Étude hydrodynamique des écoulements gaz-liquide ascendants dans des lits fixes inclinés

Mémoire

Hana Bouteldja

Maîtrise en génie chimique
Maître ès sciences (M.Sc.)

Québec, Canada

© Hana Bouteldja, 2013
Résumé

L'extraction et le traitement des combustibles fossiles off-shore s'intéressent aux problèmes liés aux écoulements multiphasiques inclinés. Dans ce projet, les effets de l'inclinaison du lit sur le comportement hydrodynamique des phases gaz et liquide écoulant à cocourant ascendant, ont été étudiés expérimentalement. La technique de la tomographie à capacitance électrique (ECT) a été mise en place pour observer les comportements locaux de la distribution axiale de la rétention en liquide. À l'aide de l'ECT, les coupes transversales de la saturation moyenne de liquide, les pertes de charge globale à travers le lit et la ségrégation gaz-liquide ont été mesurées ainsi que l'effet des conditions d'exploitation sur le profil axial de saturation de liquide. Les résultats indiquent que l'inclinaison du lit crée un court-circuit pour la phase gaz le long de la paroi supérieure où il peut s'écouler d'une manière séparée.

Mots-clés: Hydrodynamique; colonne inclinée; saturation de liquide; tomographie à capacitance électrique (ECT).
Table des matières

Résumé .. iii
Table des matières ... v
Remerciements ... vii
Avant-propos .. ix
INTRODUCTION ET OBJECTIFS ... 1
1 Sources de pétrole ... 1
2 L’exploitation pétrolière « offshore » ... 1
 2.1 Les différents types de plateformes ... 1
 2.1.1 Les plateformes fixes .. 1
 2.1.2 Les plateformes mobiles et unités flottantes ... 2
 2.2 Exploitation « offshore » au Canada .. 3
3 Traitement de pétrole .. 5
4 Objectifs .. 7
REVUE DE LA LITTÉRATURE ... 9
1 Introduction .. 11
2 Types de réacteurs à lit fixe .. 11
 2.1 Réacteurs à lit fixe arrosé .. 11
 2.1.1 Principe de fonctionnement .. 11
 2.1.2 Avantages et inconvénients des lits fixes à cocourant descendant 13
 2.2 Réacteurs à lit fixe à cocourant ascendant ... 14
 2.2.1 Principe de fonctionnement ... 14
 2.2.2 Avantages et inconvénients des lits fixes à cocourant ascendant 16
 2.3 Réacteurs catalytiques inclinés ... 17
3 Les caractéristiques hydrodynamiques des réacteurs triphasiques .. 19
 3.1 Les régimes d’écoulement .. 19
 3.2 La perte de charge .. 22
 3.3 La rétention de phases .. 23
4 Conclusion ... 24
Hydrodynamics of an inclined gas-liquid cocurrent upflow packed bed 25
Abstract .. 27

1 Introduction .. 28

2 Experimental Setup .. 31
 2.1 ECT calibration ... 33

3 Results and Discussion ... 35
 3.1 Effect of inclination angle on local liquid distribution pattern and overall bed pressure drop 35
 3.2 Effect of inclination angle and operating conditions on the axial phase distribution 40

4 Conclusion ... 46

Acknowledgment ... 47

Nomenclature ... 47

CONCLUSION ET RECOMMANDATIONS .. 49

RÉFÉRENCES BIBLIOGRAPHIQUES ... 55
Remerciements

Je tiens à remercier, dans un premier temps, mon promoteur M. F. Larachi de m’avoir proposé ce sujet intéressant et pour sa disponibilité. Je remercie aussi mon coencadrant M. Mohsen Hamidipour pour son suivi et ses conseils.

Mes remerciements vont également à l’équipe de recherche de M. Larachi du département génie chimique de l’université Laval pour leur accueil sympathique et leur coopération professionnelle tout au long de mon projet.

Enfin, je remercie sincèrement tous ceux qui ont contribué de près ou de loin à la réalisation de ce projet : tous mes professeurs et tous les membres de ma famille, plus particulièrement, Elhadi pour sa sympathie et son soutien et Nouha pour ses encouragements.
Avant-propos

Dans le cadre de ce master, l'article suivant a été publié :

Titre de l'article : Hydrodynamics of an inclined gas-liquid cocurrent upflow packed bed

Auteurs: Hana Bouteldja, Mohsen Hamidipour, Faïçal Larachi

Auteur principal : Hana Bouteldja

Co-auteurs: Mohsen Hamidipour, Faïçal Larachi

Publié dans Chemical Engineering Science, Volume 102, 11 October 2013, Pages 397–404.

Rôle de l'auteur principal :

- Effectuer les expérience,
- Analyse des résultats,
- Mise au point du plan de la publication ,
- Première rédaction pour toutes les parties (les parties ont été revues et modifiées par les co-auteurs).
INTRODUCTION ET OBJECTIFS
1 Sources de pétrole

L’accès aux services énergétiques est un enjeu majeur dans le développement des sociétés et la satisfaction de leurs besoins. Cette satisfaction repose principalement sur une augmentation et une amélioration continue de la production en matière d’énergie, surtout le pétrole et le gaz. Vu la position qu’occupe le pétrole dans l’industrie moderne sur les plans énergétique et économique, l’optimisation des procédés traitant ces ressources est primordiale pour une exploitation maximale et raisonnable [1].

Le pétrole est la source d’énergie la plus utilisée dans le monde. Il fournit aujourd’hui l’essentiel des carburants de la planète et 5,1 % de l’électricité mondiale, en 2011 une hausse en production de pétrole a été constatée, une augmentation de 1.3% de la production mondiale de pétrole liée aux pays au sein de l’OPEP [2]. La consommation des carburants fossiles augmente constamment, après avoir diminuée progressivement pendant les deux années 2008-2009, conséquence de la crise économique, en 2010 l’augmentation a été de 3.1%, ensuite 0.7% en 2011. Les pays développés restent les principaux consommateurs du pétrole. Environ le quart de la production en pétrole est consommée par les États-Unis. Cependant, le développement des énergies renouvelables est en concurrence avec la consommation des carburants fossiles, ce qui diminue leur production [3].

Environ le tiers de la production mondiale de pétrole est issu de l’exploitation en mer des ressources pétrolières. La majorité des bassins sédimentaires, enfermés dans les fonds marins sous plus de 50 m d’eau, représente environ 22% des réserves mondiales. La production du pétrole marin devrait accroître, en vue de l’évolution des moyens techniques et technologiques et d’une meilleure connaissance de la géophysique des fonds marins [4].

2 L’exploitation pétrolière « offshore »

2.1 Les différents types de plateformes

2.1.1 Les plateformes fixes

La plupart des plateformes fixes sont installées en mer peu profonde, inférieure à 300 m et peuvent donc être raccordées de façon rigide aux têtes de puits et aux pipelines [5]. On distingue différents types de plateformes fixes, telles que :

- **Jacket-deck** : structure en acier constituée de membrures tubulaires et fixées au sol par des piles en acier.
- **Gravitary platform** : tour en béton dont la stabilité est due uniquement à son propre poids sur le fond océanique et sur laquelle s’érigent les superstructures.

- **Compliant tower** : structure souple constituée d’un pont flottant ancré au plancher océanique au moyen de longs tuyaux tendus en permanence.

- **Jack-up rig** : plateformes autoélévatrices composées d’une coque et de jambes, conçues pour les exploitations en eaux peu profondes. La structure peut être déplacée mais aussi élevée ou abaissée. Ainsi ces plateformes peuvent se déployer en de multiples endroits tout en ayant un appui sur le sol [5].

2.1.2 Les plateformes mobiles et unités flottantes

Les plateformes sont dites flottantes, lorsque celles-ci flottent sur la surface de la mer et elles sont liées par des conduites flexibles aux installations de tête de puits. Les plateformes flottantes sont essentiellement utilisées pour l'exploitation de champs pétroliers dans les grands fonds (supérieurs à 300 mètres environ) [5]. Les types de plateformes flottantes sont :

- **TLP (Tension Leg Platforms)** : plateformes possédant un excès de flottabilité et maintenues en place par des câbles tendus les reliant au fond.

- **SPAR** : plateformes plus classiques qui n’intègrent que la production et sont reliées à des pipelines pour l’exportation du gaz et/ou du pétrole produit. Les SPAR reposent sur un énorme flotteur cylindrique.

- **Les plateformes semi-submersibles** : plateformes ballastées par remplissage d’eau lorsqu’elles se trouvent en position, puis ancrées. Cela les rend moins vulnérables à la houle.

