ_HUMAN T-complex protein 1 subunit theta [Homo sapiens (Human) [9606]]</td>
<td>P50990</td>
<td>(+3)</td>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDKB_HUMAN Nucleoside diphosphate kinase B [Homo sapiens (Human) [9606]]</td>
<td>P22392</td>
<td></td>
<td></td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SFPQ_HUMAN Splicing factor, proline- and glutamine-rich [Homo sapiens (Human) [9606]]</td>
<td>P23246</td>
<td>(+1)</td>
<td></td>
<td>76</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CD2A1_HUMAN Cyclin-dependent kinase inhibitor 2A, isoforms 1/2/3 [Homo sapiens (Human) [9606]]</td>
<td>P42771</td>
<td>(+2)</td>
<td></td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q8IX01-3 Isoform 3 of SURF and G-patch domain-containing protein 2 [Homo sapiens (Human) [9606]]</td>
<td>Q8IX01-3</td>
<td>(+7)</td>
<td></td>
<td>116</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOM20_HUMAN Mitochondrial import receptor subunit TOM20 homolog [Homo sapiens (Human) [9606]]</td>
<td>Q15388</td>
<td></td>
<td></td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NU153_HUMAN Nuclear pore complex protein Nup153 [Homo sapiens (Human) [9606]]</td>
<td>P49790</td>
<td>(+4)</td>
<td></td>
<td>154</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS27L_HUMAN 40S ribosomal protein S27-like [Homo sapiens (Human) [9606]]</td>
<td>Q71UM5</td>
<td>(+1)</td>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ACTZ_HUMAN Alpha-actin [Homo sapiens (Human) [9606]]</td>
<td>P61163</td>
<td>(+2)</td>
<td></td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Description</td>
<td>PDB ID</td>
<td>MW (kDa)</td>
<td>D0</td>
<td>D1</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>NDU8A_HUMAN</td>
<td>NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 [Homo sapiens (Human) [9606]]</td>
<td>P51970 (+2) 20 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GBB2_HUMAN</td>
<td>Guanine nucleotide-binding protein G(i)/G(S)/G(T) subunit beta-2 [Homo sapiens (Human) [9606]]</td>
<td>P62879 37 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RTCB_HUMAN</td>
<td>tRNA-splicing ligase RtcB homolog [Homo sapiens (Human) [9606]]</td>
<td>Q9Y310 55 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HM13_HUMAN</td>
<td>Minor histocompatibility antigen H13 [Homo sapiens (Human) [9606]]</td>
<td>Q8TCT9 (+3) 41 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MYH10_HUMAN</td>
<td>Myosin-10 [Homo sapiens (Human) [9606]]</td>
<td>P35580 (+4) 229 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q75LS7_HUMAN</td>
<td>Putative uncharacterized protein KCND2 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q75LS7 (+5) 27 kDa</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>I3L1P4_HUMAN</td>
<td>Proline-, glutamic acid- and leucine-rich protein 1 (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>I3L1P4 15 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ACSL3_HUMAN</td>
<td>Long-chain-fatty-acid-CoA ligase 3 [Homo sapiens (Human) [9606]]</td>
<td>O95573 (+2) 80 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HSPB1_HUMAN</td>
<td>Heat shock protein beta-1 [Homo sapiens (Human) [9606]]</td>
<td>P04792 (+1) 23 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PRDX6_HUMAN</td>
<td>Peroxiredoxin-6 [Homo sapiens (Human) [9606]]</td>
<td>P30041 (+1) 25 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SRP14_HUMAN</td>
<td>Signal recognition particle 14 kDa protein [Homo sapiens (Human) [9606]]</td>
<td>P37108 (+1) 15 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RL29_HUMAN</td>
<td>60S ribosomal protein L29 [Homo sapiens (Human) [9606]]</td>
<td>P47914 (+2) 18 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CAZA1_HUMAN</td>
<td>F-actin-capping protein subunit alpha-1 [Homo sapiens (Human) [9606]]</td>
<td>Q15773 (+2) 28 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MLF2_HUMAN</td>
<td>Myeloid leukemia factor 2 [Homo sapiens (Human) [9606]]</td>
<td>Q16825 - DECOY</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q16825 - DECOY</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q6IQ15_HUMAN</td>
<td>EEF1A1 protein [Homo sapiens (Human) [9606]]</td>
<td>Q6IQ15 48 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MAVS_HUMAN</td>
<td>Mitochondrial antiviral-signaling protein [Homo sapiens (Human) [9606]]</td>
<td>Q72434 57 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q86S8_HUMAN</td>
<td>USP9X protein (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q86S8 (+2) 291 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SIMM4_HUMAN</td>
