PRÉVALENCE DE L’INFECTION À HÉLICOBACTER PYLORI EN MILIEU RURAL QUÉBÉCOIS

Mémoire présenté
à la Faculté des études supérieures de l'Université Laval
dans le cadre du programme de maîtrise en épidémiologie
pour l'obtention du grade de maître ès sciences (M.Sc.)

MÉDECINE SOCIALE ET PRÉVENTIVE
FACULTÉ DE MÉDECINE
UNIVERSITÉ LAVAL
QUÉBEC

DÉCEMBRE 2003

© Éric Botuna Eleko, 2003
La prévalence de l’infection à *H. pylori* a été évaluée chez 236 sujets, âgés de 20 à 74 ans, résidant dans 4 régions de culture intensive du Québec (Portneuf, Lanaudière, Ile d’Orléans, Nicolet) au cours de l’année 1995. Un test sérologique de type Elisa (Enzyme-Linked-Immunosorbent-Assay) fut utilisé afin de détecter la présence d’anticorps contre l’*Helicobacter pylori* dans le sérum des sujets et un questionnaire standardisé a été rempli par les participants à l’étude. La sérologie à *H. pylori* était positive chez 74 sujets (prévalence de 31,35 % ; IC à 95 % : 20,78 - 41,92 %). Elle était fortement associée, de façon positive, à l’âge (5,0 % pour les 20-34 ans et 60,87 % pour les 65 ans et plus, p <0,0001) et, de façon négative, avec le niveau d’éducation (14,29 % pour le niveau universitaire; 28,57 % pour le niveau collégial et 30,11 % pour le niveau primaire). Une analyse de régression logistique a permis de déterminer que seul l’âge était associé de façon significative à la prévalence de la maladie. Un test de tendance a permis de conclure que la séroprévalence à l’*H. pylori* croissait avec l’âge. Et pour chaque accroissement de l’âge de un an, la séroprévalence à l’*H. pylori* croissait de 1,07 %. Le faible taux de participation, la petite taille de l’échantillon ainsi que les informations réduites du questionnaire sont des limites importantes de l’étude qui doivent être prises en compte dans l’interprétation des résultats obtenus.

Patrick Levallois

Eric B. Eleko
REMERCIEMENTS

Merci Seigneur Jésus-Christ pour tout ce que tu as fait dans ma vie, que la gloire te revienne au siècle des siècles, amen.

Je tiens à témoigner ma reconnaissance à vous tous qui avez contribué de quelques façons que ce soit, de loin ou de près, à la réalisation de ce mémoire. Sa concrétisation n’aurait pas été possible sans votre soutien incommensurable.

Mes remerciements s’adressent particulièrement à :

Docteur Patrick Levallois, mon directeur de recherche, à qui j’exprime toute ma gratitude pour la qualité et la pertinence de ses conseils, son appui constant et permanent ;

Madame Suzanne Gingras, qui nous a fait profiter de son expertise en biostatistique. Ses suggestions, commentaires et surtout sa disponibilité nous ont été très précieux pour mener ce projet jusqu’au bout;

Docteur Joel Bilolo Kupa, qui nous a toujours encouragé à aller jusqu’au bout nonobstant les aléas de la vie courante;

Madame Beby-Umba Chihanza, mon épouse, dont la présence à mes côtés a été une très grande source d’inspiration;

Eric-Maxime Bokele Eleko, le maximum, mon fils, tu es ma vraie raison de persévérer dans cette entreprise;

Ma défunte tante, Alphonsine Seve Sungu, qui s’est endormie dans le silence de l’éternité sans avoir eu l’occasion de récolter ce qu’elle a semé dans ma formation pendant des longues années.
TABLE DES MATIÈRES

RÉSUMÉ .. i
REMERCIEMENTS .. ii
TABLE DES MATIÈRES .. iii
LISTE DES TABLEAUX .. vi
LISTE DES FIGURES ... vii
INTRODUCTION .. 1
1 CHAPITRE I REVUE DE LA LITTÉRATURE ... 3
1.1 ASPECTS MÉDICAUX .. 4
 1.1.1 Microbiologie .. 4
 1.1.1.1 La bactérie ... 4
 1.1.1.2 Pathogénicité .. 5
 1.1.1.3 Réactions locale et immunitaire ... 5
 1.1.2 Histoire naturelle de l’infection .. 6
 1.1.2.1 Pathologie .. 6
 a) Gastrite ... 9
 b) Dyspepsie non-ulcèreuse ... 9
 c) Maladie peptique ulcèreuse .. 10
 d) Cancer gastrique ... 11
 e) Autres maladies ... 12
 1.1.2.2 Diagnostic ... 12
 a) Les tests non-invasifs ... 12
 i) La sérologie ... 12
 ii) Le test respiratoire à l’urée marquée ou "urea breath tests C-13" 13
 b) Les tests invasifs .. 13
 i) Endoscopie et biopsie .. 13
 ii) Le test rapide à l’urée .. 14
 1.1.2.3 Prise en charge .. 14
 a) Traitement .. 14
 b) Éradication ... 15
 1.2 ÉPIDÉMIOLOGIE ... 16
 1.2.1 Transmission .. 16
 1.2.1.1 Réservoirs ... 16
 a) Réservoir humain ... 16
 b) Réservoir animal ... 16
 c) Réservoir environnemental .. 17
 1.2.1.2 Mode de transmission ... 17
 a) Transmission inter-humaine .. 17
 i) Transmission par voie orale-orale .. 19
 ii) Transmission par voie fécale-orale .. 19
 b) Transmission environnementale .. 19
 1.2.2 Prévalence de la maladie .. 20
 1.2.2.1 Outils d’étude épidémiologique ... 20
 1.2.2.2 Prévalence ... 21
 a) Dans les pays développés ... 21
b) Dans les pays en voie de développement .. 22