- **FPSO (Floating Production Storage and Offloading)** : plateformes en forme de coque, qui produisent du pétrole, le stockent temporairement et chargent les navires pétroliers. Elles sont ancrées au fond de la mer[5].
2.2 Exploitation « offshore » au Canada

La recherche de nouvelles ressources d’énergie fossile a mené à des exploitations offshores et à l’installation des plateformes pétrolières en pleine mer. Sur ces plates-formes a lieu un certain nombre d’opérations de traitement de pétrole et de gaz. Au Canada, 10% de la production canadienne totale de pétrole brut provient des plateformes offshores qui ont lieu dans le bassin Jeanne d’Arc, au large de la côte Est de Terre-Neuve-et-Labrador. Aujourd’hui, on cherche à traiter les fluides extraits sur des bateaux-raffineries en liquéfiant le gaz et en raffinant le pétrole avant de les transférer à des bateaux pétroliers ou gaziers qui feront la navette avec la terre ou de les transporter par des pipelines reliés avec la côte. L’utilisation des bateaux-raffineries permet de réduire ou encore supprimer les interminables pipelines reliant les plateformes à la terre et le nombre de bateaux pétroliers ou gaziers, ainsi rendant possible l’extraction du gaz encore plus loin et dans des conditions plus difficiles au fond des mers [6].
La production de pétrole extracôtier du Canada atlantique a représenté 9 pour cent de la production canadienne en 2011 et devrait atteindre en moyenne environ 220000 b/j au cours de la prochaine décennie. Le démarrage du projet Hebron en 2017 devrait permettre de compenser la baisse de production des installations existantes [6].

Le Canada est le 7e plus grand pays producteur de pétrole au monde, produisant 2,6 millions de barils de pétrole par jour. Le pétrole canadien provient de puits de pétrole « onshore » et de forage pétrolier offshore (figure 3). Le Canada est également la plus grande source des importations de pétrole aux États-Unis [7].

Figure 2 Production canadienne de pétrole brut (source : Crude Oil Forecast, Markets & Pipelines, 2012).
Figure 3 Production du pétrole au Canada (source: 411 On Canada’s Onshore & Offshore Oil Drilling).

3 Traitement de pétrole

Dans le domaine industriel, de nombreux procédés mettent en œuvre une phase liquide et une phase gazeuse s’écoulant simultanément à travers un lit fixe constitué de particules solides inertes ou catalytique. De manière simplifiée, on peut diviser ces procédés en deux grands groupes [8] :

− Le premier groupe de procédés a pour but de réaliser un transfert de matière et/ou de chaleur entre une phase liquide et une phase gazeuse. Ces procédés consistent à utiliser un support solide inerte qui sert uniquement à améliorer le contact entre les deux phases fluides, en améliorant leur distribution. C’est le domaine des opérations physiques unitaires telles que la distillation, l’absorption et la désorption gaz – liquide, et autres.

− Le deuxième groupe concerne des procédés dont la phase solide joue un rôle plus actif, en tant que catalyseur d’une réaction intervenant entre des réactifs présents dans les phases liquide et gazeuse. Ces procédés concernent les réactions polyphasiques catalysées par un solide telles que
l’hydrodésulfuration mise en œuvre dans un réacteur catalytique à lit fixe arrosé ou le traitement biologique des eaux usées réalisé sur lit bactérien. Selon l’application considérée, la taille de l’installation, la nature des fluides et leurs débits respectifs, la forme, la taille et la nature des éléments d’empilage varient.
4 Objectifs

Le traitement des différentes fractions nécessite l'utilisation de différents types de réacteurs où différentes phases entrent en contact. Dans ce projet, l'étude sera faite sur les réacteurs à lit fixe, tel que les réacteurs à lit fixe à bulles, c-à-d, Packed Bubble Column Reactors. Les réacteurs catalytiques à lit fixe sont remplis aléatoirement par un garnissage constitué de particules de catalyseur au travers duquel les phases liquide et gazeuse s'écoulent simultanément vers le bas ou vers le haut. Ces réacteurs sont largement utilisés pour les réactions catalysées hétérogènes telles que les réactions d'hydrogénation entre un gaz et les liquides des raffineries de pétrole, de la pétrochimie et des industries chimiques, dans le traitement des déchets, dans les applications biochimiques et les traitements électrochimiques, ainsi que d'autres opérations industrielles. La consommation excessive d'énergie, due aux intenses activités humaines a également augmenté la recherche des sources d'énergie ailleurs comme les fond des mers, d'où l'exploitation offshore.

Lors de l'exploitation offshore, les raffineries de traitement de pétrole sont installées sur des plateformes flottantes, ou à bord des navires ce qui donne une instabilité des installations due aux mouvements des vagues. Ainsi, le fonctionnement des réacteurs installés sur les navires ou les plateformes flottantes sera fortement affecté par l'effet des vagues, pour différents états de mer. Ce projet consiste à étudier les aspects hydrodynamiques de l'écoulement, pour des réacteurs montés sur un bras fixe incliné afin d'étudier l'influence de différents angles d'inclinaison sur l'écoulement des fluides dans le réacteur.

Cependant, les activités de recherche dans la littérature ouverte concernant ce domaine ont été limitées à quelques travaux expérimentaux et théoriques, voire même elles sont absentes. La nécessité d'une recherche plus approfondies et plus systématique donc s'impose à nous afin de déchiffrer les mécanismes d'hydrodynamiques dans des conditions d'inclinaison afin de proposer éventuellement de nouvelles solutions d'opération de ce type de réacteurs. Ainsi, l'objectif essentiel de ce projet est de présenter une critique concernant l'hydrodynamique de l'écoulement gaz-liquide cocourant ascendant à travers un réacteur à lit fixe incliné. Les aspects qui sont examinés relèvent des régimes d'écoulement gaz-liquide, de la perte de pression et du taux de rétention de liquide. Des recommandations sont proposées pour la détermination pratique des paramètres hydrodynamiques.

Toutefois, tout d'abord, la connaissance de l'hydrodynamique de base pour cette configuration est obligatoire pour laquelle des questions clés doivent être élucidées, à savoir:

- Comment l'angle d'inclinaison affecte la distribution du liquide dans le réacteur à bulles?
- A quel angle d'inclinaison, le réacteur s'écarte du bon fonctionnement des réacteurs à bulles?
- Quels sont les régimes d'écoulement qui se produisent, et comment le passage d'un régime à l'autre évolue en fonction de l'angle d'inclinaison?

- Peut-on atteindre le régime pulsé avec des angles d'inclinaison différents de la position verticale?

Ce projet présente les résultats d'une étude expérimentale du comportement hydrodynamique du gaz-liquide cocourant ascendant dans une colonne à garnissage inclinée. Le but de ce travail est d'étudier expérimentalement l'effet de l'angle d'inclinaison de la colonne sur les caractéristiques de l'écoulement. En outre, la réponse hydrodynamique à différentes conditions de fonctionnement est étudiée.
REVUE DE LA LITTÉRATURE
1 Introduction

Le traitement des différentes fractions liquides pétrolières nécessite l’utilisation de différents types de réacteurs où différentes phases entrent en contact. Le plus souvent, les études sont faite sur un réacteur à lit fixe tel que les réacteurs à lit fixe arrosé à écoulement ruisselant, i.e., Trickle bed reactors (TBR), ou les réacteurs à lit fixe inondés, Packed bubble column reactors. Les réacteurs catalytiques à lit fixe sont remplis aléatoirement par un garnissage constitué de particules de catalyseur dans lequel les phases liquide et gazeuse s’écoulent simultanément vers le bas ou vers le haut. Ces réacteurs sont largement utilisés pour les réactions catalysées hétérogènes telles que les réactions d'hydrogénéation entre le gaz et liquides des raffineries de pétrole, de la pétrochimie et des industries chimiques et dans le traitement des déchets, dans les applications biochimiques et des traitements électrochimiques, ainsi que d'autres opérations industrielles. Les réacteurs catalytiques à lit fixe peuvent être classés selon l’écoulement des phases en mouvement,