<td>Small integral membrane protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q8WVI0 9 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HIG2A_HUMAN</td>
<td>HIG1 domain family member 2A, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>Q9BW72 12 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PREB_HUMAN</td>
<td>Prolactin regulatory element-binding protein [Homo sapiens (Human) [9606]]</td>
<td>Q9HCUC (+1) 45 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LAS1L_HUMAN</td>
<td>Ribosomal biogenesis protein LAS1 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y4W2 (+2) 83 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DC1L1_HUMAN</td>
<td>Cytoplasmic dynein 1 light intermediate chain 1 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y6G9 (+3) 57 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CEPT1_HUMAN</td>
<td>Choline/ethanolaminephosphotransferase 1 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y6K0 (+1) 47 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GNAT2_HUMAN</td>
<td>Dihydroxyacetone phosphate acyltransferase [Homo sapiens (Human) [9606]]</td>
<td>O15228 (+5) 77 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RL22_HUMAN</td>
<td>60S ribosomal protein L22 [Homo sapiens (Human) [9606]]</td>
<td>P35268 (+5) 15 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RAGP1_HUMAN</td>
<td>Ran GTPase-activating protein 1 [Homo sapiens (Human) [9606]]</td>
<td>P46060 (+1) 64 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Protein Name</td>
<td>ID</td>
<td>Accession</td>
<td>Molecular Weight (kDa)</td>
<td>Replication ID</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----</td>
<td>-----------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>COPB_HUMAN</td>
<td>Coatomer subunit beta</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P53618 (+2)</td>
<td>107</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 73 n=1 Tax</td>
<td>Homo sapiens RepId=K2C73_HUMAN</td>
<td>Q86Y46 (2)</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESYT2_HUMAN</td>
<td>Extended synaptotagmin-2</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>A0FGR8 (3)</td>
<td>102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RL34_HUMAN</td>
<td>60S ribosomal protein L34</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P49207</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESYT1_HUMAN</td>
<td>Extended synaptotagmin-1</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q9BSJ8 (3)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E41L2_HUMAN</td>
<td>Band 4.1-like protein 2</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q43491 (+7)</td>
<td>113</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q49AR7_HUMAN</td>
<td>PIN1 protein</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P49207</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2L6I2_HUMAN</td>
<td>ABC50 protein</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>O43491 (+7)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESYT1_HUMAN</td>
<td>Extended synaptotagmin-1</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q9BSJ8 (3)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2L6I2_HUMAN</td>
<td>ABC50 protein</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>O43491 (+7)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>THEM6_HUMAN</td>
<td>Protein THEM6</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q8WUY1 (2)</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B4DSI9_HUMAN</td>
<td>cDNA FLJ56483, highly similar to Homo sapiens ribosomal protein L14, mRNA [Homo sapiens (Human) [9606]]</td>
<td>B4DSI9 (1)</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EIF3E_HUMAN</td>
<td>Eukaryotic translation initiation factor 3 subunit E</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P60228 (2)</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q49AR7_HUMAN</td>
<td>PIN1 protein</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q49AR7 (2)</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRRM2_HUMAN</td>
<td>Serine/arginine repetitive matrix protein 2</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q9BSJ8 (3)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C1TC_HUMAN</td>
<td>C-1-tetrahydrofolate synthase, cytoplasmic</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q8WUY1 (2)</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TCP2_HUMAN</td>