1.2.3 Facteurs de risque de l’infection à *Helicobacter Pylori* 23

1.2.3.1 Facteurs socio-démographiques ... 23
 a) Âge .. 23
 b) Sexe ... 24
 c) Ethnie ... 24
 d) Taille ... 24
 e) Situation socio-économique ... 25
 f) Éducation .. 25
 g) Distribution géographique ... 26
 h) Prédisposition génétique ... 27

1.2.3.2 Les habitudes de vie .. 27
 a) Tabac .. 27
 b) Alcool .. 27
 c) Prise des médicaments .. 28

1.2.3.3 Facteurs environnementaux .. 28
 a) La qualité de l’eau .. 28
 b) La profession .. 28
 c) Autres facteurs .. 29

1.3 PERTINENCE DE L’ÉTUDE ... 30

2 CHAPITRE II OBJECTIFS ET MÉTHODOLOGIE DE L’ÉTUDE 31

2.1 OBJECTIFS .. 32

2.2 MÉTHODOLOGIE ... 32

2.2.1 Devis de l’étude ... 32

2.2.2 Population à l’étude .. 32
 2.2.2.1 Enquête Léger et Léger ... 32
 2.2.2.2 Critères d’éligibilité .. 33
 2.2.2.3 Échantillon .. 33

2.2.3 Instruments et variables .. 34

2.2.3.1 Instruments .. 34
 a) Questionnaire .. 34
 b) Analyses de laboratoire .. 34

2.2.3.2 Description des variables .. 35
 a) Variable dépendante .. 35
 i) Le statut sérologique ... 35
 b) Variables indépendantes .. 35
 i) Variables socio-démographiques .. 35
 1. Âge .. 35
 2. Le sexe .. 36
 3. La scolarité ... 36
 4. L’occupation .. 36
 5. La région .. 36
 6. Le revenu .. 36
 ii) Variables associées aux habitudes de vie et à l’histoire médicale 36
 1. Tabagisme ... 36
 2. Alcool ... 36
 3. Les antécédents gastro-intestinaux 37
LISTE DES TABLEAUX

Tableau I : Infection à H. pylori chez des personnes asymptomatiques (diagnostic par endoscopie et biopsie) ..8

Tableau II : Principaux signes et symptômes cliniques au cours de l’infection à H. pylori (Gottrand, 1995) ..9

Tableau III : Voies de transmission de l’infection par H. pylori ; les arguments des différents auteurs ...18

Tableau IV : Séro-épidémiologie à H. pylori basée sur la détermination des IgG dans les pays développés (Mégraud et al, 1993). ..22

Tableau V : Séro-épidémiologie à H. pylori basée sur la détermination des IgG ou le test à l’uréase rapide dans les pays sous-développés (Mégraud et al, 1993). ..23

Tableau VI : Les régions de résidence des participants à l’étude41

Tableau VII : Caractéristiques de l’échantillon à l’étude ..43

Tableau VIII : Prévalence de la séropositivité à l’H. pylori ..46

Tableau IX : Prévalence de la séropositivité à l’H. pylori par catégories d’antécédents médicaux, symptômes et signes cliniques ...47

Tableau X : Variables associées à la séropositivité à l’H. pylori (analyse univariée et multivariée) ..50

Tableau XI : Comparaison des prévalences selon les groupes d’âge57
LISTE DES FIGURES

Figure 1 : Histoire naturelle de l’infection par H. pylori (Thomson, 1997)7

Figure 2 : Infection à H. pylori ; Prévalence dans les pays sous-développés par rapport aux pays développés (Forman et al, 1990). ...26
INTRODUCTION

La compréhension de l’épidémiologie de l’infection par *H. pylori* est une étape essentielle dans le développement de mesures de santé publique appropriées. Vingt ans de recherche ont permis de faire la lumière sur certains aspects de son épidémiologie mais nos connaissances à ce sujet restent toujours limitées. Ainsi, à ce jour, seulement quelques études ont été effectuées auprès d’échantillons de populations et ont fourni certaines informations sur la prévalence et les facteurs de risque de l’infection par *H. pylori*. Quelques caractéristiques épidémiologiques concernant l’infection à *H. pylori* ont été décrites. Elle a une distribution cosmopolite et virtuellement toutes les populations semblent en être affectées. Si elle n’est pas traitée par les antibiotiques, l’infection persiste toute la vie une fois établie.

Plusieurs études effectuées dans les pays développés ont rapporté que la prévalence de l’infection par *H. pylori* augmentait d’environ 1 % par année de vie. Ainsi, la prévalence serait de 50 % dans le groupe des personnes âgées de 50 ans. Bien que l’on ne dispose pas d’étude de population réalisée au Canada, il a été estimé que 10 à 20 % de la population canadienne pourrait être infecté par l’*H. pylori* et que parmi les sujets infectés 15 % feraient des ulcères gastro-duodénaux (Veldhuyzen van Zanten et al., 1994).
Compte tenu de l’absence de données populationnelles au Canada, nous avons décidé d’analyser des données sur la sérologie à l’*H. pylori* collectées lors d’une étude populationnelle réalisée en milieu rural québécois.

