ÉROSION DES BERGES DE L’ESTUAIRE D’EAU DOUCE DU SAINT-LAURENT ET SON IMPACT SUR LA BIODIVERSITÉ VÉGÉTALE

Mémoire

Audrée Gervais

Maîtrise en sciences géographiques
Maître ès sciences (M. SC)

Québec, Canada

© Audrée Gervais, 2014
Résumé

Table des matières

Résumé ... iii
Table des matières .. v
Liste des Tableaux .. ix
Liste des Figures ... xi
Remerciements ... xv
Introduction .. 1
Chapitre 1 ... 5
Région d’étude et sites : estuaire d’eau douce du Saint-Laurent .. 5
1.1 Contexte géologique et physiographique ... 5
1.2 Climat ... 6
1.3 Sol et biogéographie ... 8
1.4 Hydrodynamisme et littoral .. 10
1.5 Sites d’étude ... 12
1.5.1 Géomorphologie des marais intertidaux .. 12
1.5.2 Saint-Augustin-de-Desmaures ... 17
1.5.3 Beaumont ... 19
1.5.4 Château-Richer .. 21
1.5.6 Isle-aux-Grues ... 23
Chapitre 2 ... 25
Méthodologie : photo-interprétation et relevés récurrents de terrain .. 25
2.1 Analyse spatio-temporelle .. 25
2.1.1 Géomorphologie .. 25
2.1.2 Estimation de l’épaisseur des sédiments ... 26
2.2 Travaux de terrain ... 27
2.2.1 Suivi de l’érosion ... 27
2.2.2 Mesure de l’épaisseur des sédiments nouvellement déposés ... 29
2.2.4 Relevés Topographiques ... 30
2.2.5 Coupes stratigraphiques ... 30
2.3 Travaux de Laboratoire .. 32
Chapitre 3 Résultats et interprétation ... 33
3.1 Analyse spatio-temporelle des photographies aériennes et des orthophotos 33
3.7.3 Marais de Château-Richer ... 100
3.7.4 Marais de l’Isle-aux-Grues ... 101
Chapitre 4 .. 103
Discussion .. 103

4.1 Processus d’érosion et de sédimentation aux marais de l’estuaire d’eau douce du Saint-Laurent... 103
4.2 Géomorphologie, morpho-dynamique et diversité végétale des marais de l’estuaire d’eau douce du Saint-Laurent... 109
4.3 Facteurs contrôlant les processus d’érosion et de sédimentation aux marais étudiés.......119

Bibliographie ... 123
Sites Internet .. 127
Annexe 1 ... 129
Liste des Tableaux

Tableau 1 : Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Saint-Augustin-de-Desmaures ... 81
Tableau 2 : Données granulométriques des sédiments déposés le long du transect Ouest, marais de Saint-Augustin-de-Desmaures …………………………………………………………………………………… 83
Tableau 3 : Données granulométriques des sédiments déposés le long des transects Centre et Est, Saint-Augustin-de-Desmaures …………………………………………………………………………………… 84
Tableau 4 : Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Beaumont ………………………………………………………………… 85
Tableau 5 : Analyse granulométrique transect Ouest, Beaumont …………………………………………… 87
Tableau 6 : Analyse granulométrique transect Est, Beaumont …………………………………………… 87
Tableau 7 : Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Château-Richer …………………………………………………… 88
Tableau 8 : Analyses granulométriques transect Ouest, Château-Richer ………………………………… 90
Tableau 9 : Analyses granulométriques transect Est, Château-Richer ……………………………………… 90
Tableau 10 : Répartition des échantillons recueillis selon les saisons, Isle-aux-Grues …………………… 91
Tableau 11 : Analyses granulométriques transect Ouest, Isle-aux-Grues ………………………………… 93
Tableau 12 : Analyses granulométriques transect Est, Isle-aux-Grues ……………………………………… 94
Tableau 13 : Données granulométriques des coupes stratigraphiques Est et Ouest, Saint-Augustin-de-Desmaures …………………………………………………………………………………………… 99
Tableau 14 : Analyses granulométriques coupes stratigraphiques, Beaumont …………………………… 100
Tableau 15 : Analyses granulométriques coupes stratigraphiques, Château-Richer …………………….. 101
Tableau 16 : Analyses granulométriques coupes stratigraphiques, Isle-aux-Grues …………………….. 102
Tableau 17 : Estimation de la capacité de résilience de chaque site d’étude ……………………………. 119
Tableau 18 : Statistiques sur les variations des niveaux d’eau et l’érosion (Bhiry et al. 2013) ………… 120
Tableau 19 : Évolution de la configuration géomorphologique, Saint-Augustin-de-Desmaures (m²) …………………………………………………………………………………………………….. 129
Tableau 20 : Évolution de la distance en mètre entre la limite inférieur du schorre supérieur et un point de repère fixe pour une période entre 1965-2010, Saint-Augustin-de-Desmaures ………… 129
Tableau 21 : Évolution de la configuration géomorphologique, Beaumont entre 1963 et 2010 (m²) …………………………………………………………………………………………………….. 130
Tableau 22 : Évolution de la distance, en mètre, entre la limite supérieure du schorre et un point de repère fixe pour une période entre 1963 et 2010, Beaumont ………………………………………… 130
Tableau 23 : Évolution de la configuration géomorphologique, Château-Richer (m²) ……………….. 131
Tableau 24 : Évolution de la distance en mètre entre la limite inférieure du schorre et un point de repère fixe pour une période entre 1960 et 2008 à Château-Richer ...131
Tableau 25 : Évolution de la configuration géomorphologique, Isle-aux-Grues (m²)132
Tableau 26 : Évolution de la distance en mètre entre la limite supérieur du schorre et un point de repère fixe pour une période entre 1961 et 2010, Isle-aux-Grues ..132
Liste des Figures

Figure 1 : Région physiographique du Québec (Sigéom, 2013) ..6
Figure 2 : Classification climatique classique du Québec (Géradin et McKenney, 2001.)7
Figure 3 : Sols podzoliques du Québec, Agriculture et Agro-alimentaire Canada, 1998.............9
Figure 4 : Zone de végétation du Québec (MDDEP, 2010) ..9
Figure 5 : Localisation et limites de l’estuaire du Saint-Laurent (Gauthier, 2000)......................10
Figure 6 : Sites d’étude (Normandeau, 2012) ..12
Figure 7 : Marais intertidaux, le chiffre 1 représente les marelles dans le schorre supérieur(2). Le
3 indique le talus d’érosion du marais suivi de la slikke identifié par le chiffre 4. Le chiffre 5
indique le cours d’eau (dans le cas de ce projet il représente le fleuve Saint-Laurent). Finalement
la pente, qui est représentée par le chiffre 6, est présente dans certains marais là où il n’y a pas ou
peu d’érosion et se nomme haute slikke. (Paskoff, 2003 adapté de Guilcher, 1979)13
Figure 8 : Marécage arbustif et arboré, Saint-Augustin-de-Desmaures (Lacroix, 2011)13
Figure 9 : Prés, Isle-aux-rues (Lacroix, 2011) ..14
Figure 10 : Schorre, l’Isle-aux-Grues (Lacroix, 2011) ..15
Figure 11 : Slikke, Château-Richer (Lacroix, 2011) ..16
Figure 12 : Marais de Saint-Augustin-de-Desmaures (Gervais, 2012)17
Figure 13 : Marais de Beaumont (Gervais, 2012) ..19
Figure 14 : Marais de Château-Richer (Gervais, 2012) ...21
Figure 15 : Marais de l’Isle-aux-Grues (Gervais, 2012) ...23
Figure 16 : Position des piquets sur les zones d’études des marais (Gervais, 2011)28
Figure 17 : Piquet installé au pied du talus du schorre supérieur (Bhiry, 2011)28
Figure 18 : Disposition des plaques sédimentaires sur le schorre inférieur (Gervais, 2011) ..29
Figure 19 : Plaque sédimentaire (Bhiry, 2011) ...30
Figure 20 : Utilisation du théodolite (Gervais, 2012) ...31
Figure 21 : Utilisation du réflecteur (Gervais, 2012) ...31
Figure 22 : Variations de la superficie des zones géomorphologiques, marais de Saint-Augustin-
de-Desmaures ...34
Figure 23 : Évolution de la superficie des zones géomorphologiques de la zone d’étude du marais
de Saint-Augustin-de-Desmaures, entre 1965 et 2010 ...35
Figure 24 : Évolution de la limite supérieure du schorre supérieur, Saint-Augustin-de-Desmaures
..36
Figure 25 : Évolution de la distance en mètre entre la limite inférieure du schorre supérieur et un
point de repère fixe (route), marais de Saint-Augustin-de-Desmaures entre 1965-201037
Figure 26 : Évolution, en superficie, des zones géomorphologiques, marais de Beaumont
Figure 27 : Évolution de la superficie des zones géomorphologiques de la zone d’étude
Figure 28 : Évolution de la limite supérieure du schorre supérieur, Beaumont
Figure 29 : Évolution de la distance, en mètre, entre la limite supérieure du schorre supérieur et un point de repère fixe (route) entre 1963 et 2010, marais de Beaumont
Figure 30 : Évolution en superficie, des zones géomorphologiques, marais de Château-Richer
Figure 31 : Évolution de la superficie des zones géomorphologiques de la zone d’étude du marais de Château-Richer entre 1960 et 2008
Figure 32 : Évolution de la limite supérieure du schorre supérieur, marais de Château-Richer
Figure 33 : Évolution de la distance, en mètre, entre la limite supérieure du schorre supérieur et un point de repère fixe (route) pour une période entre 1960 et 2010, marais de Château-Richer
Figure 34 : Évolution, en superficie, des zones géomorphologiques, marais de l’Isle-aux-Grues
Figure 35 : Évolution de la superficie des zones géomorphologiques du marais de l’Isle-aux-Grues
Figure 36 : Évolution de la limite supérieure du schorre supérieur, marais de l’Isle-aux-Grues
Figure 37 : Évolution de la distance en mètre entre la limite supérieure du schorre supérieur et un point de repère fixe (route) entre 1961 et 2010, marais de l’Isle-aux-Grues
Figure 38 : Épaisseur des sédiments, marais de Saint-Augustin-de-Desmaure (juin 2012)
Figure 39 : Épaisseur des sédiments, marais de Beaumont (juin 2012)
Figure 40 : Épaisseur des sédiments, marais de Château-Richer (juin 2012)
Figure 41 : Épaisseur des sédiments, marais de l’Isle-aux-Grues (juin 2012)
Figure 42 : Évolution du talus d’érosion entre juillet 2011 et novembre 2012, marais de Saint-Augustin-de-Desmaures
Figure 43 : Évolution mensuelle moyenne du talus d’érosion entre juillet 2011 et novembre 2012, marais de Saint-Augustin-de-Desmaures
Figure 44 : Évolution du talus entre juillet 2011 et novembre 2012, marais de Beaumont
Figure 45 : Évolution mensuelle moyenne du talus d’érosion entre juillet 2011 et novembre 2012, marais de Château-Richer
Figure 46 : Évolution du talus d’érosion entre juillet 2011 et novembre 2012, marais de l’Isle-aux-Grues
Figure 49 : Évolution mensuelle moyenne du talus d’érosion entre juillet 2011 et novembre 2012, ..63
Figure 50 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Saint-Augustin-de-Desmaures (Marge d’erreur +/- 5mm) ..65
Figure 51 : Accumulation sédimentaire mensuelle par transect, marais de Saint-Augustin-de-Desmaures ...67
Figure 52 : Estimation du bilan sédimentaire : neutre, négatif ou positifs en 2011 et 2012, marais de Saint-Augustin-de-Desmaures ...68
Figure 53 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Beaumont (Marge d’erreur +/- 5mm) ...69
Figure 54 : Accumulation sédimentaire mensuelle par transect, marais de Beaumont ..70
Figure 55 : Estimation du bilan sédimentaire : neutre, négatif ou positifs en 2011 et 2012, marais de Beaumont ..71
Figure 56 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Château-Richer (Marge d’erreur +/- 5mm) ...72
Figure 57 : Accumulation sédimentaire mensuelle par transect, marais de Château-Richer ..73
Figure 58 : Estimation du bilan sédimentaire : négatif ou positif en 2011 et 2012, marais de Château-Richer ..74
Figure 59 : Accumulation sédimentaire moyenne annuelle, en 2011 et 2012, par zone géomorphologique, marais de l’Isle-aux-Grues (marge d’erreur : +/- 5mm) ..75
Figure 60 : Accumulation sédimentaire mensuelle par transect, marais de l’Isle-aux-Grues ..76
Figure 61 : Estimation du bilan sédimentaire : neutre, négatif ou positif en 2011 et 2012, marais de l’Isle-aux-Grues ..77
Figure 62 : Profil topographique automne 2012, marais de Saint-Augustin-de-Desmaures ..78
Figure 63 : Profil topographique automne 2012, marais de Beaumont ..79
Figure 64 : Profil topographique automne 2012, marais de Château-Richer ..79
Figure 65 : Profil topographique automne 2012, marais de l’Isle-aux-Grues ..80
Figure 66 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Saint-Augustin-de-Desmaures ..82
Figure 67 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Beaumont ..86
Figure 68 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Château-Richer ..89
Figure 69 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de l’Isle-aux-Grues ...92
Figure 70 : Relation entre la taille moyenne et l’indice de tri (en haut) et relation entre la taille moyenne et l’indice d’asymétrie (en bas) des quatre marais ...96
Figure 71 : Coupes stratigraphiques des sites d’étude ..98
Figure 72 : Variation en pourcentage de la superficie de des schorres supérieurs et inférieurs entre 1960 et 2010 par rapport à la surface totale du marais ...104
Figure 73 : Retrait de la limite supérieure du schorre supérieur vers l’intérieur des terres entre 1960 et 2010 ..104
Figure 74 : Variations annuelles du recul moyen du talus sur chaque transect à Saint-Augustin-de-Desmaures (SAG), Beaumont (BMT), à Château-Richer (CR) et à l’Isle-aux-Grues (IAG)105
Figure 75 : Taux d’érosion moyen du talus entre juillet 2011 et novembre 2012106
Figure 76 : Sédimentation moyenne par transect sur les sites d’étude ..108
Figure 77 : Assemblage de végétation, marais de Saint-Augustin-de-Desmaures (Normandeau, 2012) ..110
Figure 78 : Répartition des sédiments, marais de Saint-Augustin-de-Desmaures (Gervais, 2012) ..110
Figure 79 : Assemblage de végétation, marais de Beaumont (Normandeau, 2012)112
Figure 80 : Répartition des sédiments, marais de Beaumont (Gervais, 2012)112
Figure 81 : Assemblage de végétation, marais de Château-Richer (Normandeau, 2012)114
Figure 82 : Répartition des sédiments, marais de Château-Richer (Gervais, 2012)114
Figure 83 : Assemblage de végétation, marais de l’Isle-aux-Grues (Normandeau, 2012)116
Figure 84 : Répartition des sédiments, marais de l’Isle-aux-Grues (Gervais, 2012)116
Remerciements

Avant tout, je remercie ma directrice de recherche, Mme Najat Bhiry. Sa grande disponibilité et son écoute attentive ont rendu cette expérience enrichissante. De plus, son soutien et ses conseils m’ont guidée tout au long de mon cheminement académique.

J’aimerais aussi souligner la présence et l’aide incomparable de Mme Danielle Cloutier, ma co-directrice. Son aide sur le terrain et ses conseils m’ont permis de mener à bien ce projet.

Je remercie également Mme Line Couillard, membre de mon comité de direction, pour ses conseils ainsi que ses encouragements.

Merci aux membres du personnel de soutien technique du département de géographie et de la cartothèque et plus spécialement à Donald Cayer.

Merci à Sarah Aubé-Michaud et Claude Paradis qui m’ont beaucoup soutenue autant moralement qu’académiquement dans mon projet.

Un merci spécial à mes collègues Claire Lacroix, Philippe Lamarre, Mathieu Normandeau, Stéphanie Steelandt sans qui mes expériences de terrain auraient été moins agréables. Merci aussi mesdames Hélène Gilbert et Audrey Lachance du Bureau Écologie Appliquée et Mme Élisabeth Robert, professionnelle de recherche au Centre d’études nordiques pour leurs conseils précieux concernant les relevés de végétation.

Cette recherche s’insère dans un plus vaste projet de recherche subventionné par le Fonds verts Québec-Consortium Ouranos (PACC-26) (2011-2013).