2 Types de réacteurs à lit fixe

2.1 Réacteurs à lit fixe arrosé

2.1.1 Principe de fonctionnement

Les réacteurs à lit fixe arrosé sont garnis de catalyseur sur lequel les réactifs liquides et gaz s’écoulent à cocourant vers le bas (figure 4). Les réacteurs à lit fixe arrosé, en raison de la vaste gamme de conditions d'exploitation qu'ils peuvent accueillir, sont largement utilisés dans la pratique industrielle, à la fois à des pressions élevées (par exemple, hydrotraitement) et à des pressions modérées (biodégradation, Al-Dahhan et al., 1997).
Dans les lits arrosés à l'échelle laboratoire, le garnissage est formé de particules de catalyseur de taille utilisée dans l’industrie. Le réacteur de laboratoire est caractérisé par un rapport de diamètre tube/particule faible et une plus faible vitesse du liquide afin de faire coïncider les vitesses spatiales horaires de liquide (liquid hourly space velocity, LHSV) à celle de l’unité commerciale. Ces conditions d’opération donnent lieu à des effets de paroi, une dispersion axiale, une mauvaise répartition, et un mouillage incomplet du catalyseur. Ces déviations n’ont pas lieu dans les réacteurs à l’échelle commerciale. Par conséquent, dans les réacteurs de laboratoire, une estimation précise de l’efficacité de mouillage de catalyseur est essentielle pour déterminer leur performance (Dudukovic et Mills, 1986; Beaudry et al, 1987.). La vitesse de réaction sur un catalyseur incomplètement mouillé peut être supérieure ou inférieure à celle enregistrée au cours d’un mouillage complet de particules catalytiques. Cela dépend si le réactif limitant est présent dans le gaz ou dans le liquide. Par exemple, si la réaction est limitée par le réactif non-volatil (dans la phase liquide), comme cela se produit dans de nombreux procédés d’hydrotraitement, il y a diminution de l’efficacité du contact catalyseur-liquide ce qui réduit la surface disponible pour le transfert de masse entre le liquide et le catalyseur induisant une diminution
de la vitesse de réaction. Toutefois, si la réaction est limitée par la phase gazeuse (et / ou le réactif est en phase gazeuse comme dans le cas du réactif liquide volatil), le réactif gazeux peut facilement accéder à la porosité du catalyseur à partir des zones sèches externes et, par conséquent, un plus grand taux de réaction est observé avec une baisse du taux de mouillage du catalyseur sur la surface externe (Dudukovic et Mills, 1986; Beaudry et al, 1987). L'analyse ci-dessus est basée sur l'hypothèse que les particules de catalyseur dans les lits arrosés sont mouillées à l'intérieur. Kim et Kim (1981) ont présenté un critère permettant de déterminer quand un assèchement des pores interne peut se produire. Ainsi, les difficultés de l'utilisation des réacteurs à lit fixe arrosé à l'échelle du laboratoire pour l'exploitation industrielle sont principalement causées par les interactions entre le gaz, le liquide et les phases solide-catalyseur, l'ensemble de ces interactions étant fortement dépendant par rapport à la réaction utilisée. Par conséquent, les réacteurs à écoulement ascendant sont souvent utilisés dans les études à l'échelle du laboratoire pour le test des catalyseurs, constituant ainsi une alternative d'étude pour les réacteurs à lit fixe arrosé dans les procédés commerciaux à l'échelle industrielle, puisque le mouillage complet de particules de catalyseur assure un meilleur transfert de chaleur (en raison d'une phase liquide continue) et plus globalement à de meilleurs coefficients de transfert de masse liquide-solide mais au détriment d'une dispersion axiale plus accrue.

2.1.2 Avantages et inconvénients des lits fixes à cocourant descendant

Les principaux avantages et inconvénients des réacteurs à lit fixe et à écoulement cocourant descendant sont donnés ci-dessous [1].

a) Les avantages :

- Écoulement gaz liquide piston et sélectivités élevées ;

- Faible perte en catalyseur;

- Pas de pièces mobiles;

- Possibilité de travailler à des pressions élevées;

- Taille d'installations très grande;

- Rétention du liquide faible;

- Coût de construction et d'exploitation faible.

b) Les inconvénients :
- Efficacité du catalyseur souvent faible;
- Mouillage incomplet du catalyseur à faibles débits;
- Récupération du catalyseur difficile;
- Récupération de la chaleur réactionnelle difficile;
- Utilisation des fluides visqueux risque d’augmenter la perte de pression;
- Risque de colmatage lors l’utilisation des fluides encrassants.

2.2 Réacteurs à lit fixe à cocourant ascendant

2.2.1 Principe de fonctionnement

La simplicité de fonctionnement, les coûts d’exploitation réduits, l’excellent transfert de chaleur et de masse entre les deux phases, et la facilité avec laquelle le séjour du liquide peut être varié sont les principaux avantages de cette configuration (Kantarci et al., 2005). Les réacteurs à lit fixe avec écoulement à co-courant ascendant de gaz et liquide peuvent résoudre certains problèmes rencontrés dans les réacteurs à lit ruisselant tels la mouillabilité incomplète de la phase solide, l’existence de points chauds au sein du lit ainsi la mauvaise répartition des fluides dans le réacteur (Yang et al., 1990a). Toutefois, de par leur hydrodynamique complexe influençant les caractéristiques de transport, il est difficile de réaliser une conception fiable et une mise à l’échelle des réacteurs à bulles. Au cours des dernières années, l’intérêt scientifique pour les réacteurs à bulles a considérablement augmenté (Deckwer, 1992; Kantarci et al., 2005). La recherche sur les colonnes à bulles couvre un large éventail de sujets tels que la rétention de gaz, les propriétés des bulles, le régime d’écoulement, le rétromélange, l’aire interfaciale, les pertes de pression, et le transfert de chaleur et de masse (Ruzicka et al., 2001; Luther et al., 2004; Shaikh et Al-Dahhan, 2007; Majumder, 2008; Manera et al., 2009;

2.2.2 Avantages et inconvénients des lits fixes à cocourant ascendant

Lorsque le gaz et le liquide s’écoulent du bas vers le haut, la mauvaise répartition du liquide ou mouillage partiel du catalyseur ne sera pas un obstacle en comparaison au réacteur à lit fixe à cocourant descendant (Trickle bed reactor (TBR)), en particulier pour des conditions hydrodynamiques de l’écoulement à bulles. Les principaux avantages et inconvénients des réacteurs à lit fixe et à écoulement cocourant ascendant sont donnés ci-dessous [9].

a) Les avantages :

- Une rétention de liquide élevée. La rétention de liquide est plus grande lors d’un écoulement ascendant que dans un écoulement descendant, dans des conditions similaires;
- Meilleure efficacité de mouillage;
- Meilleure stabilité thermique des réactions fortement exothermiques;
- Le flux de liquide peut être distribué de manière plus uniforme (meilleure distribution de liquide à travers le lit catalytique);
- Les coefficients de transfert de masse gaz-liquide et liquide-solide sont plus grands dans une opération à courant ascendant que dans un fonctionnement à écoulement descendant;
- Si un catalyseur devient progressivement désactivé par le dépôt de matériaux polymères ou goudronneux, le réacteur ascendant peut maintenir son activité plus longtemps en lavant ces dépôts plus efficacement.

Pour des réactions rapides et fortement exothermiques, le transfert de chaleur entre liquide et solide peuvent aussi être plus efficace dans l’écoulement ascendant que dans le fonctionnement descendant.

b) Les inconvénients :

- Pour les opérations d'hydrotraitement (HDT), les conversions de soufre, des métaux et asphaltènes baissent avec l’augmentation des débits de gaz et liquide à température et pression constante. La conversion de soufre dans l’écoulement ascendant est réduite plus rapidement avec le temps que dans l’écoulement descendant, mais la conversion est toujours plus élevée;
- Les exigences du pompage plus élevés afin de surmonter la pression hydrostatique du liquide;
- Le besoin de certaines constructions au sein du réacteur à fin d'éviter la fluidisation du catalyseur;
- La formation de zones stagnantes à l'intérieur du lit de catalyseur;
- La dispersion axiale supérieure par rapport au mode de fonctionnement descendant.

2.3 Réacteurs catalytiques inclinés

Les réacteurs catalytiques conventionnels fonctionnent en position verticale, ce qui leur assure un meilleur contrôle dans la conception de la distribution des phases liquide et gaz dans toute la section transversale. Par ailleurs, de nombreuses études ont été réalisées sur des écoulements diphasiques air-eau dans des conduites et des tubes inclinés (Barnea et al., 1982; Taitel et al., 1976; Spedding et al., 1998; Merchuk et al., 2007; Cheng TW et Lin TL, 2001).

Les problèmes liés aux écoulements gaz-liquide dans les conduits et canaux inclinés sont notamment rencontrées dans les circuits de refroidissement des réacteurs à eau pressurisée dans les centrales nucléaires (Ousaka et al., 2006; Vallee et al., 2009). En revanche, les études hydrodynamiques de réacteurs multiphasiques inclinés avec un lit catalytique fixe ou fluidisé sont plutôt rares dans la littérature. L'inclinaison de la colonne peut avoir des effets désavantageux ou bénéfiques sur la performance du réacteur en fonction de son utilisation. En général, les réacteurs inclinés triphasiques (gaz-liquide-lit de particules) ont fait l'objet d'études sur les régimes d'écoulement, l'hétérogénéité de la fluidisation et les transferts de chaleur et de matière (O'Dea et al., 1990; Del Pozo et al., 1992; Hudson et al., 1996; Yakubov et al., 2007; Valverde et al., 2008).