La présente étude vise donc à évaluer la prévalence de l’*H. pylori* chez les adultes d’une population rurale de la province de Québec. Nous décrirons aussi les principaux facteurs associés à la prévalence de l’infection, et les maladies les plus fréquemment rencontrées chez les populations atteintes.
CHAPITRE I
REVUE DE LA LITTÉRATURE
1.1 ASPECTS MÉDICAUX

1.1.1 Microbiologie

1.1.1.1 La bactérie

Jadis appelé *Campylobacter pyloridis* puis *Campylobacter pylori*, l’*Helicobacter pylori* est une bactérie gram-négative micro aérophile de petite taille (0,5 à 1 µm de large sur 2,5 à 4 µm de longueur) (Marshall, 1986). Il vit généralement sous des conditions microaérobiques dans un micro environnement neutre (Ernst et Gold, 2000) entre la couche muqueuse et l’épithélium superficiel de l’estomac (Taylor et Blaser, 1991). La bactérie *H. pylori* a besoin d’une concentration d’oxygène optimale de 3 % à 5 % pour pouvoir se reproduire de façon maximale. Les cellules possèdent à l’une de leurs extrémités 5 à 6 flagelles qui présentent la particularité d’être engainées et de comporter un bulbe terminal, analogue à celui présent sur les flagelles des bactéries genre *Vibrio*. La présence de ces flagelles associée à la forme spiralée de la bactérie confère à *H. pylori* une grande mobilité (Megraud, 1998).
1.1.1.2 Pathogénicité

H. pylori agit également sur le mucus qui devient moins épais, moins hydrophobe pendant qu’au niveau de la lamina propria, les antigènes diffusibles de *H. pylori* vont avoir un rôle sur le chimiotactisme et l’activation des monocytes et macrophages induisant une inflammation (Mégraud et Broutet., 2000).

1.1.1.3 Réactions locale et immunitaire

La colonisation de l’estomac par la bactérie peut stimuler une réponse immunitaire de l’hôte (l’homme) et peut causer des réactions générales et locales incluant une infiltration neutrophilique et la production des anticorps anti-*Helicobacter pylori*.
La gastrite histologiquement mise en évidence est sans doute une conséquence de la réponse immunitaire locale de l’hôte à l’infection et implique une infiltration de lymphocytes (B et T), cellules plasmatiques, histiocytes et fréquemment des cellules polymorphonucléaires dans la lamina propria (Talley et al., 1991). Une large proportion des cellules lymphoïdes infiltrant la muqueuse gastrique sont des immunoglobulines sécrétant les cellules B (Kirchner, 1999). Ces cellules B matures dans la muqueuse gastrique produisent une réponse immunitaire locale (production des anticorps) qui est premièrement une réaction immunitaire à IgA et IgG (Rathborne, 1986). Le rôle de ces anticorps locaux est discutable et l’extension de la réponse n’est pas associée au degré d’inflammation ou à la présence de l’ulcération. Les anticorps n’éliminent pas la colonisation de la muqueuse gastrique ni ne préviennent la ré-infection après éradication, il n’y a donc pas d’immunité acquise (Langenberg, 1986). Une production importante d’IgG à diffusion systémique est également observée. Les IgM sont par contre rarement décélés. Une réponse immunitaire systémique accompagne la présence de la bactérie dans 98 % des cas (Mégraud, 2000). Et du fait qu’il s’agit d’une infection souvent chronique, la sérologie, parmi tant d’autres moyens diagnostiques, permet de mettre en évidence l’infection par la détection des IgG dans le sérum.

1.1.2 Histoire naturelle de l’infection

1.1.2.1 Pathologie

L’H. pylori est à l’origine d’une inflammation chronique de l’estomac (Figure 1), c’est-à-dire d’une gastrite située dans la plupart des cas au niveau de l’antre de l’estomac et qui reste le plus souvent asymptomatique (Thomson, 1997). Tous les patients infectés présentent cette gastrite antrale. La bactérie ne semble cependant pas entraîner les mêmes lésions chez tous les patients. Elle cause chez les uns des ulcères peptiques et chez les autres des lymphomes ou la gastrite atrophique qui évoluerait en adénocarcinome chez certains autres.
La pathologie dont l’*H. pylori* serait à l’origine comprend la plupart des ulcères gastro-duodénaux, la majorité des cancers gastriques et sans doute une petite proportion des dyspepsies non ulcéreuses.

Le tableau I présente dans différentes études, la prévalence de l’*H. pylori*, le nombre et le pourcentage de personnes ayant une sérologie positive à l’*H. pylori* et dont l’examen endoscopique démontre une gastrite asymptomatique. La confrontation de résultats sérologiques avec ceux de biopsie ou d’endoscopie a démontré pour la plupart de patients une concordance entre la biologie et l’anatomopathologie, la plupart des sujets avec gastrite asymptomatique documentée par endoscopie ou biopsie avaient été trouvés positifs à l’*H. pylori*.