Un merci particulier à ma famille (Yves, Pauline, François, Pier-Louis et Mathieu) qui a su m’encourager et m’aider moralement tout au long de ces deux ans. Merci à mon amoureux Julien Deveault pour ses éternels encouragements et sa confiance. Finalement, à tous mes amis, et plus particulièrement à Maëva Lucas, Dominique Saucier-Fillion, et Cassandra Goulet pour leur patience infinie.
Introduction

Dans le Golfe du Saint-Laurent, une forte tempête a affecté les îles de La Madeleine du 21 au 23 décembre 2010. La forte dépression engendrée par la tempête ainsi que les marées de vive-eau qui ont eu lieu pendant cette période, ont eu comme conséquence une érosion importante à certains endroits exposés. En effet, il y a en moyenne un recul des côtes de 2 m, principalement à l’est de l’archipel (Bernatchez et Fraser, 2012). Dans le Bas-estuaire (Gauthier, 2000) et au niveau de la limite Bas et Moyen-estuaire, plusieurs travaux ont été menés dans le but de documenter l’ampleur de l’érosion dans ce secteur. Selon Dionne et Bouchard (2000), le recul du littoral, constitué, de

Les causes d'érosion des berges du golfe et du Bas-estuaire du Saint-Laurent identifiés sont multiples mais il semble que ce sont les vagues, les marées et l'action des glaces qui jouent un rôle majeur. L'effet des vagues, phénomène le plus important, entraîne une remise en suspension des sédiments dans l'eau (Drapeau, 1992) puis leur exportation en dehors de la zone d'accumulation. Cette dynamique se fait ressentir beaucoup plus fortement lors des tempêtes puisque l'énergie des vagues est plus grande. Les marées contribuent aussi à remettre en suspension des sédiments par le biais des courants de flot et de jusant. Une partie seulement des sédiments seront exportés par les courants de marées. Cette dynamique a une importance accrue lors des marées de vive-eau. Les courants de marée ont accès à une plus vaste superficie atteignant ainsi une banque sédimentaire plus grande pouvant potentiellement être exportée de la zone. Un autre phénomène érosif important, est l'effet des glaces. Lorsque la glace se forme sur le marais, elle intègre des sédiments dans sa structure. Au printemps lorsque les glaces se décrochent de l'estran, elles migrent et délestant progressivement des sédiments à l'extérieur de leur lieu d'origine. En plus de ces exportations de sédiments, les glaces lors de leur déplacement arrachent des lambeaux de schorre et tracent des sillons au niveau de l’estran (Dionne, 1971; Troudes et Sérodes, 1988 ; Drapeau, 1992). Ces marques contribuent à la dégradation de la cohésion de la surface du marais. Toutes ces causes d’érosion sont présentes de façon plus ou moins marquée dans l'ensemble des marais de l’estuaire du Saint-Laurent

Au niveau de l’estuaire d’eau douce, les vagues sont présentes, mais habituellement de faible ampleur excepté lors des tempêtes. Les marées semblent être, dans ce secteur, d’une grande influence sur l’évolution des berges (Dionne, 1999). En effet, l’onde de marée remonte le fleuve et, en arrivant dans la région de Québec, là où l’estuaire rétrécit rapidement, la morphologie des berges confine la masse d’eau déplacée dans un étroit corridor. Cela génère de fortes marées (par endroits 6 mètres) qui joueraient, de ce fait, un rôle plus important dans l’érosion des berges de l’estuaire d’eau douce (Dionne, 1999).

L’accentuation anticipée de l’érosion des berges du Saint-Laurent pourrait entraîner des pertes de superficie au niveau des zones intertidales telles que les marais. Les marais de l’estuaire d'eau douce couvrent environ 89 km² et sont répartis en une quarantaine de zones distinctes (Centre

Pour les infrastructures humaines, plusieurs problèmes à court terme se présentent aussi. De nombreux bâtiments, ponts et routes se trouvent à proximité des zones intertidales. Les marais intertidaux permettent d’atténuer l’effet des vagues avant qu’elles n’atteignent les infrastructures. À certains endroits, les zones intertidales ont tellement rétréci que des infrastructures sont directement affectées par les effets de l’érosion. À d’autres endroits, ce sont les riverains qui sont touchés par l’effet de l’érosion par le biais de pertes de terrains privés ou de bris au niveau de petites infrastructures telles que des pontons ou des sites récréatifs. Pour la faune et la flore autant que pour l’Homme, les écotones intertidaux créent un équilibre indispensable et une zone tampon entre la zone fluviale et la zone terrestre.

Chapitre 1

Région d’étude et sites : estuaire d’eau douce du Saint-Laurent

1.1 Contexte géologique et physiographique

1.2 Climat

L’estuaire d’eau douce fait partie de la zone climatique continental-humide localisée au sud du 50° degré nord. Ce climat est caractérisé par des étés chauds, des hivers froids et une longue saison de croissance. La région se localise dans la classe 14 de la classification climatique du Québec de Litynsky (Gérardin et McKenney, 2001) (Figure 2). La région d’étude est situé sous les classes M/SH/L (Modéré/Subhumide/Longue). La température moyenne annuelle est de 4 °C et les précipitations atteignent 1207 mm. Les vents dominants en été, proviennent de l’ouest et du sud-ouest, suivant l’axe du fleuve alors que les vents dominants d’hiver sont répartis entre les axes ouest, sud-ouest et nord-est. Les vents fréquents pour l’ensemble des saisons, proviennent du nord-est et sont associés aux régimes de tempêtes (Atlas du Canada, 2003). Le pourcentage de vents calmes de la région de Québec est de moins de 1% du temps. La pression atmosphérique de la zone d’étude, pour le mois de janvier à avril, varie suivant l’axe ouest-est, de 1018 millibars à l’ouest à 1014 millibars à l’est. Pour le mois de juillet à octobre, la pression varie selon l’axe nord-sud, de 1014 millibars au sud à 1018 millibars au nord. La longueur moyenne annuelle pour la saison de croissance est de 180 jours (Atlas du Canada, 2004).
Figure 2 : Classification climatique classique du Québec (Géradin et McKenney, 2001.)
1.3 Sol et biogéographie

La zone d’étude se situe dans le domaine des sols de type podzol. Plus précisément, elle est dominée par les sols podzols ferro-humiques (Figure 3). Les sols de l’ordre podzolique ont des horizons minéraux B rougeâtres foncés dans lesquels le produit dominant d'accumulation est de la matière organique humifiée, combinée à de l’aluminium (AL) et du fer (Fe) (Agriculture et agro-alimentaire Canada, 1998). La biogéographie de cette zone découle de l’influence de la zone tempérée nordique, dominée par des peuplements feuillus et mixtes (conifères et feuillus). La région d’étude se trouve dans la sous-zone de la forêt décidue et plus précisément dans le domaine de l’érablière à tilleul (Figure 4). La flore est diversifiée, mais plusieurs espèces arrivent à la limite septentrionale de leurs répartitions telles Juglans cinerea et Zizania aquatica var. brevis. L’espèce arborescente dominante dans ce secteur est l’érable à sucre (Acer sacarum). Elle comprend aussi d’autres espèces arborées telles que le tilleul d’Amérique (Tilia americana), le frêne d’Amérique (Fraxinus americana), l’ostryer de Virginie (Ostrya virginiana) et le noyer cendré (Juglans cinerea). Deux sous-domaines subdivisent l’érablière à tilleul ; un à l’ouest du domaine où les précipitations sont moins abondantes et un à l’est, plus humide ((MEDDEFP, 2002)
Figure 3 : Sols podzoliques du Québec, Agriculture et Agro-alimentaire Canada, 1998

Figure 4 : Zone de végétation du Québec (MDDEP, 2010)
1.4 Hydrodynamisme et littoral

Le secteur d’étude est inclus dans la portion d’eau douce du littoral (Figure 5). Il débute au lac Saint-Pierre, près de Trois-Rivières et se termine à la pointe est de l’Isle-aux-Grues. Ce secteur est soumis aux marées. Les eaux douces qui y coulent proviennent des Grands Lacs et de nombreux tributaires. La largeur du fleuve varie de 870 m, au pont de Québec, à plus de 20 km à vis-à-vis l’Isle-aux-Grues. La profondeur de la voie de navigation (chenal) varie en moyenne de 13 à 40 m. Les berges de l’estuaire d’eau douce sont largement humanisées, entre autres, à cause des modifications entraînées par le quai de Portneuf et Québec. Les rives ont été presque entièrement artificialisées dans la région de Québec lors de l’aménagement du boulevard Champlain en 2008 et de l’autoroute Dufferin-Montmorency au début des années 1970. Dans le cadre de cette étude, quatre sites ont été retenus. Le marais de Saint-Augustin-de-Desmaures situé en amont de Québec. De part et d’autre de l’île d’Orléans, on retrouve les marais de Beaumont et de Château-Richer. Alors qu’à la limite aval de l’estuaire fluvial, on retrouve le marais de l’Isle-aux-Grues ; ce dernier marque la limite aval de la zone d’étude et le début de la limite amont de l’estuaire maritime. La marée affectant ces zones est de type mixte semi-diurne, soit deux oscillations complètes par jour avec une inégalité en hauteur et en temps entre les deux oscillations (Service hydrographique du Canada, 2012).

Figure 5 : Localisation et limites de l'estuaire du Saint-Laurent (Gauthier, 2000).
Le marais de Saint-Augustin-de-Desmaures se trouve en amont du secteur d’étude. À cet endroit le fleuve est de 2,04 km de largeur. La portion navigable (chenal) est de 1,3 km de largeur. Le chenal à cet endroit n’est pas balisé, car la profondeur y est suffisante pour la circulation des bateaux et la zone ne contient pas de récif (Services Hydrographiques Canadien, carte 1315). Le marnage moyen des marées à Saint-Augustin-de-Desmaures est de 4,2m. Lors des grandes marées, l’amplitude peut atteindre 5,5m. Le courant près de cette zone peut atteindre 3 nœuds lors du jusant et 2,7 nœuds durant le flot. Le marais de Beaumont et le marais de Château-Richer se situent de part et d’autre de l’île d’Orléans. À cet endroit, le fleuve est divisé en deux segments. Le segment nord est large de 2,11 km, mais la voie navigable ne mesure que 92,6 mètres. En fait, la navigation n’est permise que pour les navires de plaisance puisque le chenal est naturellement peu profond et étroit. Le segment situé au sud de l’île a aussi une largeur de 2,11 km, mais est définit par un chenal naturel de 1,7 km. Toutefois, les balises de la voie légalement navigable délimitent une zone de 648 mètres de largeur. Les marées près de Beaumont ont un marnage moyen de 4,7 m. Lors des grandes marées, ce marnage peut atteindre 6,2m. Les courants de flots atteignent généralement 3 nœuds et les courants de jusant 4 nœuds. Avant de se concentrer le long du chenal de l’axe sud, les courants vont s’orienter vers la traverse nord jusqu’à la pointe Saint-Jean. De là, ils prennent la direction de l’axe sud. Vis-à-vis la zone d’étude de Château-Richer, le marnage moyen des marées est de 4,5m. Lors des grandes marées l’amplitude atteint 6,6m. Les courants de flots et de jusant se déplacent à la même vitesse soit 3 nœuds. Au niveau de l’Isle-aux-Grues, le fleuve se séparent aussi en 2 segments, la voie navigable est du même côté que le marais étudié, au nord. Le segment nord mesure 9,6 km de large, avec une portion navigable d’un peu plus de 800 m. Le marnage moyen des marées de l’Isle-aux-Grues est de 4,7 m alors qu’en période de grandes marées il peut atteindre 6,3 m. Les courants de flots et de jusant se déplacent, ici aussi, à la vitesse de 3 nœuds.
1.5 Sites d'étude

Les sites d’étude ont été choisis de façon à couvrir une grande partie de l’estuaire d’eau douce (Figure 6); ils représentent les marais de l’ensemble de l’estuaire en termes de géomorphologie, géologie et d’écologie végétale.

Figure 6 : Sites d'étude (Normandeau, 2012)

1.5.1 Géomorphologie des marais intertidaux

Un marais littoral est situé en zone intertidale et est habituellement formé d’un pré ou d’un marécage arbus­tif ou arboré, d’un schorre et d’une slikke (Figure 7).

Au niveau supérieur, se trouve le pré ou le marécage arbus­tif ou arboré (Figures 8-9). Cette zone n’est affectée par la marée que lors des grandes tempêtes et des fortes inondations. La pente du pré ou du marécage arbus­tif peut varier d’un site à un autre, mais demeure très faible. Cette zone se démarque du schorre supérieur par un changement dans la densité et le type de végétation. Les plantes qui colonisent le pré ou le marécage arbus­tif sont davantage xérophiles que les plantes du schorre supérieur. Le réseau de drainage de cette zone est formé par les eaux de ruissellement.
principalement. En effet, les marées atteignent rarement le pré ou marécage arbustif ou arboré donc les canaux qui s’y forment sont dus aux eaux de précipitations et de fontes.

Figure 7 : Marais intertidaux, le chiffre 1 représente les marelles dans le schorre supérieur(2). Le 3 indique le talus d’érosion du marais suivi de la slikke identifié par le chiffre 4. Le chiffre 5 indique le cours d’eau (dans le cas de ce projet il représente le fleuve Saint-Laurent). Finalement la pente, qui est représentée par le chiffre 6, est présente dans certains marais là où il n’y a pas ou peu d’érosion et se nomme haute slikke. (Paskoff, 2003 adapté de Guilcher, 1979)

Figure 8 : Marécage arbustif et arboré, Saint-Augustin-de-Desmaures (Lacroix, 2011)
Le schorre est situé entre le pré ou le marécage arbustif ou arboré et la slikke. Il est inondé seulement lors des marées de vives eaux, c’est-à-dire deux fois par mois. La pente est moins forte que dans la slikke, de l’ordre de 1‰. Le schorre contient une végétation qui peut être ouverte ou continue (Figure 10).

Les marais du secteur à l’étude sont caractérisés par un schorre divisé en deux parties, le schorre inférieur et le schorre supérieur. L’ensemble du schorre est sillonné de chenaux de drainage, qui forment un réseau moins dense que sur la slikke. Quelques cuvettes sont aussi visibles à travers la végétation, résultats des radeaux des schorres arrachés par les glaces (Paskoff, 2003). Le schorre est sillonné d’une multitude de monticules qui indiquent des variations dans l’épaisseur des sédiments situés sous la couche végétale.
La slikke est une zone intertidale inondée à chaque marée, même par les marées de mortes eaux (Figure 11). Parfois, le marais contient une haute slikke qui sépare la basse slikke du schorre. Cependant, la haute slikke n’est pas présente lorsqu’il y a un talus d’érosion. La pente de la slikke est de l’ordre de 1 à 3‰ (Paskoff, 2003). La slikke ne contient pas ou très peu de végétation et est caractérisée par un réseau dense de chenaux de drainage. Ces chenaux sont formés par les courants de flot et de jusant qui évoluent quotidiennement. Des rides de courants présentes sur la surface de la slikke témoignent de l’action des courants et forment un assemblage complexe de monticules de faible amplitude. Généralement, les rides de courant sont perpendiculaires au sens du courant. La slikke peut contenir des radeaux de végétation provenant du schorre. Ces radeaux sont le résultat de l’érosion; Ils ne colonisent pas la slikke et disparaissent progressivement.
Figure 11: Slikke, Château-Richer (Lacroix, 2011)
1.5.2 Saint-Augustin-de-Desmaures

Le marais de Saint-Augustin-de-Desmaures est situé sur la rive nord du fleuve Saint-Laurent, dans le Parc des Haut-fond, à l’ouest de la municipalité de Saint-Augustin-de-Desmaures. La longueur de la zone d’étude est de près de 300 m. La largeur de celle-ci fait environ 150 m. Elle est composée d’un marécage arbustif et arboré, d’un schorre supérieur et inférieur et d’une slikke avec des blocs rocheux (Figure 12). La slikke est limitée au sud par une ligne de blocs rocheux parallèle à l’écoulement du fleuve. La slikke et le schorre inférieur se distinguent par la présence de végétation peu dense sur le schorre inférieur et une absence de végétation sur la slikke. Le schorre inférieur est séparé du schorre supérieur par un talus d’érosion faisant de 15 à 5 cm de hauteur environ, la partie la plus haute étant située à l’ouest de la zone d’étude. Le marécage arbustif et arboré est séparé du schorre supérieur par une plage peu large sans végétation.