Il existe quelques études théoriques ou expérimentales disponibles qui traitent l'effet de l'angle d'inclinaison du réacteur. O'Dea et al. (1990) a étudié les lits inclinés à des angles compris entre 45° et 90° par rapport à l'horizontale à l'aide de quatre types de poudres et de l'air comme milieu de fluidisation. Les régimes d'écoulement et les transitions ont été identifiés expérimentalement et vérifiés par un modèle théorique. Sarkar et al. (1991) ont étudié l'écoulement de particules solides à l'aide d'un lit fluidisé alimenter par l'intermédiaire d'un tube incliné vers le bas. Ils ont étudié les effets de la longueur du tuyau de raccordement, le diamètre, l'angle d'inclinaison et la vitesse de l'agent de fluidisation sur le débit de particules solides provenant du lit fluidisé à la cuve de réception. Hudson et al. (1996) ont étudié les lits liquide-solide à faibles inclinaisons jusqu'à 10° de la verticale. Ils ont mesuré les rétentions de liquide locales et la circulation des phases liquide et solide. Ils ont par ailleurs développé un modèle simple pour prédire la circulation du solide.
Valverde et al. (2008) ont étudié expérimentalement la façon dont l'inclinaison d'un lit influence le comportement de la fluidisation et de la sédimentation des particules fines cohésives. Ils ont constaté que le principal effet de l'inclinaison est d'induire l'hétérogénéité de fluidisation. La vitesse locale du gaz augmente dans la région adjacente à la paroi supérieure, au détriment de la zone adjacente à la paroi inférieure. Cette situation anticipe l'apparition de bulles locales dans la région adjacente à la paroi supérieure. Yakubov et al. (2007) ont étudié expérimentalement la dynamique et la structure d'un lit fluidisé dans les colonnes inclinées. Des expériences ont été menées dans deux colonnes de verre qui peuvent être positionnées dans toute la gamme des angles d'inclinaison, de l'horizontale à la verticale. Les résultats ont montré que le processus d'expansion du lit fluidisé dépend fortement de l'angle d'inclinaison. Par conséquent, la vitesse critique de fluidisation du lit varie avec l'angle d'inclinaison de la colonne et présente un maximum à environ 45°. Il a été trouvé que la longueur de la colonne avait un effet mineur sur les phénomènes en question.

Le réacteur à lit fixe à cocourant gaz-liquide descendant en configuration incliné a été étudié pour la première fois par Schubert et al. (2010). Ils ont étudié le passage du régime à ségrégation/ruisselant au régime pulsé en fonction de l'angle d'inclinaison, en plus des dépendances de saturation en liquide et les pertes de pression. Le modèle de transition du régime d'écoulement de Grosser a été modifié en tenant compte uniquement des
composantes axiales des vitesses superficielles de gaz et de liquide pour prédire les transitions du régime à ségrégation/ruisselant en fonction de l'inclinaison en transition.

3 Les caractéristiques hydrodynamiques des réacteurs triphasiques

Les aspects hydrodynamiques sont d’une importance fondamentale lors de la conception et du fonctionnement des réacteurs gaz-liquide-solide à lit fixe. De nombreuses recherches ont été menées dans des conditions atmosphériques, tandis que le fonctionnement des réacteurs industriels est à des pressions élevées. Actuellement, les chercheurs ont tendance à travailler à des conditions proches du fonctionnement industriel, et leurs résultats expérimentaux sont obtenus à des hautes pressions, et des corrélations ont été proposées dans ces conditions pour prédire la transition entre les régimes, la perte de pression et le taux de rétention de liquide. Il est admis par les auteurs que les aspects hydrodynamiques sont d’une importance primordiale lors de la conception et du fonctionnement du réacteur à lit fixe (Baldi, 1981; Al-Dahhan et al., 1997; Lopes et Quinta-Ferreira, 2008).

3.1 Les régimes d’écoulement

Le facteur clé pour la conception d’un réacteur gaz-liquide ou gaz-liquide-solide est la connaissance précise des régimes d’écoulement qui jouent un rôle très important sur leurs performances. Les paramètres hydrodynamiques, comme les rétentions des phases, l’aire interfaciale ainsi que les coefficients de transfert de matière et de chaleur sont fortement liés au régime d’écoulement.

De nombreuses études théoriques et expérimentales ont mis l’accent sur les applications industrielles de l’écoulement des fluides à travers les milieux poreux (Turpin and Huntington, 1967; Specchia et al., 1974; Sato et al., 1974; Nakamura et al., 1978; Barrios, 1987; Lara, 1992; Euzen et al., 1993). La majorité de ces études traitent des lits fixes de particules sphériques ou granulaires. Quelques auteurs travaillant sur des lits de particules non-sphériques proposent des facteurs de forme ou sphericité ou des diamètres équivalents afin de ramener le comportement d’une particule de forme quelconque à celui d’une sphère équivalente.

Barrios (1987) a étudié les réacteurs en lit fixe avec écoulement de gaz et de liquide (air-eau, cyclohexane-azote) en co-courant ascendant. Cet auteur a observé cinq types de régimes d’écoulement en travaillant avec quatre types de solides: trois supports sphériques de catalyseur en alumine de divers diamètres et des billes de verre. L’auteur a distingué les cinq régimes suivants: le régime à vagues, à bulles, pulsé, à bulles finement dispersées et en brouillard (figure 6).
Le régime à vagues : ce régime correspond aux faibles valeurs des débits massiques de liquide et de gaz, l’ascension de gaz et de liquide se fait par paquet intermittent, d’où l’appellation de régime à vagues.

Le régime à bulles : il est obtenu pour des faibles valeurs de débit massique de gaz et de grandes valeurs de débit massique de liquide, l’écoulement ascendant est caractérisé par la présence de bulles.

- **Le régime pulsé** : il est obtenu pour des grandes valeurs de débits massiques de liquide et de gaz, l’écoulement ascendant est alors caractérisé par des pulsations qui rythment l’ascension des deux phases.

- **Le régime à bulles finement dispersées** : pour des valeurs moyennes de débit massique de gaz et des valeurs élevées de débit massique de liquide, l’écoulement ascendant est caractérisé par la présence de petites bulles.

- **Le régime en brouillard** : pour des très fortes valeurs de débits massiques de gaz et des très faibles valeurs de débit massiques de liquide, la présence d’un brouillard apparaît.
Les particules jouent un rôle important sur les valeurs superficielles de gaz et de liquide définissant les transitions entre les différents régimes. Les résultats obtenus sur l'influence de la nature du liquide et sur celle du diamètre de la colonne ne sont pas suffisants pour tirer des conclusions, raison pour laquelle il est nécessaire d’effectuer des manipulations avec d’autres liquides et différents diamètres de colonne. La cartographie des régimes d’écoulement apparaît très délicate puisqu’elle dépend des différentes caractéristiques des matériaux et aussi des observations visuelles qui demeurent très subjectives (Barrios, 1987).
3.2 La perte de charge

Dans la littérature, plusieurs études ont été faites afin de décrire les pertes de charge dans les réacteurs à lit fixe à co-courant ascendant. Les principaux facteurs qui affectent la perte de charge provoquée par le passage des fluides à travers les lits sont simultanément les forces de cisaillement pariétal (dues à la nature visqueuse du fluide) et les forces d’inertie en régime inertiel/turbulent. L’équation 1.1 proposée par Ergun en écoulement monophasique de fluide où le premier terme traduit la dissipation de l’énergie par effet visqueux et le second la dissipation de l’énergie par effet inertiel.

\[
\frac{\Delta P}{H_{\text{lit}}} = A \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_L U_f}{(\Phi_s d_p)^2} + B \cdot \frac{(1 - \varepsilon)}{\varepsilon^3} \cdot \frac{\rho_l U_f^2}{(\Phi_s d_p)}
\]

(I.1)

Où

\(\Delta P\) = Perte de charge à travers le lit fixe (Pa).

\(H_{\text{lit}}\) = Hauteur du lit fixe, (m).

\(\varepsilon\) = Porosité du lit fixe (-).

\(\mu_L\) = Viscosité dynamique du liquide (Pa s).

\(U_f\) = Vitesse superficielle du fluide (m s\(^{-1}\)).

\(\Phi_s\) = Coefficient de sphéricité du solide (-).

\(d_p\) = Diamètre moyen des particules (m).

\(\rho_l\) = Masse volumique du fluide (kg m\(^{-3}\)).

Des évaluations ont été faites sur l’équation en prenant en considération la dépendance de variables qui concernent le fluide et les particules solides. Les variables à considérer sont pour le fluide : le débit, la viscosité et la masse volumique ; et pour les particules solides : la porosité, l’orientation, la taille, la forme et la surface des matériaux.

Les constantes de Blake-Kozeny-Carman et Burke-Plummer qui sont les coefficients A et B, respectivement, définissent le milieu poreux et dépendent de la tortuosité, rugosité et de la distribution de la taille des pores, du rapport entre le diamètre de la colonne et celui des particules. Les constants A = 150 et B = 1,75 sont recommandées dans l’équation d’Ergun pour des lits homogènes constitués par des particules sphériques monodisperses. L’équation d’Ergun modifiée, ou simplement l’équation d’Ergun (équation 1.1), a été employé par Macdonald et al. (1979) avec les constantes spécifiques A et B remplacées par les valeurs A = 180 et B entre 1,8 et 4. La valeur du paramètre B est une fonction de la rugosité des particules.
3.3 La rétention de phases

La rétention liquide est définie par le rapport du volume de liquide par unité de volume de réacteur (rétention liquide totale ou globale).

\[\varepsilon_L = \frac{V_L}{V_T} \iff \varepsilon_L = \frac{V_L}{V_T + V_G} \quad (1.2) \]

Où

\(\varepsilon_L = \) Rétention liquide totale ou globale (-).