Figure 1 : Histoire naturelle de l’infection par *H. pylori* (Thomson, 1997)

Infection par *Helicobacter pylori*
\[\downarrow \]

Gastrite chronique superficielle
\[\downarrow \]

Gastrite chronique superficielle et asymptomatique
15%
Ulcère peptique
Maladie lymphoproliférative
Lymphome
Gastrite atrophique
\[\downarrow \]

Adénocarcinome ?
Tableau I : Infection à H. pylori chez des personnes asymptomatiques (diagnostic par endoscopie et biopsie).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Auteurs (Année de publication)</th>
<th>N</th>
<th>Moyenne d’âge(ans)</th>
<th>Prévalence H.Pylori (%)</th>
<th>Gastrite chez H. pylori +</th>
<th>Corrélation avec sérologie faite</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A</td>
<td>Dooley et al. (1989)</td>
<td>113</td>
<td>48</td>
<td>32</td>
<td>100</td>
<td>Oui</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Barthey et al. (1989)</td>
<td>20</td>
<td>29</td>
<td>20</td>
<td>100</td>
<td>Oui</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Dehesa et al. (1991)</td>
<td>58</td>
<td>41</td>
<td>79</td>
<td>98</td>
<td>Oui</td>
</tr>
<tr>
<td>Nigéria</td>
<td>Holcombe et al. (1990)</td>
<td>23</td>
<td>23</td>
<td>78</td>
<td>94</td>
<td>Pas fait</td>
</tr>
<tr>
<td>Centrafrique</td>
<td>Lachlan et al. (1986)</td>
<td>14</td>
<td>23</td>
<td>93</td>
<td>100</td>
<td>Pas fait</td>
</tr>
<tr>
<td>Chine</td>
<td>Chang-claude et al. (1995)</td>
<td>194</td>
<td>20</td>
<td>85,6</td>
<td>96</td>
<td>Pas fait</td>
</tr>
</tbody>
</table>

N = nombre de sujets dans l’étude

L’infection par *H. pylori* a des traductions cliniques très variables, certaines infections étant cliniquement muettes (asymptomatiques ou chroniques), d’autres très bruyantes.

Lorsqu’elle présente des symptômes, les plus fréquents sont les douleurs abdominales, qui sont évocatrices quand elles sont aiguës et récurrentes (infection récente) ou lorsque de siège épigastrique et influencées par l’alimentation. Les hématémèses surviennent surtout lorsqu’il y a un ulcère. Les nausées et vomissements ainsi que d’autres signes pour la plupart gastro-intestinaux et généraux font partie du tableau clinique (voir tableau II selon Gottrand, 1995).
Tableau II : Principaux signes et symptômes cliniques au cours de l’infection à H. pylori (Gottrand, 1995).

<table>
<thead>
<tr>
<th>Signes cliniques</th>
<th>Fréquence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douleurs abdominales</td>
<td>70%</td>
</tr>
<tr>
<td>Nausées, vomissements</td>
<td>40%</td>
</tr>
<tr>
<td>Anorexie</td>
<td>20%</td>
</tr>
<tr>
<td>Altération de l’état général</td>
<td>5%</td>
</tr>
<tr>
<td>Hématémèse (lorsqu’il y a ulcère)</td>
<td>45%</td>
</tr>
<tr>
<td>Diarrhée</td>
<td>25%</td>
</tr>
</tbody>
</table>

a) **Gastrite**

b) **Dyspepsie non-ulcèreuse**

Le terme dyspepsie décrit une digestion difficile quelle qu’en soit la cause. Actuellement, on réserve ce terme aux troubles fonctionnels en l’absence de lésion organique décelable. D’étiologie diverse, la dyspepsie peut avoir comme origine plusieurs organes tels que l’estomac, la vésicule biliaire, le cœur, le pancréas ou les intestins. La dyspepsie non-ulcèreuse est celle dont l’origine ulcèreuse a été exclue par endoscopie ou par repas baryté. Elle s’accompagne parfois de reflux gastro-oesophagien. Elle pourrait être causée par l’*Helicobacter pylori*. Il s’agit d’un ensemble hétérogène dans lequel un sous-groupe
particulier serait associé à *H. pylori*: le sous-groupe dans lequel la douleur constitue le symptôme majeur. L’association entre l’infection à l’*H. pylori* et la dyspepsie non-ulcéreuse a été décrite dans la littérature, notamment en association avec le reflux gastro-oesophagien (Vigneri et al., 2000). Cette relation a été décrite comme complexe et non encore bien éclairée, à cause probablement de la multiplicité des facteurs en jeu (Stanghellini et al., 2001).

c) Maladie peptique ulcéreuse
Il est généralement accepté que l’*H. pylori* soit un facteur étiologique majeur dans la maladie ulcéreuse duodénale (Xia et al., 2000). Le mécanisme par lequel l’infection aboutit à l’ulcération est encore sujet à controverse. L’*H. pylori* produit une quantité élevée d’uréase qui en dégradant l’urée contenue dans le liquide gastrique et le fluide extracellulaire, génère du bicarbonate et de l’ammoniaque dans l’environnement intracellulaire et pericellulaire. Ce bicarbonate produit, contribue efficacement à la neutralisation des ions hydrogènes. Ainsi l’*H. pylori* est capable de survivre à l’acidité gastrique pour une période assez longue pour coloniser la muqueuse gastrique (Megraud, 1992). À partir de ce site, il stimule la production de cytokine par les cellules épithéliales qui recrutent et activent les cellules immunitaires et inflammatoires de la lamina propria causant ainsi une gastrite active chronique puis un ulcère gastrique ou duodénal (Ernst et Gold, 2000; Megraud, 1992). Bref, le phénomène physiopathologique à l’origine de l’ulcère peptique résulte du déséquilibre entre les facteurs d’agression (acidité et pepsine) et les facteurs de protection (mucus, prostaglandines locales, flot vasculaire et renouvellement cellulaire).

Même si le mécanisme d’ulcère par *H. pylori* est encore discuté, la réduction extraordinaire dans le taux de récidive de l’ulcère duodénal après éradication de l’*H. pylori* par antibiotiques suggère fortement un rôle étiologique de l’organisme (Bernersen et al., 1992).