<td>T-complex protein 1 subunit zeta</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P40227 (6)</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>QSLI5_HUMAN</td>
<td>Ubiquitin carboxy-terminal hydrolase LSU</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q5LI5 (+5)</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHX30_HUMAN</td>
<td>Putative ATP-dependent RNA helicase DHX30</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q7L2E3 (+2)</td>
<td>134</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GET4_HUMAN</td>
<td>Golgi to ER traffic protein 4 homolog</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q7L5D6</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RL18A_HUMAN</td>
<td>60S ribosomal protein L18a</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q02543 (6)</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ASNS_HUMAN</td>
<td>Asparagine synthetase [glutamine-hydrolyzing]</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>P08243 (+2)</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AAMP_HUMAN</td>
<td>Angio-associated migratory cell protein</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q13685 (9)</td>
<td>47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RENT1_HUMAN</td>
<td>Regulator of nonsense transcripts 1</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q9BSJ8 (3)</td>
<td>123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LRC59_HUMAN</td>
<td>Leucine-rich repeat-containing protein 59</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q7L5D6</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q53HE2_HUMAN</td>
<td>Triosephosphate isomerase</td>
<td>[Homo sapiens (Human) [9606]]</td>
<td>Q53HE2 (+1)</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Chromosome</td>
<td>Start</td>
<td>End</td>
<td>Log2 Fold Change</td>
<td>p-Value</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Q86YP4-2</td>
<td>Isoform 2 of Transcriptional repressor p66-alpha [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ELAV1</td>
<td>HUMAN ELAV-like protein 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PP1R3</td>
<td>HUMAN Serine/threonine-protein phosphatase 6 regulatory subunit 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B4E106</td>
<td>HUMAN cDNA FLJ53399, highly similar to Monocarboxylate transporter 1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D6RG4</td>
<td>HUMAN E3 ubiquitin-protein ligase MARCH1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B5MCC7</td>
<td>HUMAN Low molecular weight phosphotyrosine protein phosphatase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B3KSK8</td>
<td>HUMAN cDNA FLJ36521 fis, clone TRACH2002138, highly similar to Adenylate cyclase type 5 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RUXE</td>
<td>HUMAN Small nuclear ribonucleoprotein E [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC73</td>
<td>HUMAN Parafibromin [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MCA3</td>
<td>HUMAN Eukaryotic translation elongation factor 1 epsilon-1 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CY1</td>
<td>HUMAN Cytochrome c1, heme protein, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RFC3</td>
<td>HUMAN Replication factor C subunit 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NUP88</td>
<td>HUMAN Nuclear pore complex protein Nup88 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OSTC</td>
<td>HUMAN Oligosaccharyltransferase complex subunit OSTC [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VAPA</td>
<td>HUMAN Vesicle-associated membrane protein-associated protein A [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VDAC3</td>
<td>HUMAN Voltage-dependent anion-selective channel protein 3 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SYK</td>
<td>HUMAN Lysine–tRNA ligase [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>YIPF5</td>
<td>HUMAN Protein YIPF5 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WDR18</td>
<td>HUMAN WD repeat-containing protein 18 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC45</td>
<td>HUMAN Cell division control protein 45 homolog [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>KATL2</td>
<td>HUMAN Katanin p60 ATPase-containing subunit A-like 2 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2AAA</td>
<td>HUMAN Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B4DPV8</td>
<td>HUMAN cDNA FLJ1928, highly similar to Keratinocytes-associated transmembrane protein 2 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RS3A</td>