\(V_G = \) Volume de gaz présent dans la colonne à lit fixe (m\(^3\)).

\(V_L = \) Volume de liquide présent dans la colonne à lit fixe (m\(^3\)).

\(V_S = \) Volume de solide présent dans la colonne à lit fixe (m\(^3\)).

\(V_T = \) Volume total de la colonne à lit fixe (m\(^3\)).

Dans les systèmes gaz-liquide-solide comme dans le cas du réacteur à lit fixe, les rétentions gazeuse, liquide et solide vérifient la relation :

\[\varepsilon_G + \varepsilon_L + \varepsilon_S = 1 \quad (1.3) \]

De nombreux autres ont établi des équations empiriques pour déterminer la rétention liquide (Sato et al., 1974; Stiegel and Shah, 1977) en fonction du nombre de Reynolds pour le gaz et pour le liquide et du diamètre du matériau.

La rétention liquide est principalement une fonction du débit de gaz, c'est ce que Heilman and Hofmann (1968) et Kirillov and Nasamanyan (1976) ont constaté dans leurs études. D'autre part, ils ont également observé une dépendance au débit de liquide.

Fukushima and Kusaka (1979) ont étudié l’écoulement d’un système air-solution de sulfate de sodium (0,5 M) dans les colonnes garnies de sphères en céramique de diamètre des sphères compris entre 0,0127 m et 0,0254 m. Ils ont proposé une corrélation pour prédire la rétention liquide à partir de données expérimentales obtenues en fonctionnement cocourant ascendant de gaz et de liquide. L’équation est donnée en fonction du nombre de Reynolds (pour le gaz et pour le liquide) et de la porosité du lit.
4 Conclusion

Dans ce chapitre nous avons abordé les différents types de réacteurs à lit fixe et leurs principales propriétés d'hydrodynamique tels que : les régimes d'écoulement, la perte de charge et la rétention de phases.

L'objectif de cette étude bibliographique n'est pas d'être exhaustif, mais de rendre compte de l'état actuel des connaissances sur l'étude hydrodynamique des lits fixes. Dans le prochain chapitre nous allons étudier l'hydrodynamique des réacteurs à lit fixe inclinés à écoulement ascendant.
Hydrodynamics of an inclined gas-liquid cocurrent upflow packed bed
Hydrodynamics of an inclined gas-liquid cocurrent upflow packed bed

Hana Bouteldja, Mohsen Hamidipour, Faïcal Larachi

Department of Chemical Engineering, LAVAL University, Québec, Canada G1V 0A6

Corresponding Author

*E-mail: faical.larachi@gch.ulaval.ca. Tel.: (418) 656-2131 Ext. 3566. Fax: (418) 656-5993

Abstract

The effects of inclination on the hydrodynamic behavior of a packed bed operating under gas-liquid cocurrent upflow were experimentally investigated in terms of liquid saturation, bed overall pressure drop and gas-liquid segregation. The non-invasive electrical capacitance tomography (ECT) imaging technique was applied to scrutinize local and axial phase distribution pattern and cross-sectionally averaged liquid saturation. The results indicate that bed inclination creates short circuits for the gas phase along the upper wall where it can flow in a segregated manner. Inception of transition from bubble to segregated flow regime was identified through monitoring a defined uniformity factor for ECT images. Phase segregation developed along the bed with minimum impact in the region close to the entrance. The removed bubbles were replaced by liquid phase resulting in higher liquid saturation values (i.e., higher liquid holdup) as complete segregation state was approached. The effect of operating conditions on axial profile of liquid saturation was examined.

Keywords: Packed bed hydrodynamics; inclination; segregation; liquid saturation; electrical capacitance tomography (ECT).
1 Introduction

Bubble columns are used in petrochemical, chemical, pharmaceutical, biochemical and metallurgical industries as multiphase contactors and reactors (Degaleesan et al., 2001). Processes which require good contact between gas and liquid phases can be performed in bubble columns (Prakash and Briens, 1990) where a discontinuous gas phase, in the form of bubbles, circulates upward while accompanying the continuous liquid phase. Bubble columns may also consist of three-phase systems and contain inert, reactive or catalytic particles either in suspension or in a packed bed form. Wastewater treatment, hydrogenation, oxidation, chlorination, polymerization and alkylation are among the processes that have long been performed in bubble column reactors. Other applications such as absorption, catalytic slurry reactions, and coal liquefaction have been also performed in these reactors (Joshi et al., 1990; Blenke, 1979; Chisti, 1989; Saez et al., 1998). Simplicity of operation, low operating costs, large interfacial area, good inter-phase heat and mass transfers, and ease of adjustment of liquid residence time are the main advantages of this configuration (Kantarcia et al., 2005). However, reliable design and scale-up are known to be restricted by the complex hydrodynamics and its influence on transport characteristics. During the past decades, scientific interest in bubble column reactors has increased considerably (Kantarcia et al., 2005). Research on bubble column covers a wide range of subjects such as gas holdup, bubble properties, flow regimes, back mixing, interfacial area, pressure drop, and heat and mass transfer (Ruzicka et al., 2001; Luther et al., 2004; Majumder et al., 2006; Majumder, 2008; Dudley, 1995).

Currently, areas of fossil-fuel off-shore extraction and processing are vividly interested on problems linked with inclined multiphase flows. As a matter of fact, the hydrodynamic behavior of floating reactors and separators on embarked boats such as in FLNG (floating liquefied natural gas) and FPSO (floating production, storing and off-loading) systems is a crucial aspect of their design for the prediction of the floating unit performances (Gu and Ju, 2008; Zhao et al., 2011). Obviously, most hydrodynamic researches in multi-phase reactors have dealt with vertical columns. In contrast, inclined configurations with fixed or slurry catalyst phase are rather on the fringes of studies and are reported very sparsely in the literature. From a pragmatic standpoint, column inclination may have detrimental or beneficial effects on the performance of the reactor depending on its projected utilization.
There are a few studies available which investigate the effect of inclination angle of the reactor (O’Dea et al., 1990; Sarkar et al., 1991; Del Pozo et al., 1992; Hudson et al., 1996; Yakubov et al., 2007; Valverde et al., 2008; Atta et al., 2010; Schubert et al. 2010).

Numerous studies have been reported on the issues associated with gas-liquid and steam-water flows in inclined ducts and channels which are in particular encountered in cooling circuits of pressurized water reactors in nuclear power plants. Singh and Griffith (1970) investigated slug flow of air and water at small upward inclination angles and developed simple correlations for pressure drop and holdup. Slug flow in inclined pipes was also examined by Bonnecaze et al. (1971) who reported data for air-water system. Barnea et al. (1985) reported data on flow pattern transitions for upward gas-liquid flow in pipes at inclination angles from 0° to 90°. Mathematical models previously presented for vertical and horizontal configurations were extended to cover the full range of pipe inclinations.

Flow regimes, fluidization heterogeneity along with the corresponding heat and mass transfer characteristics have been studied in inclined fluidized beds. Arai et al. (1973) theoretically investigated heat exchange between particles and gas in a multistage inclined fluidized bed. A fairly good agreement was recognized between the theoretical and experimental results in a three-stage inclined fluidized bed. Furthermore, effectiveness of multiplying stages was confirmed on heat efficiency both theoretically and experimentally. A chart was made up on the relation between the required number of stages and optimum conditions of heat exchange. Masliyah et al. (1989) studied the enhancement of separation of light and heavy particles from suspensions using inclined channels. They observed that at a fixed set of operating conditions, the increase of inclination from vertical position results in a greater degree of separation. O’Dea et al. (1990) studied inclined fluidized beds, between 45° and 90°, using four different types of powders and air as the fluidizing medium. Flow regimes and transition condition have been identified experimentally and verified by a theoretical model. Sarkar et al. (1991) studied the flow of solid particles from a vertical fluidized bed to a receiving vessel through an inclined downward pipe. They investigated the effects of the connecting pipe length, diameter, and inclination angle and fluidizing agent velocity on the flow rate of solid particles from the fluidized bed to the receiving vessel. Hudson et al. (1996) studied the effects of small inclination angles (up to 10° from the vertical position) in liquid-solid fluidized beds. They measured local holdup
and circulation pattern of the liquid and solid phases, and developed a simple model that predicted the solid circulation pattern. Yakubov et al. (2007) studied the structure of a fluidized bed in inclined columns. Experiments were conducted in two glass columns which could be positioned in the whole range of inclination angles, from horizontal to vertical. The results showed that the expansion process of the fluidized bed depends strongly on the inclination angle. The column length was found to have a minor effect on the involved phenomena. Valverde et al. (2009) experimentally examined how bed inclination affects fluidization and sedimentation behavior of fine cohesive particles. They found that the main effect of inclination is to induce fluidization heterogeneity. The local gas velocity increases in the adjacent region to the upper wall at the expense of diminished velocity in the region adjacent to the lower wall. This situation caused early onset of local bubbling in the region adjacent to the upper wall.