La relation entre l’*H. pylori* et l’ulcère gastrique a été rapportée. On rapporte une positivité à l’*H. pylori* chez 58 à 94 % des patients souffrant de l’ulcère gastrique et traités par des anti-inflammatoires (Cave, 1996). Si cela s’avérait vrai, sans nul doute que le rôle étiologique de l’*H. pylori* serait prouvé. Mais ce taux élevé a été expliqué dans la plupart des cas par l’effet confondant des anti-inflammatoires non-stéroïdiens (AINS) connus...
comme étant ulcérogènes. Lorsqu’on exclut l’utilisation des AINS, la prévalence à l’*H. pylori* chez les patients avec ulcère gastrique approche celle des patients avec ulcère duodénal (Cave, 1996).

d) Cancer gastrique
Le cancer gastrique est l’un des cancers les plus fréquents à travers le monde entier. À la première moitié du XXème siècle, il était le cancer le plus fréquent aux États-Unis avec des taux de plus de 20/100 000 dans les années 1930 (Hwang et Russell, 1994).

Cependant, l’incidence du cancer gastrique dans cette population a par la suite chuté à 20 000 cas par année, et une baisse similaire a été constatée dans le reste du monde développé (5/100 000 aujourd’hui). Le groupe d’étude Eurogast (1993) a prédit dans son étude de population que l’incidence du cancer gastrique dans la population où 100 % est infectée par l’*H. pylori* sera 6 fois plus élevée que dans la population sans infection.

Le mécanisme exact par lequel l’infection à *H. pylori* cause le cancer gastrique n’est pas encore connu. Mais plusieurs études initiées par le Centre international de recherche sur le cancer de Lyon ont tenté d’expliquer cette association. Les inflammations chroniques causées par l’infection à *H. pylori* augmenteraient le risque de cancer d’estomac. Les tissus infectieux peuvent générer des facteurs de risque endogènes qui contribuent au développement de cancer d’estomac comme par exemple l’oxygène réactive, les espèces de nitrogène (oxyde nitreux, peroxinitrite) qui induisent un stress oxydatif et peut entraîner les dommages cellulaires et de l’ADN (Pignatelli et al, 2001).
e) Autres maladies
Une relation entre l’*H. pylori* et la maladie cardiaque coronarienne a été observée dans une étude cas-témoins (Mendall et al, 1994) alors que Biagi et al. (2000) dans leur étude de prévalence n’ont pas trouvé une corrélation claire entre les deux pathologies. Chez les patients infectés avec l’*H. pylori*, le risque de maladie coronarienne cardiaque était 2 fois plus élevé après ajustement pour l’âge, les autres facteurs de risque cardiovasculaires et le statut social (Mendall et al, 1994). Dans une autre étude de prévalence effectuée en Irlande du Nord (Murray et al, 1995) une association importante entre l’*H. pylori* et la maladie cardiaque ischémique a été observée sans être statistiquement significative. Une autre association, jusque là controversée, a été observée entre *H. pylori* et le cancer colorectal par Fireman et al. (2000). Cette relation semble trouver son explication dans l’augmentation de la sécrétion de la gastrine, connue comme un facteur trophique pour la muqueuse du colon, chez les individus infectés par cette bactérie.

1.1.2.2 Diagnostic

Le diagnostic de l’infection à *H. pylori* se fait à l’aide de deux types de test, notamment les tests diagnostiques non envahissants et ceux dits envahissants (Taylor et Blaser, 1991).

a) Les tests non-invasifs

i) La sérologie
La détection d’anticorps contre l’*H. pylori* (la technique la plus utilisée est l’Elisa de type IgG) permet le diagnostic d’infection à *H. pylori* avec une sensibilité et une spécificité de l’ordre de 85 à 95% (Gosciniai et al, 1993; Megraud et Broutet, 2000; Hisada et al, 2001). Elle est avantageuse parce qu’elle permet de diagnostiquer plusieurs personnes, rapidement et à coûts réduits. De plus, elle a l’avantage de ne pas être trop invasive en comparaison à la biopsie par endoscopie (Li et al, 1996; Samuels et al, 2000). Elle est la méthode la plus recommandée pour un test initial non seulement parce qu’elle est non-invasive mais aussi parce qu’elle est précise, moins dispendieuse et reproductible (voir annexe 1 pour détails sur le test).
La sérologie est la technique la plus indiquée pour les études épidémiologiques, surtout la trousse utilisant des antigènes purifiés reconnus pour leur sensibilité et leur spécificité.

ii) Le test respiratoire à l’urée marquée ou "urea breath tests C-13"
Ce test est basé sur l’hydrolyse de l’urée marquée rendue possible par la quantité d’uréase produite par l’*Helicobacter pylori*. Une hydrolyse rapide produit du CO₂ marqué qui est absorbé puis transmis aux poumons et rejeté par expiration. On se base donc sur la détection des métabolites et l’hydrolyse de l’urée dans la respiration. Ce test permet une estimation semi-quantitative de l’infection.

La spécificité et la sensibilité de ce test sont proches de 95% (Vandenplas et al, 1992). L’innocuité de ce test permet de le répéter à volonté et donc de l’utiliser pour le dépistage et le suivi des sujets infectés après traitement. Il permet en effet de confirmer l’éradication du germe ou, au contraire, la persistance de l’infection, et d’éviter ainsi une endoscopie de contrôle qui est invasive (Logan et al, 1998).

b) Les tests invasifs

i) Endoscopie et biopsie
Lorsque les patients présentent des symptômes digestifs, on peut faire la recherche de l’*H. pylori* par endoscopie haute puis on pratiquera une biopsie. L’endoscopie permet de mettre en évidence, dans le cas de l’infection à *H. pylori*, la présence d’une gastrite nodulaire (présence de nodules de l’antre surtout chez l’enfant) (Bujanover et al, 1990) qui s’associe dans la majorité des cas à la présence de follicules lymphoïdes à l’examen anatomopathologique (Prieto et al, 1992).