<td>HUMAN 40S ribosomal protein S3a [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OSGEP</td>
<td>HUMAN Probable tRNA threonylcarbamoyladenosine biosynthesis protein OSGEP [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H90B4</td>
<td>HUMAN Putative heat shock protein HSP 90-beta 4 [Homo sapiens (Human) [9606]]</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q5SGD1</td>
<td>HUMAN Guanine nucleotide-binding protein subunit gamma (Fragment) [Homo sapiens (Human)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>1433B_HUMAN 14-3-3 protein beta/alpha [Homo sapiens (Human) [9606]]</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------------------</td>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBP7_HUMAN</td>
<td>Ubiquitin carboxyl-terminal hydrolase 7 [Homo sapiens (Human) [9606]]</td>
<td>Q93009 (+5)</td>
<td>128 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMNA_HUMAN</td>
<td>Prelamin-A/C [Homo sapiens (Human) [9606]]</td>
<td>P02545 (+5)</td>
<td>74 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPN2_HUMAN</td>
<td>Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 2 [Homo sapiens (Human) [9606]]</td>
<td>P04844 (+2)</td>
<td>69 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOL9_HUMAN</td>
<td>Polynucleotide 5′-hydroxyl-kinase NOL9 [Homo sapiens (Human) [9606]]</td>
<td>Q5SY16</td>
<td>79 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPOT_HUMAN</td>
<td>Exportin-T [Homo sapiens (Human) [9606]]</td>
<td>Q43592 (+1)</td>
<td>110 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU107_HUMAN</td>
<td>Nuclear pore complex protein Nup107 [Homo sapiens (Human) [9606]]</td>
<td>P57740</td>
<td>106 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF01_HUMAN</td>
<td>Splicing factor 1 [Homo sapiens (Human) [9606]]</td>
<td>Q15637 (+6)</td>
<td>68 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCN2_HUMAN</td>
<td>Reticulocalbin-2 [Homo sapiens (Human) [9606]]</td>
<td>Q14257 (+1)</td>
<td>37 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYMC_HUMAN</td>
<td>Methionine–tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>P56192 (+1)</td>
<td>101 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILK_HUMAN</td>
<td>Integrin-linked protein kinase [Homo sapiens (Human) [9606]]</td>
<td>Q13418 (+1)</td>
<td>51 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI33_HUMAN</td>
<td>E3 ubiquitin-protein ligase TRIM33 [Homo sapiens (Human) [9606]]</td>
<td>Q9UPN9 (+1)</td>
<td>123 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPB3_HUMAN</td>
<td>DNA-directed RNA polymerase II subunit RPB3 [Homo sapiens (Human) [9606]]</td>
<td>P19387 (+1)</td>
<td>31 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEMI4_HUMAN</td>
<td>Gem-associated protein 4 [Homo sapiens (Human) [9606]]</td>
<td>P57678 (+2)</td>
<td>120 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYDC_HUMAN</td>
<td>Aspartate–tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>P14868</td>
<td>57 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF4A2_HUMAN</td>
<td>Eukaryotic initiation factor 4A-II [Homo sapiens (Human) [9606]]</td>
<td>Q14240 (+2)</td>
<td>46 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI67_HUMAN</td>
<td>Antigen Ki-67 [Homo sapiens (Human) [9606]]</td>
<td>P46013 (+1)</td>
<td>359 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4DM8_HUMAN</td>
<td>cDNA FLJ60373, highly similar to Zinc finger CCCH domain-containing protein11A [Homo sapiens (Human) [9606]]</td>
<td>B4DM8</td>
<td>89 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUL4_HUMAN</td>
<td>Neuralized-like protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q96JN8 (+5)</td>
<td>167 kDa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WZ42-12-DECOY</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WZ42-12-DECOY</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WZ42-12-DECOY</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WZ42-12-DECOY</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WZ42-12-DECOY</td>
<td>Q8WZ42-12-DECOY (±)</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Accession</td>
<td>Molecular Weight</td>
<td>Score</td>
<td>Similarity</td>
<td>Identification</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------</td>
<td>------------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>DDB1_HUMAN</td>
<td>DNA damage-binding protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q16531</td>
<td>127 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F8W7C6_HUMAN</td>