Figure 12 : Marais de Saint-Augustin-de-Desmaures (Gervais, 2012)
Le marais à l’étude est situé dans une baie. Il semble peu exposé aux vents et aux vagues grâce à cette position. De plus, l’agglomération linéaire de blocs rocheux, au sud de la zone d’étude, réduit l’énergie des vagues qui parviennent à atteindre la baie. Les processus hydrodynamiques produisent, entre autres, des rides de courants et des chenaux de marées. L’ensemble du marais est sillonné de chenaux de drainage. Un ruisseau permanent le traverse dans la partie ouest. De nombreuses mares et marelles sont dispersées dans le schorre supérieur, le schorre inférieur et la slikke.
1.5.3 Beaumont

Le marais de Beaumont est situé dans l’anse de Vincennes, sur la rive sud du fleuve Saint-Laurent face à l’île d’Orléans. Cette anse mesure près de 1 km de largeur. La zone d’étude du schorre supérieur est de 120 mètres de long (Figure 13) et comprend une vaste slikke (de plus de 300 m de largeur) limitée dans sa partie inférieure par un cordon de blocs glaciaires et par une zone d’affleurements rocheux dans sa partie supérieure. Le cordon de blocs glaciaires ferme toute la baie et s’étend sur une largeur d’environ 160 m. Le schorre inférieur est situé sur la zone rocheuse. Le schorre supérieur est délimité du schorre inférieur par un talus de faible hauteur (10 cm environ). Une plage sableuse se trouve entre le schorre supérieur et la falaise.

Figure 13 : Marais de Beaumont (Gervais, 2012)

Le marais de Beaumont est exposé aux vents malgré sa position géographique dans une anse. Celle-ci est si large qu’elle offre peu d’obstacles aux vents de toute provenance, sauf au sud, où la
falaise agit en tant que protection naturelle. La berge en général est rectiligne. Les processus hydrodynamiques affectent le marais par l’action des vagues, des courants marins et des courants de flots et de jusant. Le schorre supérieur est visiblement affecté par des processus d’érosion puisqu’il est discontinu et rongé par l’érosion. Une rivière se jette dans le fleuve à l’est du marais et est l’unique cours d’eau permanent du marais. De petits chenaux de drainage ainsi que des mares et marelles sont visibles en surface du schorre et de la slikke.
1.5.4 Château-Richer

À Château-Richer, le marais se situe à l’est de la municipalité, face à l’île d’Orléans, sur la rive nord du fleuve Saint-Laurent. La zone à l’étude du marais de Château-Richer mesure 150 m de long (Figure 14). Le marais est composé d’une slikke dans la partie inférieure, suivi par un schorre inférieur. La végétation du schorre inférieur se densifie progressivement en allant vers le schorre supérieur. Les schorres supérieur et inférieur sont délimités par un talus d’érosion. Le schorre supérieur forme une mince bande de terre de végétation dense limitée au nord par un marécage arbusfif et arboré. Le marécage arbusfif et arboré couvre une vaste surface et est périodiquement inondé par les marées de vives eaux.

Figure 14 : Marais de Château-Richer (Gervais, 2012)

Le marais de Château-Richer, situé sur une berge rectiligne, est exposé aux vents dominants du sud-ouest et aux vents. Les vents dominants sud-ouest et les vents de tempêtes du nord-est affectent le marais. La présence de l’île d’Orléans offre une protection au sud contre un fetch très
grand. Les facteurs hydrodynamiques (les vagues, les courants marins et les courants de flots et de jusants) sont des éléments affectant la géomorphologie du marais. L'effet des processus hydrodynamiques sur le schorre supérieur est visible par les radeaux de schorre arrachés et progressivement désagrégés au niveau du schorre inférieur. Plusieurs chenaux de drainage parcourrent la slikke et le schorre inférieur. De nombreuses mares et marelles sont présentes à la surface du schorre supérieur, du schorre inférieur et de la slikke.
1.5.6 Isle-aux-Grues

Le marais de l’Isle-aux-Grues est situé sur la rive nord de l’île, au centre de l’estuaire du Saint-Laurent. La zone étudiée est située au nord-est de l’île et mesure 120 mètres de long (Figure 15). Le marais est composé d’un pré, d’un schorre supérieur, d’un schorre inférieur, d’affleurements rocheux peu végétalisés et d’une slikke. La slikke est limitée au nord par le fleuve et au sud par les affleurements rocheux peu végétalisés. Elle est composée d’affleurements rocheux parsemés de sédiments fins. En remontant vers la partie supérieure du marais, les affleurements rocheux occupent une plus grande surface. Le schorre inférieur est parsemé de mares, de marelles, de radeaux de schorre et d’entrants de slikke. Le schorre supérieur est délimité du schorre inférieur par un talus d’environ 0,5 à 1m de hauteur. Le schorre supérieur est continu, mais marqué de profonds chenaux de drainages et de cuvettes. Le pré est situé dans la zone la plus en amont du marais.

Figure 15 : Marais de l'Isle-aux-Grues (Gervais, 2012)
Le marais de l’Isle-aux-Grues est exposé à une multitude de facteurs hydrodynamiques compte tenu de l’absence d’obstacles physiques. Même au sud, où les vents sont peu nombreux et de faible intensité, l’île pourrait offrir une protection, mais le dénivelé est trop faible et n’offre aucune barrière. L’action des processus hydrodynamiques entraîne le transport sédimentaire (érosion/sédimentation) et l’érosion de certaines parties du marais mis en évidence par la présence de rides de courants, de chenaux de marées et de radeaux de schorre respectivement. Aucun ruisseau permanent ne draine directement la zone d’étude, mais de nombreuses rigoles intermittentes sont présentes. Le schorre supérieur est particulièrement affecté par le drainage puisque de profondes rigoles y sont présentes.
Chapitre 2

Méthodologie : photo-interprétation et relevés récurrents de terrain

L’étude de l’érosion des marais intertidaux est complexe et demande l’utilisation de diverses approches méthodologiques. L’approche qui a été privilégiée dans le cadre de cette étude consiste, dans un premier temps, à réaliser une analyse spatio-temporelle ou multi-dates en utilisant des photographies aériennes prises à de différentes dates. Dans un deuxième temps, l’évolution des sites à l’étude s’est effectuée, in situ, par le biais de relevés de terrain. Ces deux approches combinées ont permis de dresser un portrait réaliste de la situation actuelle et passée des marais étudiés.

2.1 Analyse spatio-temporelle

Cette analyse a été réalisée afin de documenter l’évolution spatio-temporelle des marais sur une période d’environ 50 ans. Les photographies aériennes et les orthophotos proviennent de la collection de la cartothèque de l’Université Laval et du Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs (MDDFEP). Pour chaque marais étudié, un jeu de photographies aériennes et un jeu d’orthophotos ont été couplés afin d’obtenir les renseignements les plus complets possible en couvrant une échelle de temps maximale. Il faut souligner que les photographies analysées sont celles où la marée est basse pour permettre une vue d’ensemble du marais. Par ailleurs, les années disponibles des photographies aériennes et des orthophotos sont différentes selon le marais étudié. Une fois l’ensemble des données spatiales recensées et triées, une manipulation de géoréférencement a dû être faite sur certaines photographies aériennes. Le géoréférencement permet de donner à une image, un emplacement exact selon des coordonnées géographiques.

2.1.1 Géomorphologie

Une délimitation des zones géomorphologiques (pré, marécages arbustif ou arboré, schorre supérieur, schorre inférieur et slikke) a été faite pour chacune des photographies aériennes et des orthophotos disponible et ce, pour tous les sites à l’étude. Il a été possible de distinguer les délimitations physiques, soit par une différence de dénivellation ou par une différence de
végétation entre les diverses zones du marais. Ces zones ont été reproduites sur AcrGis sous forme de polygones afin de pouvoir les coupler avec les photographies géoréférencées. La superficie de chacune des zones identifiées a ensuite été mesurée. Une seconde analyse a été faite à partir de ces données ; elle porte sur la position de la limite amont du schorre supérieur au cours du temps. Pour mesurer l’évolution de cette limite, il a fallu établir un point repère fixe (point A) sur les photographies aériennes. Une ligne a été tracée sur ArcGis entre le point A et la limite supérieure du schorre supérieur (point B). Cet exercice a été fait sur les photographies aériennes les plus anciennes et sur les orthophotos les plus récentes et ce, pour chaque site d’étude. Ainsi on obtient des segments de différentes longueurs qui peuvent être comparés en tenant compte de l’échelle du temps.

2.1.2 Estimation de l’épaisseur des sédiments

L’épaisseur des sédiments de chacune des zones géomorphologiques de chacun des sites a été mesurée en enfonçant une tige graduée dans le dépôt meuble de surface. Les résultats ont été compilés puis classés afin de créer une mosaïque de polygones représentative de l’épaisseur sédimentaire. Chaque polygone créé mesure 10 m X 10 m et a été tracé sur les orthophotos. Nous avons pu ainsi générer, pour chaque site d’étude, une couche de base (orthophoto ou photographie aérienne), une couche représentant les différentes zones géomorphologiques (schorres inférieur et supérieur, slikke), une couche représentant l’évolution temporelle de la surface du schorre supérieur et une couche représentant l’épaisseur des sédiments meubles.
2.2 Travaux de terrain

2.2.1 Suivi de l’érosion

Un suivi de l’érosion du schorre supérieur a été fait à l’aide de repères mis en place en juillet 2011. Les repères consistent en des piquets de bois disposés au pied du talus, espacés de 10 m. Chaque transect comprend trois piquets (A, B et C), espacés de 5 m, du pied du talus vers l’arrière du schorre supérieur (Figure 16). Les mesures de recul du talus ont été prises mensuellement en 2011 et en 2012. Les relevés effectués consistent à mesurer l’écart entre le piquet A et le talus. Dans la plupart des cas, trois mesures ont été prises entre chaque piquet A et le talus, soit en haut, au milieu et en bas du talus. Chaque marais comporte environ 10 transects (Figure 16-17).
Figure 16 : Position des piquets sur les zones d'études des marais (Gervais, 2011)

Figure 17 : Piquet installé au pied du talus du schorre supérieur (Bhiry, 2011)
2.2.2 Mesure de l’épaisseur des sédiments nouvellement déposés

Un suivi de l’accumulation de sédiments sur le schorre inférieur a été fait en mesurant l’épaisseur des sédiments accumulés à chaque mois sur des plaques sédimentaires métalliques. Ces plaques ont été mises en place au niveau du schorre inférieur et de la slikke. Les plaques à sédiments (environ une dizaine) ont été installées le long de deux transects, dont un à l’ouest et l’autre à l’est de chacun des marais (Figures 18-19). Des mesures de la sédimentation/érosion ont été faites, à l’aide d’une tige graduée, mensuellement en prenant 6 mesures sur chaque plaque pour ensuite en faire la moyenne. De plus, des échantillons de sédiments ont été recueillis sur les plaques sédimentaires lorsqu’il y avait de l’accumulation. Là où l’installation de plaques a été impossible à cause de la présence d’affleurements rocheux notamment, les mesures d’accumulation de sédiments ont été faites à des endroits rocheux marqués par de la peinture fluorescente et dont les coordonnées géographiques ont été notées à l’aide d’un GPS d’une précision de 8 à 12 m.

Figure 18 : Disposition des plaques sédimentaires sur le schorre inférieur (Gervais, 2011)
2.2.4 Relevés Topographiques

La topographie des sites d’études a été caractérisée à l’aide de profils altitudinaux réalisés allant du schorre supérieur vers le schorre inférieur. Les profils ont été réalisés à l’aide d’une station totale comprenant un théodolite (Figure 20) et un réflecteur (Figure 21). Le théodolite est installé sur le schorre supérieur. Il sert de repère fixe au profil. Le réflecteur est déplacé le long d’une ligne, perpendiculaire au fleuve. Le théodolite enregistre les différentes positions du réflecteur le long de l’estran entre autre, l’altitude du point et son angle par rapport au point de référence (théodolite). Trois profils par marais ont été effectués au cours de l’automne 2012.

2.2.5 Coupes stratigraphiques

Deux coupes stratigraphiques ont été excavées dans le talus d’érosions de chaque marais dont une à l’est et une à l’ouest de la zone d’étude. L’identification des unités stratigraphique fut basée sur la couleur, la nature et le taux de décomposition du sédiment.
Figure 20 : Utilisation du théodolite (Gervais, 2012)

Figure 21 : Utilisation du réflecteur (Gervais, 2012)
2.3 Travaux de Laboratoire

Une analyse granulométrique a été faite pour chaque échantillon provenant des coupes stratigraphiques ou prélevés sur le dessus des plaques sédimentaires. Cette analyse consiste à déterminer la distribution de fréquences des différentes tailles des particules composant un dépôt (Hadjouis, 1987). Chacun des échantillons a été séparé en deux fractions à l’aide d’un tamis de 1000 microns. La fraction grossière, supérieure à 1000 microns, a été analysée avec une colonne de tamis dont l’ouverture des mailles varie entre 16 000 et 1000 microns. La fraction inférieure à 1000 microns a été soumise à trois pré-traitements, soit un traitement à l’acide chlorhydrique (HCL) concentré à 10 % pour éliminer les carbonates, une perte au feu pour détruire la matière organique et le retrait de la magnétite et de l’hématite (Cayer, 2010). Les échantillons ont été analysés par l’entremise d’un granulomètre au laser de marque Horiba, modèle LA950v2, qui utilise le principe optique de Mie (incluant les approximations de Fraunhofer).
Chapitre 3 Résultats et interprétation

3.1 Analyse spatio-temporelle des photographies aériennes et des orthophotos

3.1.1 Marais Saint-Augustin-de-Desmaures

3.1.1.1 Évolution de la superficie des zones géomorphologiques

Le marais de Saint-Augustin-de-Desmaures a été analysé à l’aide de 6 photographies aériennes et orthophotos. En premier lieu, les résultats montrent que le marécage arbustif et arboré semble avoir gagné en superficie (Figures 22-23). En 1960, la superficie était de 20 177,36 m² alors qu’en 2010 elle est de 46 142,19 m² (Annexe 1), ce qui représente un gain de 128 %. Le schorre supérieur mesurait, en 2010, 368,48 m² de moins qu’en 1965 alors que le schorre inférieur a augmenté de 4 453,11 m² soit un gain de 29% par rapport à la superficie initiale. La plage a diminué en superficie de 1305,91 m². Par ailleurs, les données permettent de constater que les variations de superficies, dans chacune des zones, ne sont pas continues depuis 1965 (Figure 22). Le marécage arbustif et arboré a d’abord connu une forte augmentation de superficie (173%) entre 1965 et 1977 et a par la suite graduellement décliné. La plage est restée relativement stable excepté une diminution en superficie entre 1965 et 1977. Le schorre supérieur a connu une importante augmentation de superficie entre 1977 et 1993 (157%) pour diminuer tout aussi fortement de 2002 à 2008. Le schorre inférieur a largement varié en superficie particulièrement entre les années 2002 et 2010.
Figure 22 : Variations de la superficie des zones géomorphologiques, marais de Saint-Augustin-de-Desmaures
Figure 23 : Évolution de la superficie des zones géomorphologiques de la zone d’étude du marais de Saint-Augustin-de-Desmaures, entre 1965 et 2010

La slikke n’est pas visible sur la photographie de 1965 dû à la marée haute
3.1.2.2 Évolution de la limite supérieure du schorre supérieur

La distance entre la route au nord du marais et la limite supérieure (amont) du schorre supérieur a été mesurée afin de connaître le retrait ou l’avancée de la côte. En 1965 (Figure 24-25), le segment A mesurait 365,27 m et le segment B 310,38 m. En 2010, ces mêmes segments mesuraient 363,35 m et 305,64 m respectivement. Le schorre supérieur vis-à-vis le segment A a reculé de 1,92 m et au niveau du segment B de 4,74 m. Les données compilées des 6 années démontrent que la limite inférieure (aval) du schorre supérieur a varié en 45 ans bien que la limite actuelle soit près de celle de 1965. Pour le segment A, de 1993 à 2008, un recul de la limite aurait eu lieu tandis que pour cette même période le segment B aurait augmenté en longueur. En fait, grossièrement, les variations du segment A sont inverses à celle du segment B, excepté sur les photographies de 1993, on constate que les deux segments montrent une augmentation de la distance entre la limite supérieure du schorre et la route.

![Figure 24 : Évolution de la limite supérieure du schorre supérieur, Saint-Augustin-de-Desmaures](image)

Figure 24 : Évolution de la limite supérieure du schorre supérieur, Saint-Augustin-de-Desmaures
Figure 25 : Évolution de la distance en mètre entre la limite inférieur du schorre supérieur et un point de repère fixe (route), marais de Saint-Augustin-de-Desmaures entre 1965-2010
3.1.2 Marais de Beaumont

3.1.2.1 Évolution de la superficie des zones géomorphologiques

L’analyse spatio-temporelle du marais de Beaumont a été faite sur une période de 47 ans en utilisant en tout, quatre photographies aériennes et orthophotos. En premier lieu, il convient de mentionner la nette diminution de superficie de la forêt qui couvre la falaise adjacente au sud du marais (Figure 26-27). En 1963, cette zone couvrait 5 503,84 m² tandis qu’en 2010 elle ne couvre plus que 5 009,31 m² ce qui représente une diminution de près de 9%. Le schorre supérieur mesurait 2881,39 m² en 1963 et 2106,70 m² en 2010, ce qui représente une diminution de 27% %.