The packed bed operated with descending gas-liquid cocurrent flows in slanted configuration was investigated by Schubert et al. (2010) as an extension of studies of horizontal concurrent gas-liquid flows in porous media (Iliuta et al., 2003). In addition to liquid saturation and pressure drop, they studied the transition from segregated/trickle regime to pulse flow regime with respect to inclination angle. The Grosser et al. (1988) flow regime transition model was modified by considering only axial components of the gas and liquid superficial velocities to predict the slant-dependent shifts in transition from segregated/trickle to pulse flow and was found to agree with experimental data. An Eulerian computational fluid dynamics (CFD) framework was implemented by Atta et al. (2010) to simulate an inclined cocurrent downflow packed bed. Two configurations were used (a) a straight tube with an artificially inclined gravity and (b) an inclined geometry with straight gravity. The comparison between electrical capacitance tomography data and the predictions of the liquid saturation showed that there is a considerably quantitative deviation from the experimental data. However, the trends could be satisfactorily predicted. They recommended formulating appropriate drag force closures which should be incorporated in the CFD model for quantifiable approximation of the inclined packed bed hydrodynamics.

Any experimental study analyzing the effect of inclination in packed beds for ascending two-phase flows has been so far fully disregarded. It can be anticipated that inclination
would considerably affect the flow patterns and consequently segregated flow may appear in the bed. Thus, knowledge of the basic hydrodynamics for such inclined packed-bed configuration is essential. This study presents the results of an experimental investigation of the hydrodynamic behavior of gas-liquid cocurrent upflow inclined packed bed columns. The goal is to explore the effect of column inclination angle on the flow characteristics. The hydrodynamic response to different operating conditions is studied.

2 Experimental Setup

The experimental set-up built to study the effect of inclination angle on two-phase flow hydrodynamics in cocurrent upflow packed bed is illustrated in Figure 1. Experiments were performed at atmospheric pressure and room temperature. The main element of the set-up is a Plexiglas cylindrical column with an inner diameter (ID) of 0.057 m and a height of 1.50 m. Glass beads (3 mm, $\varepsilon = 0.395$) were used as packing. The packed bed was kept in place using a metallic grid inserted from top to avoid bed fluidization during the experiments. Kerosene and air were used as the liquid and gas phases, respectively. A peristaltic pump was used to feed the liquid from the reservoir to the bottom of the column. The two phases were separated at the top of the column by means of a gas/liquid separator. The liquid was returned to the reservoir and the gas was vented to the atmosphere. The column was supported on a steel frame capable of varying the angle of inclination continuously in the full range from horizontal to vertical position. A wide range of gas and liquid superficial velocities were explored to cover the bubble and segregated/bubble flow regimes. Table 1 summarizes the range of operating conditions. The inclination angle was varied in small steps in the range of 0° to 55°. The angular precision was 0.5°. Pressure drops through the bed were measured using a differential pressure transmitter.
A twin-plane 12-electrode per-plane sensor with a Model DAM200E data acquisition system (PTL300E type) was utilized (Process Tomography, Ltd.) to perform electrical capacitance tomography (ECT) measurements. Tomographic imaging is helpful to capture, without interference with the actual hydrodynamics, the evolving tomography at depths inside the bed that are otherwise inaccessible from mere wall scrutiny. ECT is compatible with oil-like non-polar liquids such as kerosene, as used in our experiments. The ECT system produces instantaneous information with sampling frequencies of 50 Hz. A Tikhonov reconstruction algorithm was chosen to generate normalized permittivity images from the measured capacitances. Selection of this algorithm, with regard to our application was discussed in our previous works (Tibirna et al., 2006; Hamidipour et al., 2007). The sensor, with an inner diameter of 0.0635 m, can be pushed over the outer wall of the column and fixed at different axial positions. The sensor has been placed at three different axial positions to identify the vertical flow dynamics profiles. ECT calibration enabled setting lowest and highest limits of the normalized permittivities interval so that intermediate per-pixel normalized permittivity values in images during flow conditions can be obtained for rendition of the per-pixel liquid saturations (Hamidipour et al. 2009).
Table 1. System properties and range of operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas superficial velocity, u_G</td>
<td>1.55-46.5 mm/s</td>
</tr>
<tr>
<td>Liquid superficial velocity, u_L</td>
<td>0.7-2.8 mm/s</td>
</tr>
<tr>
<td>Liquid phase density</td>
<td>792 kg/m³</td>
</tr>
<tr>
<td>Liquid viscosity</td>
<td>0.002 kg/m/s</td>
</tr>
<tr>
<td>Liquid surface tension</td>
<td>0.025 N/m</td>
</tr>
<tr>
<td>Gas density</td>
<td>1.2 kg/m³</td>
</tr>
<tr>
<td>Glass beads diameter</td>
<td>3 mm</td>
</tr>
<tr>
<td>Sphericity factor</td>
<td>1.0</td>
</tr>
<tr>
<td>Bed porosity</td>
<td>0.395</td>
</tr>
<tr>
<td>Bed length</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Reactor diameter, ID</td>
<td>57 mm</td>
</tr>
<tr>
<td>Inclination angle</td>
<td>0-55°</td>
</tr>
</tbody>
</table>

2.1 ECT calibration

Liquid saturation measurements in the packed bed were carried out after the calibration of the ECT sensor at flooded (100%) and drained (0%) bed conditions. The average mixture permittivities can be expressed as:

Flooded bed mixture permittivity

$$e^{[f]} = (1 - \varepsilon)\varepsilon_S + \varepsilon\varepsilon_L$$ \hspace{1cm} (1)

Drained-bed mixture permittivity

$$e^{[d]} = (1 - \varepsilon)\varepsilon_S + (\varepsilon - \varepsilon_L^{res})\varepsilon_G + \varepsilon_L^{res}\varepsilon_L$$ \hspace{1cm} (2)

The overall permittivity of a mixture in two-phase operation can be expressed as:

Gas–liquid (-solid) mixture permittivity

$$e^{[GL]} = (1 - \varepsilon)\varepsilon_S + (\varepsilon - \varepsilon_L^{res} - \varepsilon_L^{fd})\varepsilon_G + (\varepsilon_L^{fd} + \varepsilon_L^{res})\varepsilon_L$$ \hspace{1cm} (3)
Where \(\varepsilon, \varepsilon^\text{res}_L \) and \(\varepsilon^\text{fd}_L \) represent, respectively, the bed porosity, the residual liquid holdup retained due to capillary forces and free-draining liquid holdup, and \(e_S, e_L, \) and \(e_G, \) are the packing, liquid, and gas permittivities, respectively. Furthermore, the free-draining liquid holdup normalized by the effective bed porosity (after resting the residual liquid holdup) or the free-draining liquid saturation (\(\beta^\text{fd}_L \)), can be estimated using the normalized permittivity, NoP:

\[
\text{NoP} = \frac{\varepsilon^\text{[Gl]} - \varepsilon^\text{[0]}}{\varepsilon^\text{[0]} - \varepsilon^\text{res}_L} = \frac{\varepsilon^\text{fd}_L}{\varepsilon - \varepsilon^\text{res}_L} = \beta^\text{fd}_L
\] (4)

Instantaneous local free-draining saturation values for all the \(32 \times 32 \) pixels of the ECT image were determined, \(\beta^\text{fd}_{L,i} \), to provide the cross-sectionally averaged free draining liquid saturation, \(\overline{\beta^\text{fd}_L} \), Eq. (5):

\[
\beta^\text{fd}_L = \frac{1}{NP} \sum_{i=1}^{NP} \beta^\text{fd}_{L,i} \quad \text{and} \quad \overline{\beta^\text{fd}_L} = \frac{1}{NF} \sum_{j=1}^{NF} \left(\frac{1}{NP} \sum_{i=1}^{NP} \beta^\text{fd}_{L,j,i} \right)
\] (5)

Time-averaged liquid saturation values, \(\overline{\beta^\text{fd}_L} \), were obtained for steady-state flow conditions from ~300 successive cross-sectional images. Number of pixels and frames applied are denoted by NP and NF, respectively. Afterward, using free-draining liquid saturations (Eq. (4)), the free-draining liquid holdup, \(\varepsilon^\text{fd}_L \), could be calculated knowing the experimentally determined bed porosity, \(\varepsilon \), and the residual liquid holdup, \(\varepsilon^\text{res}_L \).
3 Results and Discussion

3.1 Effect of inclination angle on local liquid distribution pattern and overall bed pressure drop

The study was realized through examination of liquid saturation and bed pressure drop as a function of inclination angle and fluid throughputs. The inclination angle was initiated from uniform liquid distribution (i.e., 0°) and changed up to 55° to cover a wide range of inclinations. To characterize the flow patterns that evolve from bubble to segregated flow regime, non-invasive ECT method was applied. Each ECT image represents a two-dimensional tomogram averaged over 5 cm thick slices in the reactor corresponding to the electrodes’ heights. Systematic experimental comparisons between vertically aligned packed bed reactor and inclined bed in two-phase flow operation were carried out to determine at which inclination angle deviations in flow patterns start to occur. Therefore, the conventional straight reactor operated in a stable bubble flow regime was gradually inclined. Figure 2 shows the development of the liquid saturation over the cross section of the packed bed 55 cm away from bed entrance for inclinations varying from $\theta = 0°$ (vertical) up to 55°. Vessel inclination inevitably affects the gas-liquid distribution and flow patterns inside the packed bed. At 10°, the segregation has already started to develop becoming more pronounced the higher the inclination. The appearance of blue color in ECT images represents the formation of gas channels along the upper wall consisting of large bubbles as a function of increased inclination angle resulting in less gas-liquid contact. The red color illustrates that liquid is moving toward a gas-free state, i.e., complete segregation, alongside the lower wall.