<td>60S ribosomal protein L10 [Homo sapiens (Human) [9606]]</td>
<td>F8W7C6</td>
<td>19 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PRAF2_HUMAN</td>
<td>PRA1 family protein 2 [Homo sapiens (Human) [9606]]</td>
<td>O60831</td>
<td>19 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LTN1_HUMAN</td>
<td>ubiquitin-protein ligase listerin [Homo sapiens (Human) [9606]]</td>
<td>Q94822</td>
<td>201 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SGT1_HUMAN</td>
<td>Protein SGT1 [Homo sapiens (Human) [9606]]</td>
<td>O95905</td>
<td>73 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H2B1J_HUMAN</td>
<td>Histone H2B type 1-J [Homo sapiens (Human) [9606]]</td>
<td>P06899</td>
<td>14 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ARSA_HUMAN</td>
<td>Arylsulfatase A [Homo sapiens (Human) [9606]]</td>
<td>P15289</td>
<td>82 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DUSA_HUMAN</td>
<td>Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>P31040</td>
<td>73 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SYYC_HUMAN</td>
<td>Tyrosine--tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>P54577</td>
<td>59 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RL37A_HUMAN</td>
<td>60S ribosomal protein L37a [Homo sapiens (Human) [9606]]</td>
<td>P61513</td>
<td>10 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS13_HUMAN</td>
<td>40S ribosomal protein S13 [Homo sapiens (Human) [9606]]</td>
<td>P62277</td>
<td>17 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RL36A_HUMAN</td>
<td>60S ribosomal protein L36a [Homo sapiens (Human) [9606]]</td>
<td>P83881</td>
<td>12 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RL19_HUMAN</td>
<td>60S ribosomal protein L19 [Homo sapiens (Human) [9606]]</td>
<td>P84098</td>
<td>23 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SSRP1_HUMAN</td>
<td>FACT complex subunit SSRP1 [Homo sapiens (Human) [9606]]</td>
<td>O89451</td>
<td>81 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NU160_HUMAN</td>
<td>Nuclear pore complex protein Nup160 [Homo sapiens (Human) [9606]]</td>
<td>Q12769</td>
<td>162 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q59FQ8_HUMAN</td>
<td>Spinster variant (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>Q59FQ8</td>
<td>36 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EDC4_HUMAN</td>
<td>Enhancer of mRNA-decapping protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q6P2E9</td>
<td>152 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q8TCJ8_HUMAN</td>
<td>Putative uncharacterized protein DKFzps64c172 [Homo sapiens (Human) [9606]]</td>
<td>Q8TCJ8</td>
<td>49 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SEN34_HUMAN</td>
<td>tRNA-splicing endonuclease subunit Sen34 [Homo sapiens (Human) [9606]]</td>
<td>Q9B5V6</td>
<td>34 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>WDR33_HUMAN</td>
<td>pre-mRNA 3' end processing protein WDR33 [Homo sapiens (Human) [9606]]</td>
<td>Q9C0J8</td>
<td>146 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ENY2_HUMAN</td>
<td>Enhancer of yellow 2 transcription factor homolog [Homo sapiens (Human) [9606]]</td>
<td>Q9NPA8</td>
<td>12 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PM14_HUMAN</td>
<td>Pre-mRNA branch site protein p14 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y3B4</td>
<td>15 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P49792-DECOY_RBP2_HUMAN</td>
<td>SUMO-protein ligase RanBP2 [Homo sapiens (Human) [9606]]</td>
<td>P49792</td>
<td>12 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A2IPI2_HUMAN</td>
<td>HRV Fab N27-VL (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>A2IPI2</td>
<td>12 kDa</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HOY8G8_HUMAN</td>
<td>Endothelial cell-specific chemotaxis regulator (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>HOY8G8</td>
<td>4 kDa</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALBU_BOVIN</td>
<td>Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4</td>
<td>P02769</td>
<td>69 kDa</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2M2A3_HUMAN</td>
<td>Glucosidase, alpha; neutral C [Homo sapiens (Human) [9606]]</td>
<td>Q2M2A3</td>
<td>104 kDa</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MICA1_HUMAN</td>
<td>Protein-methionine sulfoxide oxidase MICAL1 [Homo sapiens (Human) [9606]]</td>
<td>Q8TD22</td>
<td>118 kDa</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>UniProt ID</td>