La zone du schorre inférieur a augmenté de 1062,42 m². Par ailleurs, la superficie de la plage, située entre le schorre supérieur et la forêt a aussi diminué, passant de 1294,54 m² à 594,06 m² (54% de perte). L’analyse détaillée montre que l’évolution temporelle de la superficie du marais de Beaumont est variable selon les années. Par exemple, entre 1963 et 1964, on note une diminution de la superficie du schorre inférieur puis une augmentation jusqu’en 2000 (Figure 26).

La même constatation s’applique sur les autres zones du marais où on observe une diminution de la superficie jusqu’en 1964 et par la suite une augmentation jusqu’en 2000. À partir de 2010 on note que pour l’ensemble des zones, à l’exception du schorre inférieur, la superficie tend à diminuer encore une fois.

Figure 26 : Évolution, en superficie, des zones géomorphologiques, marais de Beaumont
Figure 27 : Évolution de la superficie des zones géomorphologiques de la zone d’étude du marais de Beaumont entre 1963 et 2010
3.1.2.2 Évolution de la limite supérieure du schorre supérieur

L’évolution de la limite supérieure du schorre supérieur du marais de Beaumont a été mesurée entre 1963 et 2010 à l’aide de segments tracés à partir de points de repères (Figure 28-29). Les résultats démontrent qu’en 1963, les segments A et B mesuraient respectivement 287,37 m et 257,8 m de longueur, alors qu’en 2010, ils mesuraient 274,16 m et 252,46 m respectivement (Annexe 1). La longueur du segment A a diminué de 13,21 m entre 1963 et 2010, alors que pour la même période, la longueur du segment B a diminué de 5,42 m. L’analyse graphique présentée ci-après permet de faire ressortir les changements survenus à Beaumont au cours de cette période (Figure 28). À l’évidence, le schorre supérieur a reculé entre 1963 et 2010. Une diminution moyenne de 0,28 m du segment A et de 0,12 m du segment B a été mesurée par année.

Figure 28 : Évolution de la limite supérieure du schorre supérieur, Beaumont
Figure 29 : Évolution de la distance, en mètre, entre la limite supérieure du schorre supérieur et un point de repère fixe (route) entre 1963 et 2010, marais de Beaumont
3.1.3 Marais de Château-Richer

3.1.3.1 Évolutions de la superficie des zones géomorphologiques

![Figure 30 : Évolution en superficie, des zones géomorphologiques, marais de Château-Richer](image)

Figure 30 : Évolution en superficie, des zones géomorphologiques, marais de Château-Richer
Figure 31 : Évolution de la superficie des zones géomorphologiques de la zone d’étude du marais de Château-Richer entre 1960 et 2008
3.1.3.2 Évolution de la limite supérieure du schorre supérieur

La variation de la position de la limite amont du schorre supérieur a été documentée à l’aide de deux transects identifiés sur la figure 33. La longueur des transects a été mesurée pour la période allant de 1960 à 2008. Ces segments sont tracés à partir de points fixes sur la route. Les résultats obtenus montrent un retrait de la limite supérieure du schorre supérieur vers l’intérieur des terres. En 1960, la longueur du segment A était de 451,31 m alors que celle du segment était de B, 434,16 m. En 2008, cette distance est de 420,58 m pour le segment A et 404,56 m pour le segment B. En 48 ans, les limites supérieures du schorre supérieur des parties ouest et est du marais ont reculé de 6,8% par rapport à leur longueur initiale. L’analyse des longueurs des segments A et B pour l’ensemble des photographies aériennes et orthophotos disponibles démontrent qu’à partir de 1963, un retrait s’est fait jusqu’en 2008. Le segment A a légèrement gagné en longueur en 2000 pour ensuite diminué jusqu’en 2008 (Figure 32-33). En moyenne, le segment A a diminué de 0,64 m et le segment B 0,62 m par année de 1960 à 2008.

Figure 32 : Évolution de la limite supérieure du schorre supérieur, marais de Château-Richer
Figure 33 : Évolution de la distance, en mètre, entre la limite supérieure du schorre supérieur et un point de repère fixe (route) pour une période entre 1960 et 2010, marais de Château-Richer
3.1.4 Marais de l’Île-aux-Grues

3.1.4.1 Évolution de la superficie des zones géomorphologiques

Les images utilisées pour effectuer l’analyse de l’évolution de la superficie des zones du marais de l’Île-aux-Grues couvrent une période de 49 ans, soit de 1961 à 2010. L’analyse spatio-temporelle démontrent des modifications des limites entre les diverses zones géomorphologiques. Par exemple, en 1961 la limite entre le pré et le schorre supérieur est bien différente de celle de 2010 (Figures 34-35). La superficie du pré a augmenté au détriment de la superficie du schorre supérieur. En effet, la superficie du pré a augmenté de 2 120,81 m² tandis que celle du schorre supérieur a diminué de 4 394 m² (Annexe 1). Le schorre inférieur a diminué de 4 629,32 m². En général, les résultats suggèrent une variation continue de superficie pour la période d’analyse (Figure 34). Le pré a connu une augmentation constante alors que le schorre supérieur et le schorre inférieur ont vu leur superficie diminuer progressivement entre 1961 et 2010.

Figure 34 : Évolution, en superficie, des zones géomorphologiques, marais de l’Île-aux-Grues

L’analyse spatio-temporelle du schorre inférieur en 2001 n’a pas été faite à cause de la marée haute
Figure 35 : Évolution de la superficie des zones géomorphologiques du marais de l’Isle-aux-Grues
entre 1961 et 2010
3.1.4.2 Évolution de la limite supérieure du schorre supérieur

La mesure du recul de la limite supérieure (amont) du schorre supérieur a, ici aussi, été effectuée à partir de 2 segments soit A et B. En 1961 (Figures 36-37), le segment A mesurait 60,84 m et le B 69,93 m (Annexe 1). En 2008, les segments ont diminué respectivement de 3,21 m et 3,45 m. Actuellement la limite supérieure (aval) du schorre supérieur se situe, à l’ouest de la zone d’étude, à 57,63 m et à l’est 66,48 m de la route (repère fixe). Les résultats révèlent que ce recul n’est pas constant (Figure 36). De 1961 à 2001 de 12,54 m à la hauteur du segment A et de 21,89 m à la hauteur du segment B. Cependant, de 2001 à 2010, les deux segments, A et B ont augmenté en longueur de 9,34 et de 18,44 m respectivement.

Figure 36 : Évolution de la limite supérieure du schorre supérieur, marais de l’Isle-aux-Grues
Figure 37 : Évolution de la distance en mètre entre la limite supérieur du schorre supérieur et un point de repère fixe (route) entre 1961 et 2010, marais de l'Isle-aux-Grues
3.2 Épaisseur des sédiments de surface

3.2.1 Marais de Saint-Augustin-de-Desmaures

À Saint-Augustin-de-Desmaure, l’épaisseur des sédiments décroissent généralement du schorre supérieur vers la slikke (Figure 38). Concernant le schorre supérieur, dans les zones ouest et centre l’épaisseur des sédiments de surface mesure plus de 50 cm alors que dans la zone à l’extrême est, cette épaisseur est plus faible. Au niveau du schorre inférieur, il semble que l’épaisseur des sédiments à l’ouest soit plus importante qu’à l’est du marais. Une zone près du centre-est se démarque par sa très faible épaisseur sédimentaire par rapport au reste du schorre inférieur au même niveau. Pour la slikke, des zones sédimentaires plus profondes ont été décelées près de la limite avec le schorre inférieur. Ensuite, l’épaisseur des sédiments décroit rapidement en allant vers le fleuve suivant un axe sud-ouest nord-est.

Figure 38 : Épaisseur des sédiments, marais de Saint-Augustin-de-Desmaure (juin 2012)
3.2.2 Marais de Beaumont

À Beaumont, l’épaisseur des sédiments semble généralement décroître du schorre supérieur vers le schorre inférieur, par contre au niveau de la slikke, ils regagnent en épaisseur (Figure 39). L’épaisseur des sédiments de surface au niveau du schorre supérieur varie entre 1 cm et plus de 50 cm. Il semble que la partie est ait une plus grande épaisseur par rapport à la partie ouest. Au niveau du schorre inférieur, les nombreux affleurements rocheux font en sorte que les zones d’accumulation sédimentaires sont discontinues; l’épaisseur est comprise entre 11 et 20 cm. Dans la zone près de la limite entre le schorre inférieur et la slikke l’épaisseurs varie entre 11 et 30 cm mais s’accentue en allant vers le fleuve.

Figure 39 : Épaisseur des sédiments, marais de Beaumont (juin 2012)
3.2.3 Marais de Château-Richer

À Château-Richer, la répartition des sédiments est complètement homogène (Figure 40). Ceux-ci recouvrent entièrement la zone d’étude et mesurent plus de 50 cm d’épaisseur.

Figure 40 : Épaisseur des sédiments, marais de Château-Richer (juin 2012)
3.2.3 Marais de l’Isle-aux-Grues

L’épaisseur des sédiments du marais de l’Isle-aux-Grues décroit du schorre supérieur vers la slikke (Figure 41). L’épaisseur des sédiments de surface mesure au niveau du schorre supérieur plus de 50 cm au même titre que dans la section amont du schorre inférieur, qui est située au pied du schorre supérieur. Cette épaisseur diminue rapidement puisque le schorre inférieur est en partie formé d’affleurements rocheux, elle entre 0 cm et 10 cm. Au niveau de la slikke, les données recueillies ressemblent à celle du schorre inférieur; l’épaisseur est entre 0 et 10 cm mais il existe quelques zones où la profondeur atteint 30 cm.

Figure 41 : Épaisseur des sédiments, marais de l’Isle-aux-Grues (juin 2012)
3.3 Suivi de l’érosion du schorre supérieur

3.3.1 Marais de Saint-Augustin-de-Desmaures

3.3.1.1 Suivi de l’érosion du schorre supérieur par transect

Nous rappelons que dans le marais de Saint-Augustin, la transition du schorre supérieur vers le schorre inférieur est progressive, autrement dit, il n’y pas de talus d’érosion bien défini, sauf dans certains endroits.

L’analyse des données indique qu’en 2011, il y a eu « progradation » du schorre supérieur par endroits d’environ 2 à 15 cm (transect 10) (Figure 42). Selon les observations de terrain, il y a eu, bien qu’elle soit faible, une accumulation sédimentaire. Celle-ci qui serait issue soit du schorre supérieur ou des sédiments apportés du fleuve par la marée. Cet engraissement ponctuel aurait permis l’établissement de plantes typiques du schorre supérieur. De juillet à novembre 2011, le schorre supérieur a « avancé » en moyenne d’environ 1 +/- 0,5 cm. En 2012, le talus a été affecté plutôt par l’érosion (Figure 42), la limite a reculé d’environ de 2 +/- 0,5 cm principalement au niveau des transect 5, 9 et 10. Il est à noter qu’au niveau de certains transects le talus s’est progressivement affaissé en « pente douce » au cours de la période de mesure de terrain.

*Les marqueurs rouges indiquent des zones où la talus s’est affaissé jusqu’à devenir une pente de moins de 5 cm.

Figure 42 : Évolution du talus d’érosion entre juillet 2011 et novembre 2012, marais de Saint-Augustin-de-Desmaures
3.3.1.2 Suivi mensuel de l’érosion du schorre supérieur

La figure 43 présente la moyenne du recul du talus au niveau de tous les piquets-repères ; elle est représentée en fonction de chaque mois de relevés de 2011 et de 2012. Selon les données, il appert que c’est à la fin de la saison estivale que le recul du talus est significatif (Figure 43), particulièrement entre août et septembre, que ce soit pour en 2011 ou en 2012. Par contre, pour les deux années d’étude, il est intéressant de noter que le talus a « progradé » entre les mois d’octobre et novembre. Par ailleurs en septembre 2011, l’érosion du schorre supérieur fut relativement importante, ce qui pourrait être associé à la tempête « Irène » qui a eu lieu le 28 août 2011.

Figure 43 : Évolution mensuelle moyenne du talus d’érosion entre juillet 2011 et novembre 2012, marais de Saint-Augustin-de-Desmaures

3.3.2 Marais de Beaumont

3.3.2.1 Suivi de l’érosion du schorre supérieur par transect

A l’instar du marais de Saint-Augustin-de-Desmaures, dans le marais de Beaumont, les schorres supérieur et inférieur ne sont pas limités par un talus, la transition entre les deux zones est donc graduelle, le long d’une faible pente descendante vers le fleuve. Cette limite est perceptible par un changement de végétation. L’analyse par transect se fait en comparant trois mesures, celles des mesures initiales, celles de la moyenne de 2011 et celles des mesures finales de novembre 2012. La moyenne de recul du talus de Beaumont est de – 1cm (+/- 0,5 cm).
En général, on note, une « progradation » du schorre supérieur au niveau de tous les piquets, particulièrement au niveau des transects 5 et 9, où l’avancée était de 91 et 76 cm respectivement. Selon les observations de terrain, des petites touffes de végétation caractéristique du schorre supérieur se sont formées sur des sédiments fins nouvellement accumulés au-delà de la limite schorre supérieuridentifiée en juillet 2011 (Figure 44).

En 2012, les résultats indiquent un patron différent. Si l’on compare la position du talus en juillet 2011 et celle en novembre 2012, on remarque que la portion du talus située entre les piquets 5 et 9 a subi de l’érosion alors que la portion comprise entre les transects 1 et 4 semble s’être maintenue globalement. La partie centre-ouest est celle où il y a eu les plus fortes pertes.

Figure 44 : Évolution du talus entre juillet 2011 et novembre 2012, marais de Beaumont

3.3.2.2 Suivi mensuel de l’érosion du schorre supérieur

3.3.3 Marais de Château-Richer

3.3.3.1 Suivi de l'érosion du schorre supérieur par transect

Contrairement aux deux marais précédents, les schorres supérieur et inférieur du marais de Château-Richer sont délimités par un talus d’érosion d’une trentaine de centimètres en moyenne. Les résultats indiquent que ce talus a reculé tant en 2011 qu’en 2012 (Figure 46). La moyenne de recul du talus du marais de Château-Richer est de 18 cm.

En 2011, le recul était de 12 à 38 cm, au niveau des piquets 3, 5 et 8 (Figure 46) alors qu’en 2012, l’érosion était généralisée dans ce marais. Autrement dit, elle a affecté le talus au niveau de tous les points de mesures (piquets). Le recul le plus important a été mesuré au niveau du piquet 3, dans la partie est du marais, avec une perte de 67 cm.
3.3.3.2 Suivi mensuel de l’érosion du schorre supérieur

La figure 47 montre que le recul du talus a eu lieu pendant toute la période durant laquelle le marais est habituellement libre de glace (avril-novembre) mais c’est en automne que le processus de l’érosion semble le plus actif. En effet, en 2011, le recul du talus fut de 13 cm et de 14 cm en septembre et novembre respectivement. En 2012, le talus est en recul de 20 cm par rapport à sa position en juillet 2011; en octobre le taux de recul du talus a atteint 24 cm.
3.3.4 Marais de l’Isle-aux-Grues

3.3.4.1 Suivi de l’érosion du schorre supérieur par transect

Les schorres supérieur et inférieur du marais de l’Isle-aux-Grues sont, comme c’est le cas du marais de Château-Richer, délimités par un talus qui peut atteindre un mètre de hauteur par endroits. La figure 48 montre que le talus a reculé tant en 2011 qu’en 2012 mais d’une façon inégale dans le temps. Autrement dit, l’érosion a induit un recul du talus de 100 cm au niveau du piquet 2 et de 20 cm au niveau du piquet 8 alors que la position est demeurée relativement stable au niveau des autres piquets. En 2012, au niveau du piquet 2, il y a « une avancée du talus » du schorre supérieur de 100 cm, alors qu’au niveau des autres piquets, notamment les piquets 1, 6, 8 et 10, le processus d’érosion était très actif (Figure 48). Par ailleurs, selon nos observations de terrain « l’avancée du talus » de 100 cm au niveau du transect 2 correspond plutôt à un basculement vers l’aval d’un radeau du schorre supérieur. Ce basculement serait suivi éventuellement par un décrochement d’un gros radeau du schorre supérieur.