![Exemplary illustration of the inclination effect on the flow texture](image)

Figure 2 Exemplary illustration of the inclination effect on the flow texture ($u_G = 15.5$ mm/s; $u_L = 0.7$ mm/s, 55 cm away from the bed entrance).
The segregation state can be identified based on the lack of crosswise uniformity of the liquid saturation distribution. A uniformity factor, χ, was defined based on the deviation of pixel saturation with respect to the average cross-sectional liquid saturation (Eq. (6)):

$$\chi = \frac{1}{NF} \sum_{i=1}^{NF} \left(\frac{1}{NP} \sum_{j=1}^{NP} \left(\frac{\beta_{L,i,j}^{id} - \beta_{L}^{id}}{\beta_{L}^{id}} \right)^2 \right)$$

Where NP is the number of pixels in the image, NF is the number of successive cross-sectional images (\sim300 frames) after establishment of a steady state. Also, $\beta_{L,i}^{id}$ and β_{L}^{id} are the i^{th} pixel and average cross-sectional liquid saturations for each image, respectively.

While close to zero value is an indication of a uniform distribution, higher uniformity factor values describe occurrence of mal-distribution. The uniformity factor values for different operating conditions as a function of inclination angle at 55 cm away from the bed entrance are shown in Figure 3. For the presented range of operating conditions, the effect of inclination angle on the uniformity factor starts at \sim10$^\circ$. All operating conditions reveal a peak of uniformity factor where the worst distribution pattern takes place. As the bed is tilted the gas phase has the tendency to escape toward the upper wall. At a critical angle, complete phase segregation starts to develop and more cross-sectional area is uniformly covered by either liquid or gas phases. Hence, the uniformity factor diminishes. Therefore, the peak characterizes the transition from bubble to segregated flow regime. Figure 3 depicts that the location of peak depends on the gas and liquid velocities. At low phase interaction (i.e., low superficial velocity) segregation requires smaller inclination angle to establish (\sim25$^\circ$). At high phase interaction (i.e., high superficial velocity) more deviation from vertical position is required for segregation to evolve (\sim35$^\circ$). Liquid phase appears to play an important role. Figure 3 shows that higher liquid velocity prevents facile escape of gas bubbles toward the upper wall, therefore, segregation occurs at higher inclination angle.
The cross-sectionally averaged liquid saturation (Eq. 5, at 55 cm away from the bed entrance) data were analyzed as well as the bed overall pressure drop (Figures 4a,b). The liquid saturation (Figure 4a) is clearly affected by the inclination angle for all superficial fluid velocities investigated in this study. At vertical position, increasing gas velocity at constant liquid throughput results in higher presence of gas phase which in turn causes lower liquid saturation. For the selected range of operating conditions, at around 10° deviation from vertical position, the average liquid saturation started to increase. As the bed is inclined, gas and liquid start to segregate. The space originally occupied by gas is filled by liquid forcing the gas phase to squeeze close to the upper wall. Higher inclination angles, approaching complete segregation state, cause more coverage of cross-sectional area by the liquid. Therefore, higher liquid saturation is observed. As mentioned earlier, liquid velocity has an important role to maintain bubbles in the liquid phase. Consequently, at same inclination angle, higher liquid velocity results in lower liquid saturation.

Figure 3 Effect of inclination angle on uniformity factor (55 cm away from the bed entrance).
In a bubble column, two main factors contribute to the overall bed pressure drop: i) the interaction between gas, liquid and solid phases (i.e., drag forces) and ii) the static head of liquid phase. Figure 4b shows the variation of bed overall pressure drop as a function of inclination angle. Till around 10º inclination, as the distribution pattern does not change significantly, a minor effect is observed on pressure drop. Further inclination creates an easy path for the gas phase close to the upper wall resulting in lower phase interactions. Therefore, as the bed is tilted toward complete segregation, pressure drop continues to decline. At lower liquid superficial velocity gas holdup is lower (Figure 4a) and the contribution of higher static liquid head results in greater overall pressure drop. The results show that for the selected range of velocities at vertical position, for a constant gas superficial velocity, pressure drop decreases by increase of liquid velocity. Higher liquid throughput causes more phase interaction when the two phases compete for flow path. However, a greater drag force is imposed on the gas phase by a low velocity liquid phase. The net outcome for the range of our experiments (i.e., low velocities to prevent pulse flow regime) is less overall bed pressure drop.
Figure 4 Effect of inclination angle on (a) cross-sectional average liquid saturation (55 cm away from the bed entrance) and (b) overall bed pressure drop.
3.2 Effect of inclination angle and operating conditions on the axial phase distribution

An Eulerian slice representation of ECT images is used to visualize the axial development of the liquid-flow field as shown in Figures 5a,b (Hamidipour and Larachi, 2010). In our case, Eulerian slices were plotted to study the morphology of two-phase flow under segregated/bubble flow regime (Figures 6a-c). Pixelized liquid saturations reconstructed along a selected diametrical line (e.g., A-A line in Figure 5a) were shot at 50 Hz pace as recorded and plotted one after the other from individual images recorded during two-phase flow operation. In the current instance, the perpendicular line A-A crossing the segregated liquid area from bottommost to uppermost wall areas at a given axial position is the most representative line. Evolving this line time-wise from bottom to top as in Figure 5a, would depict upstream events for the flow direction but delayed in time until they hit the tomograph sensing plane. This gives, in an approximate sense, virtual local axial tomogram representation of the liquid-flow field.

Figure 5b shows typical images used to build the Eulerian slices. Each row shows different instants of flow under specific operating conditions. The first row (Figure 5b) was obtained at vertical position, 120 cm away from the bed entrance (u_L=1.4 mm/s; u_G = 1.55 mm/s). The second row presents different moments of flow, 55 cm away from of the bed entrance while bed was inclined at 25° (u_L=1.4 mm/s; u_G = 1.55 mm/s). Several images (21 sec × 50 Hz) similar to these two rows were used to construct Figures 6a-c (i.e., Eulerian slices). Liquid and gas superficial velocities were kept constant (u_L=1.4 mm/s; u_G = 1.55 mm/s) whilst the inclination angle was increased stepwise (0°, 25°, 45°) for different axial positions of ECT, 20 cm, 55 cm and 120 cm away from bed entrance.

Maintaining the bed vertically revealed no effect of height. Under bubble flow regime and vertically positioned bed (0°) slightly lower liquid saturations are observed close to the walls. This is attributed to the higher porosity in this region. As inclination angle was increased, the gravity force acting on the liquid increased resulting in more accumulation of liquid in the bottom wall region. Lower liquid saturation nearby the upper wall area is in accordance with the passage of gas bubbles. It is noted that at inclination angle equal to 25° middle of the column shows less phase segregation compared to the top of the column. At 45°, segregation is less close to the entrance of the column; however, the distribution
pattern from middle to the top of column is similar. In fact, segregation requires a minimum length to develop which is a function of inclination angle. At higher inclination angles less distance is necessary to come close to a complete phase segregation state. At the top of the column, a wavy pattern is observed at an inclination angle equal to 25°.

Figure 5 (a) Schematic of Eulerian slice construction, (b) ECT snapshots of bubble and segregated flow regimes; first row at vertical position, 120 cm away from the bed entrance, $u_L=1.4$ mm/s; $u_G = 1.55$ mm/s; second row 55 cm away from the bed entrance, inclination angle = 25°, $u_L=1.4$ mm/s; $u_G = 1.55$ mm/s.
The waves tend to disappear with the increase of inclination angle (Figure 6c). The waves are an indication of the region where gas-liquid disengagement occurs. At higher inclination angles this region moves toward the bed entrance, therefore, a relatively calm pattern is established downstream of the disengagement zone.
Figure 6 Eulerian slice representation for $u_L=1.4 \text{ mm/s}$; $u_G = 1.55 \text{ mm/s}$, (a) 20 cm, (b) 55 cm, (c) 120 cm away from the bed entrance.