<td>Molecular Weight (kDa)</td>
<td>Score</td>
<td>Unique Hits</td>
<td>Total Hits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>B1AHD1_HUMAN</td>
<td>NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae) [Homo sapiens [9606]]</td>
<td>B1AHD1 +1</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SPT5_HUMAN</td>
<td>Transcription elongation factor SPT5 [Homo sapiens (Human) [9606]]</td>
<td>O00267 +3</td>
<td>121</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CCS_HUMAN</td>
<td>Copper chaperone for superoxide dismutase [Homo sapiens (Human) [9606]]</td>
<td>O14618 +2</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O15160-2</td>
<td>Isoform 2 of DNA-directed RNA polymerases I and III subunit RPAC1 [Homo sapiens (Human) [9606]]</td>
<td>O15160-2 +3</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O43684-2</td>
<td>Isoform 2 of Mitotic checkpoint protein BUB3 [Homo sapiens (Human) [9606]]</td>
<td>O43684-2</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NHP2_HUMAN</td>
<td>Non-histone chromosome protein 2 [Homo sapiens (Human) [9606]]</td>
<td>O75351 +6</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RPAC1_HUMAN</td>
<td>Mitotic checkpoint protein 1 [Homo sapiens (Human) [9606]]</td>
<td>O14618 +2</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CCS_HUMAN</td>
<td>Copper chaperone for superoxide dismutase [Homo sapiens (Human) [9606]]</td>
<td>O15160-2 +3</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O43684-2</td>
<td>Isoform 2 of Mitotic checkpoint protein BUB3 [Homo sapiens (Human) [9606]]</td>
<td>O43684-2</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NHP2_HUMAN</td>
<td>Non-histone chromosome protein 2 [Homo sapiens (Human) [9606]]</td>
<td>O75351 +6</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RPAC1_HUMAN</td>
<td>Mitotic checkpoint protein 1 [Homo sapiens (Human) [9606]]</td>
<td>O14618 +2</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CCS_HUMAN</td>
<td>Copper chaperone for superoxide dismutase [Homo sapiens (Human) [9606]]</td>
<td>O15160-2 +3</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O43684-2</td>
<td>Isoform 2 of Mitotic checkpoint protein BUB3 [Homo sapiens (Human) [9606]]</td>
<td>O43684-2</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NHP2_HUMAN</td>
<td>Non-histone chromosome protein 2 [Homo sapiens (Human) [9606]]</td>
<td>O75351 +6</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RPAC1_HUMAN</td>
<td>Mitotic checkpoint protein 1 [Homo sapiens (Human) [9606]]</td>
<td>O14618 +2</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Protein Description</td>
<td>Mass (kDa)</td>
<td>Entrez ID</td>
<td>Accession Number</td>
<td>Score</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>EI24_HUMAN</td>
<td>Etoposide-induced 2.4 homolog [Homo sapiens (Human) [9606]]</td>
<td>39</td>
<td>O14681</td>
<td>+8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SR140_HUMAN</td>
<td>U2 snRNP-associated SURF motif-containing protein [Homo sapiens (Human) [9606]]</td>
<td>118</td>
<td>O15042</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ANR28_HUMAN</td>
<td>Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A [Homo sapiens (Human) [9606]]</td>
<td>113</td>
<td>O15084</td>
<td>+4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>O15451_HUMAN</td>
<td>Proline and glutamic acid rich nuclear protein isofrom (Fragment) [Homo sapiens (Human) [9606]]</td>
<td>109</td>
<td>O15451</td>
<td>+5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RAS1C_HUMAN</td>
<td>DNA repair protein RADS1 homolog 3 [Homo sapiens (Human) [9606]]</td>
<td>42</td>
<td>O43502</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IMA7_HUMAN</td>
<td>Importin subunit alpha-7 [Homo sapiens (Human) [9606]]</td>
<td>60</td>
<td>O60684</td>
<td>+8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TI17B_HUMAN</td>
<td>Mitochondrial import inner membrane translocase subunit Tim17-B [Homo sapiens (Human) [9606]]</td>
<td>18</td>
<td>O60830</td>
<td>+1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E2F3G_HUMAN</td>
<td>Eukaryotic translation initiation factor 3 subunit G [Homo sapiens (Human) [9606]]</td>
<td>36</td>
<td>O75821</td>
<td>+4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PIA51_HUMAN</td>
<td>SUMO-protein ligase PIA51 [Homo sapiens (Human) [9606]]</td>
<td>72</td>
<td>O75925</td>
<td>+6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DHE3_HUMAN</td>
<td>Glutamate dehydrogenase 1, mitochondrial [Homo sapiens (Human) [9606]]</td>
<td>61</td>