En général, tel qu’il a été constaté pour le marais de Château-Richer, les processus d’érosion du talus furent plus actifs en 2012 qu’en 2011 (Figure 48).
3.3.4.2 Suivi mensuel de l’érosion du schorre supérieur

Figure 49 : Évolution mensuelle moyenne du talus d’érosion entre juillet 2011 et novembre 2012, marais de Isle-aux-Grues.
3.4 Suivi de la sédimentation au niveau du schorre inférieur

Nous rappelons qu’au marais de Saint-Augustin-de-Desmaures, des plaques sédimentaires ont été installées le long de trois transects, un à l’ouest, un au centre et un à l’est alors qu’aux marais de Beaumont, de Château-Richer et de l’Isle-au-Grues, des plaques sédimentaires ont été installées le long de deux transects seulement, un à l’extrémité ouest et un à l’extrémité est. Chaque transect comporte 4 ou 5 plaques. À chaque mois, l’épaisseur des sédiments accumulés sur la plaque a été mesurée. Quand, au contraire, il y a eu un écart qui s’est créé entre la plaque et la surface du marais, cet écart est aussi mesuré ce qui correspond à l’érosion de la surface. Par ailleurs, nous sommes conscients des faits suivants : l’épaisseur des sédiments ou l’écart sont minimes, de l’ordre du centimètre ; la période de relevé est courte (une année et demie) et des erreurs de mesures auraient pu survenir. Néanmoins, les résultats présentés ci-dessous donnent une idée de la dynamique sédimentaire des marais étudiés.

3.4.1 Marais de Saint-Augustin-de-Desmaures

3.4.1.1 Accumulation des sédiments

La figure 50 montre que le schorre inférieur a été affecté par l’érosion en 2011 alors qu’en 2012, une faible pellicule de sédiments a été mise en place par endroits. Ceci est sans doute associé aux conditions stables ayant caractérisé l’été 2012 (voir chapitre Discussion). Les résultats indiquent aussi que les parties ouest et est du marais ont subi des variations en termes d’accumulation/érosion sédimentaires au niveau du pied du talus et de la slikke tandis que dans la partie centrale, il y a une accumulation des sédiments constante, du pied du talus vers la slikke.
Figure 50 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Saint-Augustin-de-Desmaures (Marge d’erreur +/- 5mm)
3.4.1.2 Résultats mensuels

L’accumulation moyenne mensuelle de sédiments sur l’ensemble des plaques de chacun des transects est présentée à la figure 51. En général en 2011, les variations de l’épaisseur des sédiments sont faibles le long de tous les transects avec quelques différences observées principalement en octobre et novembre, variant entre -1 cm et 0,4 cm.

En 2012, on observe le même patron sédimentaire. Le long du transect centre, les variations significatives sont en juin et en juillet alors qu’au niveau du transect est, il y a des variations visibles en avril, août, septembre et novembre. Les mesures varient entre -1,3 cm et 10 cm par rapport au niveau initial de juillet 2011. En résumé, les variations significatives en terme d’accumulation/érosion sédimentaire se sont produites en automne, et ce pour les 2 années de mesure. La figure 52 présente une estimation du bilan sédimentaire pour les deux années d’étude.
Figure 51 : Accumulation sédimentaire mensuelle par transect, marais de Saint-Augustin-de-Desmaures
Figure 52 : Estimation du bilan sédimentaire : neutre, négatif ou positifs en 2011 et 2012, marais de Saint-Augustin-de-Desmaures
3.4.2 Marais de Beaumont

3.4.2.1 Accumulation des sédiments

Au marais de Beaumont, c’est au niveau de la slikke qu’il y a eu accumulation de sédiments de quelques centimètres tant en 2011 (0,7-9,4 cm) qu’en 2012 (3,2-10,1 cm). Il semble qu’il n’y a pas eu d’accumulation au niveau du schorre inférieur à l’emplacement des plaques à sédiments (Figure 53).

Figure 53 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Beaumont (Marge d’erreur +/- 5mm)
3.4.2.2 **Résultats mensuels**

Selon la figure 54, il y a eu accumulation de sédiments dans la portion est du marais, particulièrement en août (6,6 cm) et en septembre (7,6 cm) tandis que la portion ouest n’a pas enregistré ni sédimentation ni érosion en 2011. En revanche, en 2012, cette portion (ouest) a connu, à chaque mois, une accumulation sédimentaire dont l’épaisseur variait selon le mois entre 3 et 7 cm en moyenne. Toutefois, c’est en septembre, octobre et novembre qu’il y le taux d’accumulation le plus significatif notamment au niveau de la slikke (Figure 55).

![Diagramme de l’accumulation sédimentaire mensuelle par transect, marais de Beaumont](image)

Figure 54 : Accumulation sédimentaire mensuelle par transect, marais de Beaumont
3.4.3 Marais de Château-Richer

3.4.3.1 Accumulation sédimentaire

Dans le marais de Château-Richer, la portion est du schorre inférieur a enregistré une accumulation de 2 cm de sédiments alors que dans le reste du marais l’accumulation fut pratiquement nulle. Au niveau de la slikke; une épaisseur sédimentaire de 1 à 3 cm en moyenne a été prélevée (Figure 56).
Figure 56 : Accumulation sédimentaire moyenne en 2011 et en 2012 par zone géomorphologique, marais de Château-Richer (Marge d’erreur +/- 5mm)

3.4.3.2 Résultats mensuels

La figure 57 montre qu’en 2011, la sédimentation, bien qu’elle ait été minime, a eu lieu en août et en octobre alors qu’en 2012, c’était en juillet, septembre et novembre. La courte période d’enregistrement rend difficile l’interprétation des données; un suivi de relevés à moyen terme est
 requis. La figure 58 représente une estimation du bilan sédimentaire pour les deux années d’étude.

Figure 57 : Accumulation sédimentaire mensuelle par transect, marais de Château-Richer
Figure 58 : Estimation du bilan sédimentaire : négatif ou positif en 2011 et 2012, marais de Château-Richer
3.4.4 Marais de l’Isle-aux-Grues

3.4.4.1 Accumulation des sédiments

La figure 59 suggère que le marais de l’Isle-aux-Grues a enregistré une accumulation sédimentaire positive (pas d’érosion) et ce, partout dans la section considérée : pied du talus, schorre inférieur et slikke. Bien qu’elle soit faible (< 3 cm), cette accumulation sédimentaire semble avoir été plus significative en 2012 qu’en 2011 (Figure 59).

Figure 59 : Accumulation sédimentaire moyenne annuelle, en 2011 et 2012, par zone géomorphologique, marais de l’Isle-aux-Grues (marge d’erreur : +/- 5mm)
3.4.4.2 Résultats mensuels

Suite à l’analyse des résultats présentés à la figure 60, on peut déduire qu’en 2011 l’accumulation sédimentaire s’est faite à la fin de l’été et au début de l’automne, en l’occurrence les mois d’août, septembre et novembre alors qu’en 2012 c’était principalement en été (juin, juillet, aout) et aussi en septembre (Figures 60 et 61).

*Les mesures de novembre 2012 ne sont pas disponibles pour ce terrain car la glace, lors de la sortie de novembre, recouvrait les plaques sédimentaires.

Figure 60 : Accumulation sédimentaire mensuelle par transect, marais de l’Isle-aux-Grues
Figure 61 : Estimation du bilan sédimentaire : neutre, négatif ou positif en 2011 et 2012, marais de l’Isle-aux-Grues
3.5 Relevés topographiques des marais à l’étude

3.5.1 Marais de Saint-Augustin-de-Desmaures

Trois profils topographiques ont été réalisés dans le marais Saint-Augustin-de-Desmaures, à l’est, à l’ouest et au centre du marais (Figure 62). Le profil de l’extrême ouest (SA 1) à une altitude maximum de 4,87 m et une altitude minimum 0,86 m. Le profil est en pente descendante de 1,64%. Le profil du centre (SA 2) a une pente de 1,40%. L’altitude maximale de ce profil est de 5,20 m et l’altitude minimale de 1,2 m. Le profil SA 3 situé dans l’extrême est à une altitude maximale de 5,07 m et une altitude minimale de 1,13 m. Sa pente est de 2,13%. En somme, les profils est et ouest (SA1 et SA3) sont similaires alors que le profil SA 2 (profil centre) est caractérisé par une altitude relativement plus importante marquée par des sections bombées à 100 et à 200 m dues à la présence de gros blocs glaciels.

![Figure 62](image)

Figure 62 : Profil topographique automne 2012, marais de Saint-Augustin-de-Desmaures

3.5.2 Marais de Beaumont

Au marais de Beaumont, les profils ouest (B T1) et est (B T3) sont similaires, réguliers avec une pente variant entre -3,37% et -3,46%. Le profil centre (B T2) est différent, il est irrégulier et est caractérisé par une rupture de pente prononcée à cause d’un escarrement rocheux (Figure 63). En fait, cette rupture de pente se retrouve sur les autres profils aussi mais de façon moins prononcée.
et elle débute moins loin (entre 55 m et 65 m) sur ceux-ci. La limite entre le schorre supérieur et inférieur est à 10 m pour les 3 profils.

Figure 63 : Profil topographique automne 2012, marais de Beaumont

3.5.3 Marais de Château-Richer

Les profils topographiques de Château-Richer sont très similaires (Figure 64). De longueur d’environ 180 m, ces profils commencent au niveau du schorre supérieur, à une altitude d’environ 6 m et parviennent à la slikke le long d’une pente de 2,74% (CR 1), 2,54% (CR 2) et 2,47% (CR3). La limite entre le schorre inférieur et le schorre supérieur est situé à 15 m pour les 3 profils.

Figure 64 : Profil topographique automne 2012, marais de Château-Richer
3.5.4 Marais de l'Isle-aux-Grues

Les trois profils topographiques du marais de l’Isle-aux-Grues, IAG T1, IAG T2, IAG T3 sont presque parallèles. Situées à des altitudes très légèrement différentes, ils sont d’une longueur dépassant 200 m. L’altitude de départ de ces profil est située à environ 5,60 m, au niveau du schorre supérieur et parviennent à la slikke. La pente des trois profils varie peu; elle est de 2,19% (IAG T1), 1,99 % (IAG T2) ou de 2,34 % (IAG T3).

Figure 65 : Profil topographique automne 2012, marais de l’Isle-aux-Grues

En termes d’inclinaison, le marais de Beaumont est le plus incliné, la pente est de 3,12% alors que le marais de Saint-Augustin-de-Desmaures a une pente la plus douce (1,52%). Entre ces deux valeurs «extrêmes», se situent la pente du marais Château-Richer (2,59%) et celle de l’Isle-aux-Grues (2,18%).
3.6 Analyse granométrique des sédiments de surface

Les échantillons analysés en termes granométriques ont été recueillis lorsqu’il y avait de l’accumulation de sédiments par rapport au mois précédent sur les plaques sédimentaires.

3.6.1 Marais de Saint-Augustin-de-Desmaures

Les sédiments recueillis sont composés de sable, gravier et pélite. En automne 2011, seule une plaque a été recouverte par une mince couche de sédiments composés de sable au même titre qu’au printemps 2012 et en automne 2012 alors qu’en été 2012, plusieurs plaques ont été recouvertes d’une couche de sédiments meubles (Tableau 1).

Tableau 1 : Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Saint-Augustin-de-Desmaures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect Ouest</td>
<td>1</td>
<td>Sable et gravier</td>
<td>Sable, gravier et pélite</td>
<td>Sable et gravier</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td>Transect Centre</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transect Est</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
La figure 66 présente les proportions de sédiments dans les échantillons. Ainsi un seul échantillon a été recueilli à chacune des saisons suivantes : automne 2011, printemps 2012 et en automne alors que qu’en été 2012, huit échantillons ont été recueillis. Les échantillons sont généralement de granulométrie sableuse à graveleuses excepté l’échantillon recueilli en automne 2012 lequel contient plus de pélites (49%) ce qui est concordant avec l’emplacement de la plaque sédimentaire concernée (plaque 4), situé au niveau de la slikke.

<table>
<thead>
<tr>
<th>Saisons</th>
<th>Fréquences de la taille des sédiments (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automne 2011</td>
<td>50, 45, 5</td>
</tr>
<tr>
<td>Printemps 2012</td>
<td>7, 11, 11</td>
</tr>
<tr>
<td>Été 2012</td>
<td>27, 19, 19</td>
</tr>
<tr>
<td>Automne 2012</td>
<td>32, 19, 49</td>
</tr>
</tbody>
</table>

Figure 66 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Saint-Augustin-de-Desmaures
Selon le tableau 2, le long du transect Ouest (TO), les sédiments déposés au pied du schorre supérieur en automne 2011 (TO 1-A-2011) sont plus graveleux que ceux déposés au printemps 2012 (TO 1-P-2012 et TO 1-É-2012) lesquels sont plutôt dominés par du sable (70-80 %). La proportion de la pélite (silt et argile) est faible dans tous les échantillons, elle n’excède pas 14 % (Tableau 2).

L’indice de la taille moyenne des sédiments de TO-1-2011 est de -0,559 phi indiquant qu’il s’agit de sable très grossier alors que les sédiments déposés au printemps et en été 2012 sont relativement plus fin (sable moyen –sable grossier) (Tableau 2). L’indice de tri (IT) varie entre 2 et 3 phi suggérant que les sédiments sont mal triés. Le tri est meilleur vers des sédiments fins ou grossiers. L’indice d’asymétrie (IA) varie grandement selon les échantillons. Lorsque l’indice est positif cela révèle un environnement de dépôts de faible énergie ce qui correspond à la majorité des échantillons du transect ouest.

Tableau 2 : Données granulométriques des sédiments déposés le long du transect Ouest, marais de Saint-Augustin-de-Desmaures

<table>
<thead>
<tr>
<th>Transect Ouest (TO)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>SA TO 1 automne 2011</td>
<td>50</td>
<td>45,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TO 1 printemps 2012</td>
<td>7,3</td>
<td>81,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TO 1 été 2012</td>
<td>22,2</td>
<td>72,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TO 3 été 2012</td>
<td>46,1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TO 4 été 2012</td>
<td>52,1</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TO 5 été 2012</td>
<td>11,7</td>
<td>67,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Le long du transect Centre (TC), les sédiments déposé en été 2012 sont sableux au niveau de schorre supérieur (SA TC 1 et SA TC 3) alors qu’ils sont silteux à la limite du schorre inférieur – slikke (SA TC 4) (Tableau 3). L’indice de la taille moyenne (2,29 phi) confirme la granulométrie fine de SA TC 4 par rapport aux deux autres échantillons. Par ailleurs, tous les échantillons sont très peu triés puisque l’indice de tri varie entre 2,5 et 4 phi (Tableau 3). L’indice d’asymétrie révèle, à l’instar du transect ouest, que les sédiments se sont déposés dans un environnement de faible énergie.

Le long du transect est (TE), seule la plaque SA TE 3 fut surmontée de sédiments meubles en été 2012; ces sédiments peuvent être qualifiés de sablo-silteux puisque qu’ils sont composés de 57 % de sable et 40 de pélite; le reste est formé de gravier. Plus précisément, les indices de la taille moyenne et de tri indiquent qu’il s’agit de sable très fin et très peu trié. L’indice d’asymétrie de SA TE 3 (été 2012) démontre que l’environnement de dépôt était aussi de faible énergie.

Tableau 3 : Données granulométriques des sédiments déposés le long des transects Centre et Est, Saint-Augustin-de-Desmaures

<table>
<thead>
<tr>
<th>Transect Centre (TC)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA TC 1 été 2012</td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td></td>
<td>26,2</td>
<td>58,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TC 3 été 2012</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA TC 4 automne 2012</td>
<td>32,3</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transect Est (TE)</td>
<td>Composition</td>
<td>Indice granulométrique</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>SA TE 3 été 2012</td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td></td>
<td>2,7</td>
<td>57,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En somme, dans le marais de saint-Augustin, les échantillons prélevés les longs des transects ouest, centre et est sont généralement sableux (sable grossier, moyen et fin) avec un peu de graviers et, mal triés. La granulométrie grossière peut être expliquée par la présence, par
endroits, dans le schorre inférieur et la slikke des affleurements schisteux qui suite à leur désagrégation libèrent des sédiments de la taille de sables et de graviers. Les sablières situées à proximité du marais peuvent fournir des sables par l’entremise des courants et des vagues. De même, dans le marais se déverse un cours d’eau qui traverse en amont des affleurements schisteux et par conséquent il dépose dans le marais, des sédiments graveleux et sableux. Le mauvais tri pourrait être aussi expliqué par ces apports fréquents de sédiments.