La réalisation de biopsies gastriques antrales et fundiques reste indispensable pour poser le diagnostic de gastrite à *H. pylori*. Habituellement, la muqueuse paraît macroscopiquement normale mais en réalité elle est enflammée. Plusieurs biopsies peuvent être nécessaires pour analyses histologiques et bactériologiques car les lésions pourraient être hétérogènes dans leur répartition et leur intensité. On pense aussi que l’endoscopie serait nécessaire après le traitement pour contrôler l’évolution de la gastrite histologique. Le diagnostic est rendu possible lors de l’examen anatomopathologique, à cause de la localisation et la
morphologie particulières de l’*H. pylori*, les colorations permettant de visualiser les bactéries au niveau du mucus gastrique, de l’épithélium de surface ou des cryptes.

ii) Le test rapide à l’urée
Ce test est basé sur la propriété de *H. pylori* de posséder une uréase très forte. Les avantages de ce test sont sa facilité et sa rapidité. On obtient la réponse en salle d’endoscopie en 20 à 30 minutes (Mégraud et al, 1994). La limite de ce test est sa faible sensibilité : il faut en effet un nombre de bactéries important (supérieur à 10^5/g) pour faire virer le test, ce qui limite son utilité pour le contrôle de l’éradication du germe après traitement, car dans ce cas l’*H. pylori*, même s’il n’a pas disparu, ne sera pas détecté par cette méthode.

L’amplification génique permet de mettre en évidence des fragments d’ADN de l’*H. pylori* directement sur du matériel biologique tel que biopsie gastrique, liquide gastrique, plaque dentaire, salive ou selles (Labigne et al, 1994). Cette méthode est connue pour sa rapidité, sa sensibilité et sa possibilité de mettre en évidence toutes les formes de *H. pylori*, y compris les formes cocoïdes non cultivables ou les bactéries mortes. Malgré ces points forts, c’est une technique qui a une faible disponibilité.

La tendance actuelle est telle qu’on ne devrait plus se fier à un seul test pour faire le diagnostic de l’*H. pylori* mais plutôt à la combinaison de 2 tests si cela est possible (Vaira et al., 2000). Le choix des tests dépend des conditions cliniques et des moyens disponibles dans le milieu.

1.1.2.3 Prise en charge

a) Traitement
Les connaissances actuelles en matière de prise en charge permettent un traitement efficace de l’infection bien que dispendieux pour les communautés. La prise en charge de l'infection à *H. pylori* est un sujet brûlant qui suscite à l'heure actuelle beaucoup de controverses (Axon, 1999). Un certain nombre de principes de traitement peuvent toutefois être rappelés : inefficacité des mono-thérapies actuellement abandonnées par tous, bi-thérapies (Amoxicilline, Métronidazole ou Tinidazole, sels de bismuth) moins utilisées
actuellement, des nouveaux schémas thérapeutiques (thérapie triple) apparaissent chez l’adulte et utilisant les inhibiteurs de la pompe à protons (Labenz et al, 1993) ou les nouveaux macrolides (Clarithromycine ou Roxythromycine) (Graham et al, 1993).

b) Éradication
Les cas d’ulcère avec sérologie H. pylori positive devraient être traités par des antimicrobiens dès le diagnostic ou lors d’une récidive. L’éradication s’impose d’emblée. Elle implique la baisse des titres de la sérologie à H. pylori un mois après la fin de tout traitement actif contre l’H. pylori même si cette chute se fait de façon progressive et lente jusqu’à atteindre un niveau normal après environ 6 mois (Veldhuyzen Van Zanten., 2000). Il est par conséquent considéré que la sérologie, quoique lente, est un indicateur de l’éradication (Gottrand., 2001).

En raison de la multiplicité des souches et de la résistance que la bactérie peut acquérir (même en cours de traitement), l’éradication a recours à une combinaison d’antibiotiques pour augmenter le taux de succès (Labenz., 1993). À ce titre la tri-thérapie semble être la meilleure combinaison actuelle pour l’éradication d’H. pylori. Selon le consensus canadien sur le traitement de cette infection, il est recommandé une tri-thérapie comprenant un inhibiteur de la pompe à protons (par exemple l’oméprazole) et deux antibiotiques (de préférence la clarithromycine et l’amoxicilline) (voir annexe 2). Le taux d’éradication d’une thérapie triple est supérieur à 90%. La combinaison idéale devrait être simple, efficace, peu coûteuse, sans ou moins d’effets secondaires. Néanmoins les effets secondaires sont importants et la fidélité au traitement laisse à désirer en raison du grand nombre de comprimés que les patients devaient prendre plusieurs fois par jour.
1.2 ÉPIDÉMIOLOGIE

1.2.1 Transmission

1.2.1.1 Réservoirs

a) Réservoir humain

b) Réservoir animal
On a évoqué aussi certains animaux comme réservoir de l’*H. pylori* notamment les primates (singes), le porc et le chat (Goodwin, 1998). L’existence d’un réservoir animal de l’*H. pylori* à côté des primates est toujours hypothétique (voir annexe 3).
c) Réservoir environnemental
L’idée de réservoir environnemental de l’H. pylori est encore incertaine. Les tentatives de culture de l’H. pylori dans l’environnement n’ont pas donné des résultats probants. Cette bactérie est capable de survivre à basse température dans l’eau distillée saline ainsi que dans l’eau de mer mais devient non-cultivable après 1 à 3 jours dans la température ambiante (West, 1992).