<td>P00367</td>
<td>+6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KITH_HUMAN</td>
<td>Thymidine kinase, cytosolic [Homo sapiens (Human) [9606]]</td>
<td>25</td>
<td>P04183</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RU17_HUMAN</td>
<td>U1 small nuclear ribonucleoprotein 70 [Homo sapiens (Human) [9606]]</td>
<td>52</td>
<td>P08621</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ROA1_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein A1 [Homo sapiens (Human) [9606]]</td>
<td>34</td>
<td>P09651</td>
<td>+9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HNRPL_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein L [Homo sapiens (Human) [9606]]</td>
<td>64</td>
<td>P14866</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RFA2_HUMAN</td>
<td>Replication protein A 32 kDa subunit [Homo sapiens (Human) [9606]]</td>
<td>29</td>
<td>P15927</td>
<td>+4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SYTC_HUMAN</td>
<td>Threonine--tRNA ligase, cytoplasmic [Homo sapiens (Human) [9606]]</td>
<td>83</td>
<td>P26639</td>
<td>+8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SYVC_HUMAN</td>
<td>Valine--tRNA ligase [Homo sapiens (Human) [9606]]</td>
<td>140</td>
<td>P26640</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RL9_HUMAN</td>
<td>60S ribosomal protein L9 [Homo sapiens (Human) [9606]]</td>
<td>22</td>
<td>P32969</td>
<td>+1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FUS_HUMAN</td>
<td>RNA-binding protein FUS [Homo sapiens (Human) [9606]]</td>
<td>53</td>
<td>P35637</td>
<td>+7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UB2G2_HUMAN</td>
<td>Ubiquitin-conjugating enzyme E2 G2 [Homo sapiens (Human) [9606]]</td>
<td>19</td>
<td>P60604</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IF4G2_HUMAN</td>
<td>Eukaryotic translation initiation factor 4 gamma 2 [Homo sapiens (Human) [9606]]</td>
<td>102</td>
<td>P78344</td>
<td>+2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SRSF3_HUMAN</td>
<td>Serine/arginine-rich splicing factor 3 [Homo sapiens (Human) [9606]]</td>
<td>19</td>
<td>P84103</td>
<td>+1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K66P_HUMAN</td>
<td>6-phosphofructokinase type C [Homo sapiens (Human) [9606]]</td>
<td>86</td>
<td>Q01813</td>
<td>+2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TF3C1_HUMAN</td>
<td>General transcription factor 3C polypeptide 1 [Homo sapiens (Human) [9606]]</td>
<td>239</td>
<td>Q12789</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ROA0_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein A0 [Homo sapiens (Human) [9606]]</td>
<td>31</td>
<td>Q13151</td>
<td>+1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SF3B2_HUMAN</td>
<td>Splicing factor 3B subunit 2 [Homo sapiens (Human) [9606]]</td>
<td>100</td>
<td>Q13435</td>
<td>+3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KCC2D_HUMAN</td>
<td>Calcium/calmodulin-dependent protein kinase type II subunit delta [Homo sapiens (Human) [9606]]</td>
<td>56</td>
<td>Q13557</td>
<td>+8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gene Name (HUMAN)</td>
<td>Description</td>
<td>Accession</td>
<td>Molecular Weight (kDa)</td>
<td>Expression Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYST_HUMAN</td>
<td>Bystin [Homo sapiens (Human) [9606]]</td>
<td>Q13895 (+1)</td>
<td>50 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUM1_HUMAN</td>
<td>Pumilio homolog 1 [Homo sapiens (Human) [9606]]</td>
<td>Q14671 (+8)</td>
<td>126 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRC41_HUMAN</td>
<td>Leucine-rich repeat-containing protein 41 [Homo sapiens (Human) [9606]]</td>
<td>Q15345 (+3)</td>
<td>79 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q15366-3</td>
<td>Isoform 3 of Poly[C]-binding protein 2 [Homo sapiens (Human) [9606]]</td>
<td>Q15366-3</td>
<td>38 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSM12_HUMAN</td>
<td>Protein LSM12 homolog [Homo sapiens (Human) [9606]]</td>
<td>Q3MH02 (+2)</td>
<td>22 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS904_HUMAN</td>
<td>Putative heat shock protein HSP 90-alpha A4 [Homo sapiens (Human) [9606]]</td>
<td>Q5SF8G1</td>
<td>48 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QST795_HUMAN</td>
<td>MDN1, midasin homolog (Yeast) [Homo sapiens (Human) [9606]]</td>
<td>QST795 (+1)</td>
<td>133 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRC41_HUMAN</td>
<td>Leucine-rich repeat-containing 41 [Homo sapiens (Human) [9606]]</td>
<td>Q6MZU8 (+4)</td>