3.6.2 Marais de Beaumont

Tableau 4 : Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Beaumont

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect Ouest</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Sable, gravier et pélite</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Sable, gravier et pélite</td>
<td>Sable, gravier et pélite</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td>Transect Est</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
<td>Sable, gravier et pélite</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Sable, gravier et pélite</td>
<td>Sable, gravier et pélite</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
</tbody>
</table>

Au total, 10 échantillons ont été recueillis de l’automne 2011 à l’automne 2012. L’ensemble des échantillons ont été prélevés au niveau de la slikke. Pour tous les échantillons, la dominance de la taille des grains est associée au sable (Figure 67).
Au niveau du transect ouest (TO), le seul échantillon recueilli en automne 2011 (BTO 4) est composé de sédiments plus grossier que ceux des échantillons recueillis au printemps (BTO3-4), et en été (BTO3-4) (Tableau 5). Le pourcentage de pélites est plus important au printemps 2012 et à l’été 2012 (respectivement 19% et 47%) que durant l’automne 2011 (13%.). L’indice de la taille moyenne de BTO 4 recueilli en automne 2012 est de 2,202 (indiquant un sable moyen) alors que pour les autres échantillons, il est supérieur à 3 ce qui indique un sable fin. En ce qui a trait à l’indice de tri il se situe entre 1,5 et 2,5 phi, ce qui indique des échantillons de peu triés à très mal triés. Au niveau de la slikke il semble que l’environnement de dépôt soit de plus forte énergie si on le compare à celui au niveau du schorre inférieur.

En ce qui a trait au transect Est (TE), les échantillons sont composés de sables fins sauf l’échantillon BTE3 récolté en été 2012 qui est composé de silt très grossier (Tableau 6). L’emplacement de l’ensemble des échantillons correspond soit à limite entre le schorre inférieur et la slikke (plaque 3) ou à la slikke (plaque 4). L’indice de tri des échantillons se situe entre 1,5 et 2,2 phi, ce qui indique qu’ils sont peu ou très peu triés. Par contre, l’échantillon BTE3 récolté en été 2012 cet indice descend à 0,3 phi ce qui tend vers un environnement de déposition de plus forte énergie que les autres échantillons.

Figure 67 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Beaumont

Au niveau du transect ouest (TO), le seul échantillon recueilli en automne 2011 (BTO 4) est composé de sédiments plus grossier que ceux des échantillons recueillis au printemps (BTO3-4), et en été (BTO3-4) (Tableau 5). Le pourcentage de pélites est plus important au printemps 2012 et à l’été 2012 (respectivement 19% et 47%) que durant l’automne 2011 (13%.). L’indice de la taille moyenne de BTO 4 recueilli en automne 2012 est de 2,202 (indiquant un sable moyen) alors que pour les autres échantillons, il est supérieur à 3 ce qui indique un sable fin. En ce qui a trait à l’indice de tri il se situe entre 1,5 et 2,5 phi, ce qui indique des échantillons de peu triés à très mal triés. Au niveau de la slikke il semble que l’environnement de dépôt soit de plus forte énergie si on le compare à celui au niveau du schorre inférieur.

En ce qui a trait au transect Est (TE), les échantillons sont composés de sables fins sauf l’échantillon BTE3 récolté en été 2012 qui est composé de silt très grossier (Tableau 6). L’emplacement de l’ensemble des échantillons correspond soit à limite entre le schorre inférieur et la slikke (plaque 3) ou à la slikke (plaque 4). L’indice de tri des échantillons se situe entre 1,5 et 2,2 phi, ce qui indique qu’ils sont peu ou très peu triés. Par contre, l’échantillon BTE3 récolté en été 2012 cet indice descend à 0,3 phi ce qui tend vers un environnement de déposition de plus forte énergie que les autres échantillons.
Tableau 5 : Analyse granulométrique transect Ouest, Beaumont

<table>
<thead>
<tr>
<th>Transect Ouest (TO)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>B TO 4 automne 2011</td>
<td>24,1</td>
<td>61,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TO 4 printemps 2012</td>
<td>0,6</td>
<td>83,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TO 3 printemps 2012</td>
<td>1</td>
<td>85,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TO 4 été 2012</td>
<td>1,2</td>
<td>26,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TO 3 été 2012</td>
<td>0,2</td>
<td>66,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 6 : Analyse granulométrique transect Est, Beaumont

<table>
<thead>
<tr>
<th>Transect Est (TE)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>B TE 3 automne 2011</td>
<td>0,5</td>
<td>86,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TE 4 automne 2011</td>
<td>0,7</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TE 4 printemps 2012</td>
<td>0,1</td>
<td>73,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TE 3 été 2012</td>
<td>0,4</td>
<td>43,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TE 4 été 2012</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.3 Marais de Château-Richer

Le groupe textural dominant de sédiments est composé de sables et de pélites. À l’automne 2011, seulement une plaque sur 10 a été surmontée de sédiments. Au printemps, le même schéma se produit, à la même zone, mais sur l’autre transect (Tableau 7). La majorité des échantillons ont été prélevés en été, 77% des plaques ont été surmontées de sédiments durant cette saison.

Tableau 7: Composition des échantillons recueillis et analysés en automne 2011, au printemps, en été et en automne 2012, marais de Château-Richer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect Ouest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Sable et pélites</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Sable graveleux, avec un peu de pélites</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
<tr>
<td>Transect Est</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Sable et pélites</td>
<td>-</td>
<td>Sable graveleux, avec un peu de pélites</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Sable et pélites</td>
<td>-</td>
</tr>
</tbody>
</table>

En tout, 9 échantillons ont été prélevés de ce marais. Le groupe textural dominant est formé de pélites pour l’automne 2011 et le printemps 2012. Ces échantillons ont été recueillis uniquement sur le schorre inférieur. À l’été 2012, c’est le sable qui dominait tant au niveau du schorre inférieur qu’au niveau de la slikke (Figure 68).

Quatre échantillons ont été prélevés le long du transect Est (TE), ces échantillons présentent une composition différente allant de silt grossier à sable moyen (Tableau 9). L’échantillon CRTE 2 récolté automne 2011 est plus fin que celui prélevé sur la même plaque en été 2012. Les échantillons CTE4 et CTE 5 récoltés en été 2012 sont de nature différente (respectivement silt très grossier et sable moyen) malgré que tous les deux aient été situés au niveau de la slikke. Les sédiments contenus dans les échantillons sont tous peu à très peu triés.

Figure 68 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de Château-Richer
Tableau 8 : Analyses granulométriques transect Ouest, Château-Richer

<table>
<thead>
<tr>
<th>Transect Ouest (TO)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>CR TO 2 printemps 2012</td>
<td>0</td>
<td>29,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TO 5 été 2012</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TO 4 été 2012</td>
<td>1,9</td>
<td>65,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TO 2 été 2012</td>
<td>0</td>
<td>32,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TO 3 été 2012</td>
<td>0</td>
<td>54,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 9 : Analyses granulométriques transect Est, Château-Richer

<table>
<thead>
<tr>
<th>Transect Est (TE)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>CR TE 2 automne 2011</td>
<td>0</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TE 5 été 2012</td>
<td>1</td>
<td>82,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TE 4 été 2012</td>
<td>0</td>
<td>36,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR TE 2 été 2012</td>
<td>22,9</td>
<td>40,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.4 Marais de l’Isle-aux-Grues

Les échantillons prélevés le long de transects du marais de l’Isle-aux-Grues sont principalement composés de pélites, accompagnées soit de sables ou de graviers. C’est en été que l’accumulation fut significative. Durant l’automne 2011, quatre plaques situées dans la slikke furent surmontées de sédiments (Tableau 10) alors qu’elles furent deux seulement au printemps. À l’été, l’accumulation s’est faite sur la plupart des plaques; par contre en automne 2012, 1 seule plaque fut surmontée de sédiments.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect Ouest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Péliges sableuses</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Péliges</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Péliges graveleuses</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Péliges graveleuses</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transect Est</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Péliges graveleuses</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Péliges graveleuses</td>
<td>Péliges sableuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Péliges graveleuses et sableuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A chacune des saisons les sédiments sont dominés par des pélites (Figure 69). Les graviers n’ont été présents qu’en automne 2011 et au printemps 2012 mais, en faible proportion alors que le sable s’est accumulé à chacune des saisons, mais faiblement représenté.
Figure 69 : Fractions granulométriques en pourcentage dans les sédiments prélevés selon les saisons, marais de l’Isle-aux-Grues

Les échantillons des transect Ouest (TO) et Est (TE) recueillis du marais de l’Isle-aux-Grues sont nombreux (14 échantillons). La grande majorité est composée de silt, allant de fin à très grossier (Tableau 11-12). Toutefois, deux échantillons recueillis en automne 2011 (IAG TE4) ou au printemps 2012 (IAG TE3), leur la taille moyenne indique qu’il s’agit de gravier fin ou du sable grossier. Les échantillons ont tous un indice de tri suggérant un faible tri des sédiments. L’indice d’acuité indique que la distribution est soit symétrique ou non asymétrique et ce, selon les échantillons.
Tableau 11 : Analyses granulométriques transect Ouest, Isle-aux-Grues

<table>
<thead>
<tr>
<th>Transect Ouest (TO)</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>IAG TO 5 automne 2011</td>
<td>13,3</td>
<td>18,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 4 automne 2011</td>
<td>0,0</td>
<td>8,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 6 automne 2011</td>
<td>0,0</td>
<td>17,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 5 printemps 2012</td>
<td>0,0</td>
<td>11,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 5 été 2012</td>
<td>0,0</td>
<td>7,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 1 été 2012</td>
<td>0,0</td>
<td>12,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 2 été 2012</td>
<td>0,0</td>
<td>12,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAG TO 4 été 2012</td>
<td>0,0</td>
<td>33,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 12 : Analyses granulométriques transect Est, Isle-aux-Grues

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71,0</td>
<td>50,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>16,8</td>
<td>24,5</td>
<td>29,6</td>
<td>23,0</td>
<td>14,9</td>
<td>9,1</td>
</tr>
<tr>
<td></td>
<td>12,2</td>
<td>25,1</td>
<td>70,4</td>
<td>77,0</td>
<td>85,1</td>
<td>90,9</td>
</tr>
<tr>
<td></td>
<td>Tm</td>
<td>Tm</td>
<td>K</td>
<td>It</td>
<td>It</td>
<td>Tm</td>
</tr>
<tr>
<td></td>
<td>-1,065</td>
<td>0,446</td>
<td>5,419</td>
<td>6,467</td>
<td>5,951</td>
<td>1,065</td>
</tr>
<tr>
<td></td>
<td>It</td>
<td>Tm</td>
<td>Tm</td>
<td>Tm</td>
<td>Tm</td>
<td>Tm</td>
</tr>
<tr>
<td></td>
<td>3,139</td>
<td>0,446</td>
<td>5,419</td>
<td>6,467</td>
<td>5,951</td>
<td>1,065</td>
</tr>
<tr>
<td></td>
<td>Ia</td>
<td>It</td>
<td>Tm</td>
<td>Tm</td>
<td>Tm</td>
<td>Tm</td>
</tr>
<tr>
<td></td>
<td>1,773</td>
<td>0,899</td>
<td>3,597</td>
<td>0,272</td>
<td>1,852</td>
<td>0,170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravier très fin</td>
<td>Sable grossier</td>
<td>Silt grossier</td>
<td>Silt moyen</td>
<td>Silt grossier</td>
<td>Silt grossier</td>
</tr>
<tr>
<td></td>
<td>Très peu trié</td>
<td>Très peu trié</td>
<td>Peu trié</td>
<td>Peu trié</td>
<td>Peu trié</td>
<td>Peu trié</td>
</tr>
<tr>
<td></td>
<td>Asymétrie très fine</td>
<td>Asymétrie très fine</td>
<td>Symétrique</td>
<td>Symétrique</td>
<td>Symétrique</td>
<td>Symétrie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.5 Conditions hydrodynamiques de la mise en place des sédiments analysés

La granulométrie des dépôts de surface des deux marais situé en amont (est) diffère de celle des dépôts des deux marais aval (ouest) (Figure 70). En effet, dans les marais de Saint-Augustin-de-Desmaures et de Beaumont, à l’ouest, les sédiments sont généralement sableux (50-63 %) alors que la fraction silteuse atteint en moyenne 23 % et le gravier 20 %. L’abondance des sédiments relativement grossiers peut être expliquée par la présence dans les environs immédiats des sablières de Saint-Nicolas et de Saint-Augustin ainsi que par la présence de cordons littoraux et des affleurements rocheux (schistes) dont la désagrégation libère des grains de diverses tailles. Les sédiments de surface des marais de Château-Richer et de l’Isle-aux-Grues, à l’est, sont plutôt silteux (77-62%) alors que la fraction sableuse atteint en moyenne 26%. Cette situation pourrait être due à la présence d’un bouchon de turbidité dans le fleuve Saint-Laurent à l’endroit où se situent ces deux marais (Environnement Canada, 2012). En effet, à cet endroit, les concentrations de matières en suspension (MES) sont élevées et peuvent varier entre 10 et 70 mg/l (MDDEFP, 2007). La figure 70 présente la relation entre les de la taille moyenne du tri des sédiments prélevés des différentes zones géomorphologiques de chacun des marais étudié ainsi que la relation entre les indices de la taille moyenne et d’asymétrie. Il appert clairement que les sédiments du marais de Saint-Augustin-de-Desmaures, qui est en forme de baie ouverte, sont plus hétérogènes alors que ceux des autres marais ont des caractéristiques granulométriques similaires en termes de taille et de tri.
Figure 70 : Relation entre la taille moyenne et l’indice de tri (en haut) et relation entre la taille moyenne et l’indice d’asymétrie (en bas) des quatre marais
3.7 Coupe stratigraphiques

3.7.1 Marais de Saint-Augustin-de-Desmaures

La figure 71 représente les deux coupes est et ouest, excavées à même le talus d’érosion du schorre supérieur.

La coupe ouest est formée par trois unités superposées : à la base, l’unité 1 de couleur grisâtre, est composée d’environ 60 % de pélites, le reste est formé de sables et graviers. L’unité 2 diffère de l’unité 1 par sa couleur gris plus foncé et par la présence de la matière organique sous forme de racines et tiges fortement décomposées. L’unité 3, au somment de la coupe est de couleur brunâtre; le sédiment est formé principalement de pélites, la matière organique est fréquente sous forme de racines, tiges et feuilles. Les données granulométriques indiquent que les trois unités présentent plusieurs caractéristiques similaires (Tableau13) : à titre d’exemple, elles sont formées de silt grossier à très grossier et très mal trié. La couleur gris bleu caractérisant les unités inférieures 1 et 2 indiquent un milieu anaérobie alors que la couleur brunâtre des sédiments de l’unité 3 suggère un milieu oxygéné.

La coupe Est, consiste en une seule unité (Figure 71) laquelle est composée de lits de silt foncé en alternance avec des lits de silt gris-bleu. Ces lits silteux comportent quelques traces d’oxydation et sont obliques avec un faible pendage d’ouest en est. La taille moyenne et l’indice de tri de cette unité sont similaires à ceux de l’unité de la coupe Ouest, autrement dit l’unité est formée de silt très grossier très mal trié.

Si on tenait compte de la taille très fine (silt) des sédiments du schorre supérieur, ce dernier ne présenterait pas une source importante des sédiments de surface du schorre inférieur lesquelles ont la taille de sable (fin, moyen et grossier).
Figure 71 : Coupes stratigraphiques des sites d’étude
Tableau 13 : Données granulométriques des coupes stratigraphiques Est et Ouest, Saint-Augustin-de-Desmaures

<table>
<thead>
<tr>
<th>Coupe Ouest</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>U3 (0-7 cm)</td>
<td>9,1</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2 (7-13 cm)</td>
<td>5,8</td>
<td>21,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1 (13-19 cm)</td>
<td>4,2</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coupe Est				Tm	4,456	Silt très grossier
				It	2,436	Très peu trié
				la	-1,081	Asymétrie grossière

3.7.2 Marais de Beaumont

Les coupes stratigraphiques du marais de Beaumont ont été excavées directement dans le talus d’érosion, une à l’ouest et l’autre à l’est de la zone d’étude. À l’ouest une seule unité compose la coupe stratigraphique. L’unité est de couleur gris-brun au sommet et gris-bleu à la base ; elle est formée de graviers (40%) de sables (31%) et de pélites (29%) (Tableau 14). L’unité comporte de nombreux fragments de schistes sous forme de graviers fins. La matière organique est présente en faible proportion surtout par la présence de feuilles décomposées et de racines. Les sédiments provenant de l’échantillonnage de la coupe révèle que l’indice de tri est supérieur à 3 phi, ce qui représente un sédiment mal trié.