La possibilité que l’eau contaminée soit responsable de la contamination de l’H. pylori a été soulevée mais n’a pas été confirmée. Les études ont montré que l’organisme était difficilement cultivable avec les méthodes standards en milieu ambiant. Les formes cultivables de l’H. pylori ne survivent pas plus de 48 heures dans l’eau (Matisko et Thompson, 1995). L’H. pylori peut donc être présent occasionnellement dans l’environnement mais sa culture serait très difficile.

1.2.1.2 Mode de transmission

a) Transmission inter-humaine
S’il paraît maintenant certain que le mode de transmission de H. pylori est inter-humain, la voie de transmission reste toujours hypothétique. Contrairement aux autres maladies infectieuses, l’étude de la voie de transmission de l’infection à H. pylori est quelque peu délicate à cause de son caractère asymptomatique dans la plupart des cas si bien qu’identifier, déterminer les expositions importantes et préciser le parcours de l’infection à partir de ses sources jusqu’à ses hôtes devient un exercice difficile (Mendall, 1997).

Il y a des données supportant l’hypothèse de la transmission de personne à personne par voie orale-orale et fécale-orale, spécialement dans des populations avec incidence élevée d’infection à H. pylori dans l’enfance (Gottrand, 1995).

Le tableau suivant résume les voies de transmission de l’infection ainsi que les arguments avancés par les auteurs.

Tableau III : Voies de transmission de l’infection par *H. pylori* ; les arguments des différents auteurs

<table>
<thead>
<tr>
<th>Arguments pour la voie de transmission fécale-orale</th>
<th>Arguments pour la voie de transmission Orale-orale</th>
</tr>
</thead>
</table>
i) Transmission par voie orale-orale

L’évidence de la propagation intra-familiale de l’infection entre parents et enfants, entre les époux ou entre les personnes habitant un même lieu plaiderait aussi en faveur de ce mode de transmission (Zhou et al., 2000). Perez-Perez et al. (1991) ont exploré la prévalence à *H. pylori* auprès de 277 couples qui fréventaient une clinique de fertilité de Nashville dans l’état de Tennesee (USA) et ont trouvé qu’être partenaire d’une personne séropositive (à *H. pylori*) élevait le risque d’être infecté. Cependant la grande partie de l’effet était explicable par l’effet de l’âge et de la nationalité d’origine des sujets.

ii) Transmission par voie fécale-orale
Le suc gastrique est éliminé dans l’intestin mais on n’a jamais prouvé la multiplication de l’*H. pylori* dans les selles. L’*H. pylori* est sensible à la bile acide ce qui pourrait être la cause de sa destruction dans les intestins. Il souffrirait aussi de la compétition des autres micro-organismes des intestins (Mégraud, 1995).

Même si on mettait de côté la question de son transit, la survie dans l’environnement extérieur devrait être nécessaire pour permettre cette transmission par les aliments, par l’eau ou même par contact direct (transmission fécale-orale entre personne sans réservoir environnemental intermédiaire).

b) Transmission environnementale
La transmission de l’infection par les aliments ou par l’eau n’est pas encore prouvée de façon claire. La bactérie, bien qu’existant dans le milieu extérieur, n’a pas pu être cultivée dans l’environnement pour soutenir les hypothèses de sa transmission à l’homme à partir de l’environnement.
L’étude seroépidémiologique de Vaira et al. (1988) réalisée chez les travailleurs d’abattoir à Bologne est en faveur de la transmission de l’animal à l’humain. Les auteurs pensent qu’il existe un biaïs en ce sens-ci que la prévalence élevée de l’infection chez ces travailleurs serait explicable par leur faible situation économique. La comparaison avec un autre groupe de même situation socio-économique était importante.

Une autre étude réalisée au Pérou (Klein et Graham, 1991), en utilisant le test de respiration à l’urée, a montré une relation entre l’approvisionnement en eau potable et le risque d’infection par l’*H. pylori* chez les enfants. Ceux des familles à revenu élevé utilisant l’eau approvisionnée par le réseau d’une municipalité avaient un taux augmenté (37 %) d’infection par rapport aux enfants des familles de même revenu, de la même municipalité, qui utilisaient des puits personnels (4 %). Les résultats obtenus dans ces études n’ont pas pu être reproduits dans d’autres régions comparables et ne permettent pas de soutenir cette transmission environnementale.

1.2.2 Prévalence de la maladie

1.2.2.1 Outils d’étude épidémiologique

La technique de référence en clinique pour déterminer le statut *H. pylori* d’un sujet est de procéder à une endoscopie avec échantillons de biopsie, qui permettent la détection de l’organisme et des possibles lésions gastriques. Cette approche ne peut être utilisée dans les études épidémiologiques sur des personnes asymptomatiques à cause des raisons éthiques et pratiques (Mégraud et al, 1993). Cependant, cette méthode a été exécutée chez quelques volontaires permettant ainsi la validation des autres techniques, en particulier la sérologie.