Figure 7a shows the effect of inclination angle on the axial profile of cross-sectionally averaged liquid saturation for $u_G = 1.55 \text{ mm/s}$ and $u_L = 2.8 \text{ mm/s}$. At vertical position (i.e., 0°) liquid saturation is independent of bed height. An increasing trend of liquid saturation is observed along the bed with deviations from vertical position. Development of phase segregation along the bed creates more space for liquid presence equivalent to higher liquid saturation. For the selected operating conditions, at inclination angle = 45°, final phase distribution pattern was approached around midway of the bed resulting in an almost invariant liquid saturation afterwards. It is important to note that even for small inclination angles complete segregation might take place in a long bed.

Figure 7b depicts the effect of gas superficial velocity on the axial profile of liquid saturation for $u_L = 2.8 \text{ mm/s}$ and inclination angle = 45°. Similar to the vertical bed behavior, higher gas velocity boosts the gas-liquid interaction while seeking flow space. Thus, part of liquid is pushed out and lower liquid saturation is observed along the bed. This effect is less pronounced in the region close to the entrance due to higher static head of liquid phase which imposes higher resistance.
Liquid Saturation (\(c\))

Height (cm)

- \(0^\circ\)
- \(15^\circ\)
- \(25^\circ\)
- \(45^\circ\)

\(u_G = 1.55\) mm/s
\(u_G = 7.75\) mm/s
\(u_G = 15.5\) mm/s
\(u_G = 46.5\) mm/s

(a)

(b)
Figure 7 Axial profile of liquid saturation, (a) effect of inclination angle, $u_G = 1.55$ mm/s and $u_L = 2.8$ mm/s, (b) effect of gas superficial velocity, $u_L = 2.8$ mm/s and inclination angle = 45°, (c) effect of liquid superficial velocity, $u_G = 1.55$ mm/s and inclination angle = 45°.

The influence of liquid superficial velocity on the axial profile of liquid saturation for $u_G = 1.55$ mm/s and inclination angle = 45° is presented in Figure 7c. At low liquid velocity, no significant effect is observed along the bed. Increase of liquid velocity results in lower liquid saturation close to bed entrance. The axial shear imposed on the gas bubbles by the liquid phase retards bubble removal to higher elevations which in turn lowers the area occupied by liquid (i.e., less liquid saturation).
4 Conclusion

The hydrodynamic behavior of an inclined gas-liquid cocurrent upflow packed bed was experimentally investigated. The inclination angle was varied from 0° (i.e., vertical position) up to 55° to cover a wide range of inclination. The electrical capacitance tomography (ECT) imaging technique was implemented to monitor local and axial distribution patterns. Cross-sectionally averaged liquid saturation, bed overall pressure drop and gas-liquid segregation were measured. In addition, the effect of operating conditions on axial profile of liquid saturation was examined. The experimental results indicated that:

- Short circuits of gas phase were formed along the upper wall due to bed inclination. Thus, phase interaction decreased causing lower pressure drop values.
- Inception of transition from bubble to segregated flow regime was identified through monitoring uniformity factor for ECT images. The worst distribution pattern (i.e., the highest uniformity factor) was considered as the flow regime transition point.
- Segregation was developed along the bed and removed bubbles were replaced by liquid phase resulting in higher liquid saturation values as complete segregation state was approached.
- High liquid superficial velocity imposed a greater shear on the gas bubbles preventing segregation especially in the region close to the entrance.
Acknowledgment
Financial support from the Canada Research Chair “Green processes for cleaner and sustainable energy” and the Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) is gratefully acknowledged.

Nomenclature
\[e \] = electrical permittivity, \(\text{F/m} \)
\[t \] = time, s
\[u \] = superficial velocity, \(\text{mm/s} \)

Subscripts
G = gas
L = liquid
S = solid

Greek Letters
\[\varepsilon \] = bed porosity, -
\[\beta \] = liquid saturation, -
\[\chi \] = uniformity factor, -
CONCLUSION ET RECOMMANDATIONS
Les réacteurs catalytiques triphasiques à lit fixe sont largement utilisés dans l'industrie pétrolière en particulier dans l'hydrocraquage, l'hydrodésulfuration des coupes lourdes du pétrole, l'hydrogénation ou encore dans le traitement des eaux ou d'effluents gazeux ainsi que certaines réactions d'oxydation catalytique. L'actuel travail présente une étude complète de l'hydrodynamique des réacteurs à lit fixe inclinée à cocourant ascendant. L'hydrodynamique des réacteurs inclinés à bulles a été expérimentalement étudiée en inclinant la colonne de la position verticale jusqu'à un angle de 55°. Grâce à la technique de tomographie à capacitance électrique, le comportement spatial et instantané de l’écoulement gaz-liquide a été défini dans une colonne garnie de particules sphériques inertes où les deux phases s’écoulent à cocourant ascendant le long du lit.

Les résultats démontrent clairement que les réacteurs à lit fixe inclinés ont un comportement différent dans les régimes à faible interaction comparativement à ceux verticaux en raison de la présence de la ségrégation qui donne naissance à un autre régime d’écoulement lors l'inclinaison. La technique de la tomographie à capacitance électrique (ECT) a été mise en place pour observer les comportements locaux de la distribution axiale de la rétention en liquide. À l’aide de l’ECT les coupes transversales de la saturation moyenne de liquide, les pertes de charge globale à travers le lit et la ségrégation gaz-liquide ont été mesurées. En outre, l'effet des conditions d'exploitation sur le profil axial de saturation de liquide a été examiné. Les résultats expérimentaux indiquent que:

- Des courts-circuits de la phase gazeuse ont été formés le long de la paroi supérieure en raison de l'inclinaison du lit. Ainsi, l'interaction entre les deux phases fluide diminue et entraîne une faible diminution des pertes de charge.

- À l’aide de la technique de tomographie à capacitance électrique le suivi de la variation du facteur d'uniformité a été enregistré en fonction de la variation de l'angle d'inclinaison. La
transition du régime à bulles en régime à ségrégation a été considérée au point le plus élevé de la valeur du facteur d'uniformité (i.e. la mauvaise distribution du liquide).

- La ségrégation a été développée le long du lit et les bulles de gaz ont été remplacées par la phase liquide, ce qui engendre l'augmentation de la valeur de la saturation de liquide. Lorsque la ségrégation complète a été approchée, la saturation de liquide a atteint une valeur maximale.

- La vitesse superficielle du liquide élevée impose un plus grand cisaillement sur les bulles de gaz, ce qui empêche la séparation en particulier dans la région proche de l'entrée.

Le régime d'écoulement d'impulsion peut être un procédé de fonctionnement des réacteurs inclinés en utilisant un mode périodique d'inclinaison. Par conséquent, il doit être démontré, si le débit d'impulsion peut être réalisé dans des géométries inclinées et comment les caractéristiques de débit à impulsion pourraient être affectées par l'angle d'inclinaison. Cependant, des études complémentaires seront nécessaires pour mieux décrire l'effet de l'inclinaison sur l'hydrodynamique du lit garni, comme la modélisation de la transition de l'écoulement à faible interaction vers la forte interaction.

De manière similaire, il est recommandé de réaliser des études sur l'effet des mouvements ondulatoires des vagues sur l'hydrodynamique des réacteurs à lit fixe, en simulant sur le réacteur les mouvements d'un bateau selon les trois axes : les mouvements de rotation (roulis, tangage, lacet) et les mouvements de translation (embardée, cavalement, pilonnement), tout en étudiant le comportement de l’écoulement dans le réacteur en utilisant différents techniques de tomographie. À l’aide d’un système de positionnement de type "plateforme de Stewart" ou Hexapode, une nouvelle étude dans le domaine des réacteurs catalytiques pourra être mise en œuvre, en mettant en
mouvement un réacteur et en étudiant simultanément le comportement de l'hydrodynamique des réacteurs à lit fixe. Ce système à mécanique parallèle permettra la mise en position et le mouvement d'objets dans l'espace suivant les six degrés de liberté. Le système permettra donc de simuler les mouvements des houles et leur impact sur l'hydrodynamique de ces réacteurs.
RÉFÉRENCES BIBLIOGRAPHIQUES

Norio Arai; Masanobu Hasatani; Sachio Sugiyama. 1973. Heat Transfer in Multistage Inclined Fluidized Beds. Chemical engineering; ISSN:0375-9253; VOL.37; NO.4; PAGE.379-N/A.

[4] L’exploitation pétrolière offshore : Enjeux maritimes

[5] doc. IFP Training

[7] 411 On Canada’s Onshore & Offshore Oil Drilling