À l’est, à l’instar de la coupe ouest, une seule couche compose la stratigraphie du talus. La couche, de 16 cm d’épaisseur, est grisâtre et révèle des traces d’oxydation. Sa composition est semblable à celle de la coupe ouest (40% de gravier, 26 % de sable et 34% de pélite). Les traces d’oxydations indiquent un milieu oxygéné. L’indice de tri de cet échantillon est de 4 phi, ce qui indique un très mauvais tri des sédiments.
Tableau 14 : Analyses granulométriques coupes stratigraphiques, Beaumont

<table>
<thead>
<tr>
<th>Coupe Ouest</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>U1 (0-18 cm)</td>
<td>40,1</td>
<td>31,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupe Est</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1 (0-16 cm)</td>
<td>40</td>
<td>26,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7.3 Marais de Château-Richer

Les coupes stratigraphiques du marais de Château-Richer ont été excavées dans le talus d’érosion.

La coupe Ouest est composée d’une seule unité, de 36 cm d’épaisseur (Tableau 15). Le faciès est massif, de couleur gris-brun et gris-bleu. Quelques traces d’oxydations sont visibles ce qui indique un milieu oxygéné. Des traces de matières organiques et des racines sont aussi présentes surtout sous forme de racines, de feuilles et de tiges. L’échantillon est principalement composé de pélite (83%) et d’une faible proportion de sable (17%). La taille moyenne des sédiments indique un échantillon composé de silt grossier. L’indice de tri souligne le fait que les sédiments sont mal triés.

La coupe Est est composée aussi d’une seule unité, de 36 cm d’épaisseur. Son faciès est semblable à la coupe prélevé à l’ouest de la zone, c’est-à-dire de couleur gris-brun à gris-bleu, massif. Des traces de matière organique sont visibles sous forme de racines, de tiges et de feuilles. Sa composition se divise principalement entre les sables (33%) et les pélites (67%). La taille moyenne des grains indique un silt très grossier. L’indice de tri révèle un échantillon peu trié (1,5 phi).

Les coupes stratigraphiques du schorre inférieur de Château-Richer contiennent des sédiments du même type que ceux du schorre inférieur. Le schorre supérieur pourrait fournir une partie des sédiments présents dans le schorre inférieur.
Tableau 15 : Analyses granulométriques coupes stratigraphiques, Château-Richer

<table>
<thead>
<tr>
<th>Coupe Ouest</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>U1 (0-36 cm)</td>
<td>0</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupe Est</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>U1 (0-38 cm)</td>
<td>0,3</td>
<td>32,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7.4 Marais de l'Isle-aux-Grues

Les coupes stratigraphiques du marais de l'Isle-aux-Grues ont été excavées dans le talus d’érosion du schorre supérieur. Deux coupes ont été réalisées, une à l’ouest et une à l’est.

La coupe Ouest est composée de 6 unités. La couche de base (Unité 1), reposant sur le roc, est composée de graviers schisteux et de couleur grisâtre entrecoupée de taches orangé-rouge. L’unité 2 est composée d’une alternance entre silt et sable présente sur l’ensemble de l’unité. L’unité 3 est massive et grisâtre contenant quelques taches noires de matière organique décomposée. Au niveau de l’unité 4, la matière organique représente moins de 30% de la couche qui est surtout composées de sable gris foncé. L’unité 5 ressemble à la première l’unité 1 en ce qui a trait à la couleur (gris foncé) mais la matière organique qui y est moins présente. L’unité 6 est organo-sableuse et de couleur rougeâtre (Figure 71). La matière organique est sous forme de racines, de tiges et de feuilles. L’indice de la taille moyenne des sédiments prélevés de chacune des unités indique que l’unité basale (Unité 1) est composée de graviers fins alors que les autres unités sont composées de sable grossier. L’indice de tri révèle que les sédiments sont très peu triés (Tableau 16). L’indice d’asymétrie est aussi semblable pour tous les échantillons et est supérieur à 1 phi. Les sédiments se sont donc déposés dans un environnement de faible énergie.

À l’est, la coupe est composée d’une seule unité formée de silt de couleur gris (Figure 71). La matière organique est très présente dans la partie supérieure puis s’estompe graduellement en allant vers le bas de la couche. L’oxydation est très visible dans cette unité ce qui dénote un milieu bien oxygéné. L’échantillon est composé de pélites (84%) et d’une faible proportion de sables (16%) (Tableau 16). L’indice de tri souligne le faible trié des sédiments.
Tableau 16 : Analyses granulométriques coupes stratigraphiques, Isle-aux-Grues

<table>
<thead>
<tr>
<th>Coupe</th>
<th>Composition</th>
<th>Indice granulométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gravier (%)</td>
<td>sable (%)</td>
</tr>
<tr>
<td>U6 (0-28 cm)</td>
<td>29,9</td>
<td>54,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U5 (28-36 cm)</td>
<td>15,9</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U4 (36-53 cm)</td>
<td>10,2</td>
<td>73,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3 (53 - 80 cm)</td>
<td>31,1</td>
<td>53,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2 (80-95 cm)</td>
<td>14,1</td>
<td>72,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1 (95-106 cm)</td>
<td>66,7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coupe Est

<table>
<thead>
<tr>
<th>U1 (0-81 cm)</th>
<th>0</th>
<th>16,3</th>
<th>83,7</th>
<th>TM</th>
<th>6,385</th>
<th>Silt moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>2,496</td>
<td>Très peu trié</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IA</td>
<td>0,939</td>
<td>Fine asymétrie</td>
</tr>
</tbody>
</table>
Chapitre 4

Discussion

4.1 Processus d'érosion et de sédimentation aux marais de l'estuaire d'eau douce du Saint-Laurent

4.1.1. Processus d'érosion passés et actuels

Processus d'érosion passés

Au marais de Saint-Augustin, l’augmentation de la superficie du marécage arbustif ou arboré entre 1965 et 1977 serait due au changement dans l’utilisation de cette zone. En effet, elle fut agricole tel que démontré par la photo-aérienne de 1965 alors qu’en 1977, elle est devenue couverte d’arbres et d’arbustes. Entre 1977 et 2010, la superficie du schorre supérieur a diminué alors que la superficie du schorre inférieur a augmenté de façon significative. Ceci indique qu’il y a eu un recul vers l’intérieur des zones morpho-sédimentaires du marais, ce qui est confirmée par le retrait vers l’intérieur de la limite marécage arboré - schorre supérieur (Figure 72-73).

Au marais de Beaumont, la surface du schorre supérieur a visiblement diminué au profit du schorre inférieur entre 1963 et 2010. De même pendant cette période, la limite supérieure du schorre supérieur qui est en contact avec la plage sableuse a reculé vers la falaise (Figure 72).

Le marais de Château-Richer, à l’instar du marais Saint-Augustin possède un marécage arboré ou arbustif dont la superficie a augmenté à partir de 1960 probablement à cause du reboisement des terres de cette zone qui furent jadis agricoles jusqu’à 1965. D’un autre côté, nous avons décelé un recul vers l’intérieur des terres, bien qu’il soit faible, de la limite du marécage arboré-schorre supérieur, ce qui a probablement amorti cet agrandissement du marécage arbus et arboré. Ceci, combiné à la diminution de l’étendue du schorre supérieur indiquerait un retrait du marais vers l’intérieur des terres.

Le marais de l’Isle-aux-Grues ne possède pas de marécage arboré mais un pré humide dominé par des herbacées hautes telles *Cala agrostis canadensis* et *Eutrochium maculatum* principalement (Normandeau, 2012). Ce pré est parcouru parallèlement au littoral par une route (route de la batture); l’avancée du pré, décelée suite à l’analyse des photographies aériennes, vers le littoral pourrait résulter des impacts anthropiques (tels le drainage, la consolidation annuelle de la route par remplissage; le piétinement par les chasseurs et touristes, etc.). Par ailleurs, dans ce
marais la diminution de la superficie du schorre supérieur serait dû à la fois à cette avancée du pré humide ainsi qu’au recul du talus ce qui pourrait avoir un impact négatif sur les espèces végétales colonisant ce milieu (schorre supérieur).

Ainsi, une constatation générale se dégage suite à cette analyse multidate des photographies aériennes : il y a un déplacement de quelques mètres vers l’intérieur des zones morphosédimentaires des quatre marais. Ce déplacement, plus significatif au marais de château-Richer, pourrait être associé à une hausse du niveau marin accompagnée de fortes tempêtes plus fréquentes engendrant un taux de submersion plus élevé et un recul récurrent du talus.

![Graphique 72 : Variation en pourcentage de la superficie de des schorres supérieurs et inférieurs entre 1960 et 2010 par rapport à la surface totale du marais](image1.png)

Figure 72 : Variation en pourcentage de la superficie de des schorres supérieurs et inférieurs entre 1960 et 2010 par rapport à la surface totale du marais

![Graphique 73 : Retrait de la limite supérieure du schorre supérieur vers l’intérieur des terres entre 1960 et 2010](image2.png)

Figure 73 : Retrait de la limite supérieure du schorre supérieur vers l’intérieur des terres entre 1960 et 2010
Processus d’érosion actuels

En général, on assiste à un recul du talus d’érosion du schorre supérieur dans les quatre marais à l’étude. Toutefois c’est aux marais de Château-Richer et de l’Isle-aux-Grues que ce recul est le plus prononcé (Figures 74-75). Aux deux autres marais (de Saint-Augustin et de Beaumont), le recul moyen est nettement plus faible, même il y a eu par endroits, une « progradation » du schorre supérieur. Ceci résulterait d’engraissement de certaines zones du schorre inférieur, situées près du talus d’érosion (qui est d’ailleurs très peu élevé 5-10 cm). Selon nos observations de terrain, cet engraissement est engendré par une accumulation de sédiments au pied du talus; ces sédiments sont rapidement colonisés par des plantes du schorre supérieur à proximité.

Bien que la durée des relevés soit courte, il semble que l’érosion du talus est relativement plus effective à l’automne aux marais à l’étude. À l’Isle-aux-Grues, le talus est aussi affecté par l’érosion au printemps.

Par ailleurs, il faut ici souligner l’effet des glaces comme processus d’érosion des marais littoraux. Les glaces peuvent causer de l’érosion du talus entraînée par un effet de balancement dû aux marées (Bhiry et al. 2013) et de plus, lors de leur départ plusieurs lambeaux de schorre supérieur sont arrachés.

Figure 74 : Variations annuelles du recul moyen du talus sur chaque transect à Saint-Augustin-de-Desmaures (SAG), Beaumont (BMT), à Château-Richer (CR) et à l’Isle-aux-Grues (IAG).
Comparaison avec d’autres marais de l’estuaire du Saint-Laurent en termes d’érosion

Au niveau de l’ensemble de l’estuaire du Saint-Laurent, les exemples ne manquent pas non plus démontrant une érosion significative notamment au niveau du schorre supérieur. Selon, Dionne (1986), le schorre supérieur a reculé de 1,5 à 3,5 m/an en 20 ans le long du littoral de la ville de Montmagny et de 2m/an entre 1984 et 1999 près de l’aéroport de cette ville. Ces résultats sont plus élevés que ceux trouvés dans le cadre de cette étude qui sont de l’ordre de (0,16 m/an) au marais de l’Isle-aux-Grues, le site le plus proche de Montmagny.

Les marais de Beaumont et de Saint-Augustin-de-Desmaures n’ont pas de comparatifs possibles puisqu’aucune étude antérieure n’a été faite près de ces zones. Toutefois, un constat général a été
fait par Bernatchez et Dubois (2004) qui stipulent que l’érosion est un problème global affectant l’ensemble l’estuaire du Saint-Laurent et que les marais maritimes sont les plus touchés par l’érosion.

5.1.2. Processus de sédimentation

Suite à l’analyse des résultats, on peut déduire que les sédiments accumulés au pied du talus, sur le schorre inférieur et sur la slikke sont de faibles épaisseurs (2-3 cm) ou inexistantes, excepté au niveau de la slikke du marais de Beaumont où l’épaisseur des sédiments accumulés a atteint une dizaine de centimètres (Figure 76). L’épaisseur des sédiments accumulés ou érodés est variable à même le site. Par ailleurs, il s’avère que c’est en 2012 que les conditions furent plus favorables pour une accumulation sédimentaire. Le déversement dans le marais de cours d’eau ou ruisseau favorise une sédimentation accrue. Le trait de côte, la topographie du marais et la végétation joueraient aussi un rôle dans le maintien des sédiments déposés.

Certes, la période de relevés est courte et quelques erreurs de mesure auraient pu survenir, néanmoins, ces résultats confirment que ces milieux sont le siège de disparités spatiales dans la dynamique morpho-sédimentaire notamment au niveau du schorre.
Figure 76 : Sédimentation moyenne par transect sur les sites d'étude

Comparaison avec d’autres marais de l’estuaire du Saint-Laurent en termes de sédimentation

La sédimentation des marais intertidaux est un sujet d’étude très complexe et peu documentée par des chercheurs. Toutefois quelques articles portant principalement sur l’érosion des berges abordent brièvement la question de l’accumulation sédimentaire dans les marais. À titre d’exemple, Dionne (1986) a soutenu que la sédimentation se faisait à un rythme de 0,95 à 2 mm/an. Non loin, à Kamouraska, Dubé (1982) a mesuré un taux de sédimentation de 1 à 1,3 mm/an. Les résultats de la présente étude indiquent que le taux de sédimentation à l’Île-aux-Grues pourrait être considéré similaire ou un peu plus élevé, de 1,65 cm en moyenne.

En se rapprochant de l’estuaire d’eau douce, près de Cap-Tourmente, le taux de sédimentation fut de 1,7 à 4 mm/an selon Troudes et al. (1983). À l’Île d’Orléans, ce taux aurait été de 0,8 à 1,1
mm/an (Allard, 1981). À Château-Richer, site d’étude le plus près de ces derniers, le taux de sédimentation est de -15 mm, autrement dit, c’est l’érosion qui a prédominé en 2011 et 2012.

Toutefois, il est à noter que la comparaison entre les taux sédimentaires dans différents marais intertidaux demeure délicate puisque la méthodologie utilisée pour estimer l’épaisseur des sédiments accumulés et la période de relevé diffèrent grandement d’une étude à l’autre.

4.2 Géomorphologie, morpho-dynamique et diversité végétale des marais de l’estuaire d’eau douce du Saint-Laurent

Les marais étudiés dans le cadre de cette recherche ont fait l’objet de relevés et de cartographie de végétation en tenant compte de la présence de espèces floristiques menacées et des espèces envahissantes (Lamarre, 2011; Normandeau 2012). Les assemblages de végétation sont des zones où l’on voit clairement une différenciation dans la composition de la végétation par rapport aux assemblages adjacents. Ces assemblages se distinguent par la densité et/ou dans la diversité et/ou dans la hauteur de la végétation. Chacun des marais est composé de plusieurs de ces zones, généralement disposées parallèlement au fleuve, distribués en ordre croissant du haut marais vers le bas marais. En superposant la carte des assemblages de végétation avec la carte de dépôt de surface (chapitre 3), on peut ressortir les observations suivantes pour chacun de marais :

Au marais de Saint-Augustin, six zones ont été identifiées (Zone 1- Zone 6) (Figure 77-78); la végétation est de moins en moins diversifiée et dense, du schorre supérieur à la slikke. Les résultats montrent que la distribution des sédiments meubles dans le marais est associée aux assemblages de végétation de certaines zones. En effet, on remarque que la zone 2 est généralement associée à des sédiments de plus de 31 cm d’épaisseur. Les zones 3, 4 et 6 sont plutôt associées à des sédiments d’une épaisseur variant entre 1 et 20 cm. En ce qui concerne la zone 5, elle est composée à l’ouest, de sédiments de 31 cm et plus d’épaisseur, alors qu’à l’est l’épaisseur des sédiments varie entre 1 et 31 cm.
Figure 77 : Assemblage de végétation, marais de Saint-Augustin-de-Desmaures (Normandeau, 2012)

Figure 78 : Répartition des sédiments, marais de Saint-Augustin-de-Desmaures (Gervais, 2012)
Au marais de Beaumont, quatre assemblages de végétation ont été identifiés (Figure 79-80) ; la densité de la végétation et la diversité floristique diminuent du schorre supérieur vers la slikke. Contrairement au marais de Saint-Augustin de Desmaures, au marais de Beaumont les assemblages de végétation sont associés à des classes d’épaisseur des dépôts meubles, profonds ou peu profonds. Ceci peut être lié à la surface irrégulière (depression-crête) de la roche en place qui domine le schorre inférieur, les sédiments tapissent les depressions.
Figure 79 : Assemblage de végétation, marais de Beaumont (Normandeau, 2012)