<td>27 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAP20_HUMAN</td>
<td>Fanconi anemia-associated protein of 20 kDa [Homo sapiens (Human) [9606]]</td>
<td>Q6N236 (+7)</td>
<td>20 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGPD4_HUMAN</td>
<td>RanBP2-like and GRIP domain-containing protein 4 [Homo sapiens (Human) [9606]]</td>
<td>Q7Z3J3 (+4)</td>
<td>197 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPM_HUMAN</td>
<td>Abnormal spindle-like microcephaly-associated protein [Homo sapiens (Human) [9606]]</td>
<td>Q8BZ47</td>
<td>410 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUP53_HUMAN</td>
<td>Nucleoporin NUP53 [Homo sapiens (Human) [9606]]</td>
<td>Q8NF5H (+1)</td>
<td>35 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPL4_HUMAN</td>
<td>Nuclear protein localization protein 4 homolog [Homo sapiens (Human) [9606]]</td>
<td>Q8TA46 (+1)</td>
<td>68 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPF3_HUMAN</td>
<td>Zinc finger protein DPF3 [Homo sapiens (Human) [9606]]</td>
<td>Q92784 (+3)</td>
<td>43 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96JZ5_HUMAN</td>
<td>SM-11044 binding protein, isoform CRA_b [Homo sapiens (Human) [9606]]</td>
<td>Q96JZ5 (+3)</td>
<td>63 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96ME4_HUMAN</td>
<td>cDNA FLJ132471 fis, clone 5KNMC2009322, highly similar to Peptidyl-tRNA hydrolase 2, mitochondrial [EC 3.1.1.29] [Homo sapiens (Human) [9606]]</td>
<td>Q96ME4</td>
<td>19 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISTFT_HUMAN</td>
<td>Cleavage stimulation factor subunit 2 tau variant [Homo sapiens (Human) [9606]]</td>
<td>Q9H29L4</td>
<td>64 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9H987_HUMAN</td>
<td>Coatomer subunit gamma [Homo sapiens (Human) [9606]]</td>
<td>Q9H987 (+5)</td>
<td>89 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIG3_HUMAN</td>
<td>Elongator complex protein 3 [Homo sapiens (Human) [9606]]</td>
<td>Q9H9T3 (+2)</td>
<td>62 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNO1_HUMAN</td>
<td>RNA-binding protein PNO1 [Homo sapiens (Human) [9606]]</td>
<td>Q9NRX1 (+2)</td>
<td>28 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FXL12_HUMAN</td>
<td>F-box/LRR-repeat protein 12 [Homo sapiens (Human) [9606]]</td>
<td>Q9NXK8</td>
<td>37 kDa</td>
<td>0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Accession Number</td>
<td>p-value</td>
<td>M-value</td>
<td>S-value</td>
<td>FDR-value</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>ARMX3_HUMAN</td>
<td>Armadillo repeat-containing X-linked protein 3 [Homo sapiens (Human) [9606]]</td>
<td>Q9UH62 (+1)</td>
<td>43 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOB1_HUMAN</td>
<td>RNA-binding protein NOB1 [Homo sapiens (Human) [9606]]</td>
<td>Q9ULX3 (+1)</td>
<td>47 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COGS_HUMAN</td>
<td>Conserved oligomeric Golgi complex subunit 5 [Homo sapiens (Human) [9606]]</td>
<td>Q9UP83 (+1)</td>
<td>93 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AAR2_HUMAN</td>
<td>Protein AAR2 homolog [Homo sapiens (Human) [9606]]</td>
<td>Q9Y312 (+1)</td>
<td>43 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP16H_HUMAN</td>
<td>FACT complex subunit SPT16 [Homo sapiens (Human) [9606]]</td>
<td>Q9YSB9</td>
<td>120 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TF3C3_HUMAN</td>
<td>General transcription factor 3C polypeptide 3 [Homo sapiens (Human) [9606]]</td>
<td>Q9Y5Q9 (+1)</td>
<td>101 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERQ2_HUMAN</td>
<td>PERQ amino acid-rich with GYF domain-containing protein 2 [Homo sapiens (Human) [9606]]</td>
<td>Q6Y7W6 (+7)</td>
<td>150 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q8N7G0-DECOY</td>
<td></td>
<td>Q8N7G0-DECOY</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q5JXM0_HUMAN</td>
<td>Putative uncharacterized protein DKFZp564C0482 [Homo sapiens (Human) [9606]]</td>
<td>Q5JXM0 (+2)</td>
<td>27 kDa</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NUMA1_HUMAN</td>
<td>Nuclear mitotic apparatus protein 1 [Homo sapiens (Human) [9606]]</td>
<td>Q14980 (+4)</td>
<td>238 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PEX3_HUMAN</td>
<td>Peroxisomal biogenesis factor 3 [Homo sapiens (Human) [9606]]</td>
<td>P56589 (+1)</td>
<td>42 kDa</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MPP9_HUMAN</td>
<td>M-phase phosphoprotein 9 [Homo sapiens (Human) [9606]]</td>
<td>Q99550 (+2)</td>
<td>116 kDa</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>