Figure 80 : Répartition des sédiments, marais de Beaumont (Gervais, 2012)
Le marais étudié à Château-Richer comporte 6 zones de végétations distinctes (Figure 81-82). Il y a une plus grande diversité dans le schorre supérieur alors qu’elle s’appauvrit en allant vers la slikke. La densité de végétation varie aussi en ce sens. À l’intérieur de ce site d’étude, la répartition de la végétation ne semble pas liée à l’épaisseur des sédiments puisque l’ensemble de la zone se trouve sur des sédiments de 50 cm et plus d’épaisseur. On peut supposer que la variation en densité et en diversité est davantage liée au gradient d’inondation.
Figure 81 : Assemblage de végétation, marais de Château-Richer (Normandeau, 2012)

Figure 82 : Répartition des sédiments, marais de Château-Richer (Gervais, 2012)
Le marais de l’Isle-aux-Grues comporte 5 zones d’assemblages végétaux (Figure 83-84). À l’instar des autres marais, la diversité et la densité végétale sont importantes au niveau du schorre supérieur et s’appauvrit en allant vers la slikke. La grande diversité et densité présente dans le schorre supérieur (zone 1) peut être associée à l’épaisseur importante des sédiments qui est plus de 50 cm. Les zones 2 et 5 se trouvent aussi dans une partie où l’épaisseur des sédiments est de 50 cm et plus. Les assemblages végétaux de la zone 3, moins diversifiée, se trouve sur des sédiments de 1 à 20 cm d’épaisseur.
Figure 83 : Assemblage de végétation, marais de l’Isle-aux-Grues (Normandeau, 2012)

Figure 84 : Répartition des sédiments, marais de l’Isle-aux-Grues (Gervais, 2012)
En résumé, les quatre marais étudiés ont des caractéristiques géomorphologiques et hydrodynamiques qui leur sont intrinsèques. En observant de plus près leurs conditions géomorphologiques et hydrodynamique, il semble que, pour la résilience des espèces et la possibilité à moyen terme de les protéger, les marais de Saint-Augustin-de-Desmaures et de Beaumont soient les meilleurs endroits (Tableau 17). Les schorres supérieurs de ces zones, contenant une plus grande diversité végétale, sont moins menacés par l’érosion qu’aux marais de Château-Richer et l’Isle-aux-Grues. Les plages présentes sur ces deux sites pourraient permettre au milieu de se rééquilibrer notamment en fonction de la hausse des niveaux d’eau moyens. Toutefois, la falaise rocheuse située derrière la plage au marais de Beaumont pourrait limiter le potentiel de résilience de ce site. Les marais de Château-Richer et l’Isle-aux-Grues auraient pu présenter des caractéristiques intéressant vu la faible topographie derrière le schorre supérieur, mais l’érosion actuelle y est trop rapide pour appréhender une adaptation des espèces végétales.
Tableau 17 : Estimation de la capacité de résilience de chaque site d’étude

<table>
<thead>
<tr>
<th>Zones d’étude</th>
<th>Évolution à long terme en superficie</th>
<th>Évolution à court terme</th>
<th>Espèces végétales présentes</th>
<th>Probabilité de résilience des espèces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS</td>
<td>SI</td>
<td>SS</td>
<td>SI</td>
</tr>
<tr>
<td>Cicuta maculata var. victorinii</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Gentianopsis virgata subsp. Victorinii</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Eriocaulon parkeri</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Saint-Augustin-de-Desmaures</td>
<td>Perte</td>
<td>Gain</td>
<td>Perte</td>
<td>Gain</td>
</tr>
<tr>
<td>Beaumont</td>
<td>Perte</td>
<td>Gain</td>
<td>Gain</td>
<td>Gain</td>
</tr>
<tr>
<td>Château-Richer</td>
<td>Perte</td>
<td>Gain</td>
<td>Perte</td>
<td>Gain</td>
</tr>
<tr>
<td>Isle-aux-Grues</td>
<td>Perte</td>
<td>Pert e</td>
<td>Perte</td>
<td>Gain</td>
</tr>
</tbody>
</table>

*Les mesures des gains de sédimentation sont très faibles

F= faible M= moyen É= Élevé ; SS= Supérieur SI = Inférieur
4.3 Facteurs contrôlant les processus d’érosion et de sédimentation aux marais étudiés

En résumé, les quatre marais étudiés (Saint-Augustin-de-Desmaures, Beaumont, Château-Richer et l’Isle-aux-Grues) sont soumis à des conditions marégraphiques similaires mais les processus d’érosion et de sédimentation sont sensiblement différents d’un marais à un autre. Ces processus sont sans doute contrôlés au moins en partie, par le degré d’exposition au processus fluviaux/marins ainsi que par le profil topographique transversal (du schorre supérieur vers la slikke) du marais.

La perte en superficie du schorre supérieur est moins prononcée en amont qu’en aval, en effet, cette perte fut environ de 1% à Saint-Augustin-de-Desmaures, de 6% à Beaumont, de 9% à Château-Richer et de 17% à l’Isle-aux-Grues.

Selon Drapeau (1992), les vagues constituent un des facteurs d’érosion le plus influent au niveau du schorre supérieur. Les vagues sont influencées par le fetch, la vitesse et la durée des vents. En amont de l’estuaire d’eau douce, le fetch est plus restreint qu’en aval puisque le fleuve est moins large alors qu’en aval, à l’Isle-aux-Grues et à Château-Richer, les vagues, lors de conditions de forts vents, peuvent se générer sur une plus grande distance et ainsi contenir plus d’énergie que les vagues en amont.

Lors des tempêtes, les vagues sont très fortes; elles peuvent engendrer un recul de talus dans tous les marais de l’estuaire d’eau douce. Ceci a été documenté par l’étude de Bhiry et al. (2013) dans le cadre de laquelle les variations de niveau d’eau ont été enregistrées durant une période de 2 ans aux mêmes sites d’étude. Il s’avère que les hauts niveaux sont associés à des épisodes météorologiques extrêmes et à des niveaux d’érosion prononcés sur les terrains (Tableau 18).
Notre étude a mis en évidence le rôle de divers facteurs environnementaux et météorologiques dans l’évolution biophysique (ou éco-géomorphologique) des marais de l’estuaire d’eau douce. En effet, en se basant sur l’analyse des relevés détaillés effectués sur le terrain en écologie (Lamarre, 2011; Normandeau, 2012) et en géomorphologie-sédimentologie (cette étude) et des bases de données météorologique (Bhiry et al. 2013), il est évident que des facteurs géomorphologiques, hydrodynamiques, météorologiques et écologiques (végétation) ont des effets significatifs sur l’évolution des marais étudiés mais, à différents degrés et ce, en fonction des conditions intrinsèques de chaque marais (exposition aux vents dominants, morphologie, etc.).

Cette recherche a aussi mis en lumière les interrelations complexes qui existent entre les divers facteurs les plus susceptibles d’amplifier le recul du talus et la perte d’habitat des espèces, incluant les espèces végétales menacées. A titre d’exemple, des sédiments de surface épais favorisent une forte densité de végétation qui à son tour, en trappant plus de sédiments, engendre un accroissement vertical des marais. C’est la situation observée dans le marais de Château-Richer ou la végétation en bandes parallèles au fleuve et très dense par endroits s’est établie sur
des sédiments épais. Toutefois, l’accroissement vertical du marais est faible à cause de l’exposition du site au processus hydrodynamiques et aux vents dominants.

Conclusion

L’hypothèse de recherche était que : l’érosion des berges est importante à l’échelle de l’estuaire d’eau douce et elle est principalement engendrée par l’action des tempêtes de plus, les différences significatives des taux d’érosion à l’intérieur des sites d’études et entre ceux-ci sont liées aux caractéristiques hydrodynamiques et géomorphologiques intrinsèques. Nos données confirment cette hypothèse.

Une analyse détaillée de l’évolution interannuelle du talus limitant les schorres supérieur et inférieur de chacun des quatre marais étudiés lesquels sont situés dans l’estuaire d’eau douce du Saint-Laurent montre que le patron général d’érosion intersites est similaire. Autrement dit, l’érosion est plus forte en automne et plus faible pendant l’été et que chacun des sites est touchée par l’érosion, mais à différents niveaux. Les plus forts taux d'érosion sont mesurés à Château-Richer et à l’Isle-aux-Grues. Par ailleurs il s’avère que, les marais de Beaumont et de Saint-Augustin-de-Desmaures pourraient être maintenus à plus long termes. Sur le plan de la résilience, ces deux sites semblent donc potentiellement intéressants.

Les différences intrasites en terme d’érosion-sédimentation sont expliquées par le degré d’exposition au processus fluviaux/ marins ainsi que par le profil topographique transversal (du marais vers la slikke) du marais.

Le déplacement de quelques mètres vers l’intérieur des zones géomorphologiques des quatre marais pourrait être associé à une hausse du niveau marin accompagnée de fortes tempêtes plus fréquente engendrant un taux de submersion plus élevé et un recul récurent du talus.

Bibliographie

LAMARRE, P. 2011. « Caractérisation de la végétation de quatre marais de l’estuaire d’eau douce du fleuve Saint-Laurent » Département de Géographie, Université Laval, Québec 82

Sites Internet

Annexe 1
Saint-Augustin-de-Desmaures

Tableau 19 : Évolution de la configuration géomorphologique, Saint-Augustin-de-Desmaures (m²)

<table>
<thead>
<tr>
<th>Années</th>
<th>Marécage arbusif et arboré</th>
<th>Plage</th>
<th>Schorre supérieur</th>
<th>Schorre inférieur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>20177,36</td>
<td>1949,28</td>
<td>3767,77</td>
<td>15186,26</td>
</tr>
<tr>
<td>1977</td>
<td>55152,61</td>
<td>830,65</td>
<td>2396,87</td>
<td>18377,53</td>
</tr>
<tr>
<td>1993</td>
<td>54103,56</td>
<td>762,67</td>
<td>6172,83</td>
<td>12088,61</td>
</tr>
<tr>
<td>2002</td>
<td>43196,05</td>
<td>1049,96</td>
<td>6556,21</td>
<td>17925,00</td>
</tr>
<tr>
<td>2008</td>
<td>47956,21</td>
<td>425,36</td>
<td>2855,11</td>
<td>10409,63</td>
</tr>
<tr>
<td>2010</td>
<td>46142,19</td>
<td>643,37</td>
<td>3399,29</td>
<td>19639,36</td>
</tr>
<tr>
<td>Évolution totale</td>
<td>25964,82</td>
<td>-1305,91</td>
<td>-368,48</td>
<td>4453,11</td>
</tr>
</tbody>
</table>

Tableau 20 : Évolution de la distance en mètre entre la limite inférieur du schorre supérieur et un point de repère fixe pour une période entre 1965-2010, Saint-Augustin-de-Desmaures

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>365,27</td>
<td>310,38</td>
</tr>
<tr>
<td>1977</td>
<td>342,25</td>
<td>314,20</td>
</tr>
<tr>
<td>1993</td>
<td>374,78</td>
<td>327,16</td>
</tr>
<tr>
<td>2002</td>
<td>362,56</td>
<td>332,68</td>
</tr>
<tr>
<td>2008</td>
<td>358,15</td>
<td>311,28</td>
</tr>
<tr>
<td>2010</td>
<td>363,35</td>
<td>305,64</td>
</tr>
<tr>
<td>Total</td>
<td>-1,92</td>
<td>-4,74</td>
</tr>
</tbody>
</table>
Beaumont

Tableau 21: Évolution de la configuration géomorphologique, Beaumont entre 1963 et 2010 (m²)

<table>
<thead>
<tr>
<th>Années</th>
<th>Forêt</th>
<th>Plage</th>
<th>Affleurement rocheux et schorre inférieur</th>
<th>Schorre supérieur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>5503,84</td>
<td>1294,54</td>
<td>3433,82</td>
<td>2881,39</td>
</tr>
<tr>
<td>1964</td>
<td>4953,15</td>
<td>1057,52</td>
<td>2207,06</td>
<td>1730,09</td>
</tr>
<tr>
<td>1993</td>
<td>4688,49</td>
<td>273,52</td>
<td>1912,51</td>
<td>549,23</td>
</tr>
<tr>
<td>2000</td>
<td>5759,47</td>
<td>1044,73</td>
<td>3379,98</td>
<td>3043,56</td>
</tr>
<tr>
<td>2010</td>
<td>5009,31</td>
<td>594,06</td>
<td>4496,25</td>
<td>2106,70</td>
</tr>
<tr>
<td>Total</td>
<td>-494,53</td>
<td>-700,48</td>
<td>1062,42</td>
<td>-774,69</td>
</tr>
</tbody>
</table>

Tableau 22: Évolution de la distance, en mètre, entre la limite supérieure du schorre et un point de repère fixe pour une période entre 1963 et 2010, Beaumont

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>287,37</td>
<td>257,88</td>
</tr>
<tr>
<td>1964</td>
<td>290,56</td>
<td>266,67</td>
</tr>
<tr>
<td>1980</td>
<td>282,11</td>
<td>250,14</td>
</tr>
<tr>
<td>1993</td>
<td>284,48</td>
<td>261,93</td>
</tr>
<tr>
<td>2000</td>
<td>274,16</td>
<td>250,14</td>
</tr>
<tr>
<td>2010</td>
<td>274,16</td>
<td>252,46</td>
</tr>
<tr>
<td>Total</td>
<td>-13,21</td>
<td>-5,42</td>
</tr>
</tbody>
</table>
Tableau 23 : Évolution de la configuration géomorphologique, Château-Richer (m²)

<table>
<thead>
<tr>
<th>Années</th>
<th>Marécage arbustif et arboré</th>
<th>Schorre supérieur</th>
<th>Schorre inférieur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>37 373,07</td>
<td>6 345,33</td>
<td>8 519,73</td>
</tr>
<tr>
<td>1963</td>
<td>21 000,16</td>
<td>6 626,67</td>
<td>13 949,53</td>
</tr>
<tr>
<td>1965</td>
<td>37 794,42</td>
<td>3 455,24</td>
<td>16 377,58</td>
</tr>
<tr>
<td>1978</td>
<td>43 310,23</td>
<td>5 925,03</td>
<td>5 682,14</td>
</tr>
<tr>
<td>2000</td>
<td>53 665,37</td>
<td>3 195,95</td>
<td>2 145,89</td>
</tr>
<tr>
<td>2008</td>
<td>45 264,64</td>
<td>1 464,81</td>
<td>9 280,62</td>
</tr>
<tr>
<td></td>
<td>Évolution de la superficie en m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 891,56</td>
<td>-4 880,51</td>
<td>760,88</td>
</tr>
</tbody>
</table>

Tableau 24 : Évolution de la distance en mètre entre la limite inférieure du schorre et un point de repère fixe pour une période entre 1960 et 2008 à Château-Richer

<table>
<thead>
<tr>
<th>Années</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>451,31</td>
<td>434,16</td>
</tr>
<tr>
<td>1963</td>
<td>461,63</td>
<td>443,32</td>
</tr>
<tr>
<td>1965</td>
<td>434,95</td>
<td>420,32</td>
</tr>
<tr>
<td>1978</td>
<td>426,86</td>
<td>417,05</td>
</tr>
<tr>
<td>2000</td>
<td>428,01</td>
<td>406,10</td>
</tr>
<tr>
<td>2008</td>
<td>420,58</td>
<td>404,56</td>
</tr>
<tr>
<td></td>
<td>Retrait de distance totale en mètres.</td>
<td>-30,73</td>
</tr>
</tbody>
</table>
Tableau 25 : Évolution de la configuration géomorphologique, Isle-aux-Grues (m²)

<table>
<thead>
<tr>
<th></th>
<th>pré</th>
<th>schorre supérieur</th>
<th>schorre inférieur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>1643,71</td>
<td>8604,77</td>
<td>15095,11</td>
</tr>
<tr>
<td>2001</td>
<td>2012,75</td>
<td>5890,86</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>3764,51</td>
<td>4210,76</td>
<td>10465,79</td>
</tr>
<tr>
<td>Total</td>
<td>2120,81</td>
<td>-4394,01</td>
<td>-4629,32</td>
</tr>
</tbody>
</table>

Tableau 26 : Évolution de la distance en mètre entre la limite supérieur du schorre et un point de repère fixe pour une période entre 1961 et 2010, Isle-aux-Grues

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>60,84</td>
<td>69,93</td>
</tr>
<tr>
<td>2001</td>
<td>48,29</td>
<td>48,03</td>
</tr>
<tr>
<td>2010</td>
<td>57,63</td>
<td>66,48</td>
</tr>
<tr>
<td>Total</td>
<td>-3,21</td>
<td>-3,45</td>
</tr>
</tbody>
</table>