Le test respiratoire (méthode utilisant l’air expiré) a été utilisé dans quelques études (Vandenplas et al, 1992). Nous ne favorisons pas cette technique par rapport à la sérologie dans les études épidémiologiques. Il est dispendieux et prend beaucoup de temps à effectuer. Plus encore, le développement accru des bactéries intestinales peut fauser les résultats, spécialement chez les enfants malnutris des pays sous-développés.
La sérologie est la technique la plus indiquée pour les études épidémiologiques. Plusieurs tests sérologiques ont été développés pour diagnostiquer des infections à *H. pylori*. Il s’agit de méthodes de type Elisa (Enzyme Linked ImmunoSorbent Assay) pour la détection des IgG spécifiques (voir annexe 1 pour les détails sur le fonctionnement de ce test) Schembri et al. (1993), après avoir diagnostiqué l’*H. pylori* par soit la culture, soit l’histologie ou les deux chez 162 sujets, ont évalué par la suite la précision clinique de 5 tests sérologiques déjà commercialisés. Ces auteurs ont estimé que la sensibilité de ces tests sérologiques variait entre 83 % et 98 % et leur spécificité entre 56 % et 79 %.

1.2.2.2 Prévalence

L’infection à *H. pylori* est probablement l’infection la plus fréquente à travers le monde et environ 40 % de la population mondiale en serait atteinte. Sa prévalence varie beaucoup selon les endroits où les études sont effectuées (Thomson et al, 1998). Mais, il y a par contre très peu d’études de population réalisées au Canada pour se prononcer clairement sur la prévalence de cette infection dans cette partie de l’Amérique du nord.

a) Dans les pays développés

La prévalence de l’infection à *H. pylori* serait d’environ 30 % dans les pays développés (Graham, 1991). Il est toujours difficile de comparer la prévalence obtenue dans les différentes études à cause non seulement de la variété des méthodes diagnostiques utilisées mais aussi à cause des différences dans les populations ciblées (des groupes différents de personnes en bonne santé ont été utilisés : donneurs de sang, volontaires recrutés de différentes façons, individus qui se sont présentés seuls dans les centres de santé pour des examens généraux, patients référés à l’hôpital pour un problème autre que du tractus digestif surtout les enfants).

Les résultats globaux des études présentées au tableau IV donnent une idée de la prévalence de l’infection à *H. pylori* à travers les pays occidentaux. La situation paraît comparable dans la plupart des pays développés à quelques exceptions près (Graham et Malaty, 1991; Mégraud et al, 1993).
Tableau IV : Séro-épidémiologie à *H. pylori* basée sur la détermination des IgG dans les pays développés (Mégraud et al, 1993).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Auteurs</th>
<th>Échantillon</th>
<th>Test diagnostic</th>
<th>Nombre de sujets testés</th>
<th>Prévalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autriche</td>
<td>Hirschl</td>
<td>Donneurs de sang</td>
<td>Sérologie (Elisa)</td>
<td>282</td>
<td>26,2</td>
</tr>
<tr>
<td>Angleterre</td>
<td>Jones</td>
<td>Consultation générale</td>
<td>Sérologie (Elisa)</td>
<td>771</td>
<td>34</td>
</tr>
<tr>
<td>France</td>
<td>Megraud</td>
<td>Population variée</td>
<td>Sérologie (Elisa)</td>
<td>1086</td>
<td>30,4</td>
</tr>
<tr>
<td>Irlande</td>
<td>Basso</td>
<td>Militaires</td>
<td>Sérologie (Elisa)</td>
<td>130</td>
<td>38</td>
</tr>
<tr>
<td>Italie</td>
<td>Varia</td>
<td>Donneurs de sang</td>
<td>Sérologie (Elisa)</td>
<td>545</td>
<td>37</td>
</tr>
<tr>
<td>Denver (USA)</td>
<td>Perez-perez</td>
<td>Population en bonne Santé</td>
<td>Sérologie (Elisa)</td>
<td>126</td>
<td>30</td>
</tr>
<tr>
<td>Houston (USA)</td>
<td>Graham</td>
<td>Population en bonne Santé</td>
<td>Sérologie (Elisa)</td>
<td>351</td>
<td>30</td>
</tr>
</tbody>
</table>

b) Dans les pays en voie de développement
La prévalence de l’infection dans les pays en voie de développement est beaucoup plus élevée. Les données venant des pays africains et asiatiques semblent concordantes (Mégraud, 1989). En contraste avec les pays développés, la prévalence chez les adultes est beaucoup plus élevée et se situe entre 60 et 90 %. Le tableau V nous permet de constater la forte prévalence dans les pays du tiers-monde.
Tableau V : Séro-épidémiologie à *H. pylori* basée sur la détermination des IgG ou le test à l’uréase rapide dans les pays sous-développés (Méraud et al, 1993).

<table>
<thead>
<tr>
<th>Pays</th>
<th>Auteurs</th>
<th>Échantillon</th>
<th>Test diagnostic</th>
<th>Nombre de sujets testés</th>
<th>Prévalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algérie</td>
<td>Méraud (1989)</td>
<td>Donneurs de sang</td>
<td>Sérologie(Elisa)</td>
<td>277</td>
<td>78</td>
</tr>
<tr>
<td>Côte d’ivoire</td>
<td>Méraud (1989)</td>
<td>Volontaires</td>
<td>Sérologie(Elisa)</td>
<td>363</td>
<td>69</td>
</tr>
<tr>
<td>RD Congo</td>
<td>Glupzejnski</td>
<td>Consultation générale</td>
<td>Test à l’urée</td>
<td>143</td>
<td>79</td>
</tr>
<tr>
<td>Arabie saoudite</td>
<td>Al-Moagel (1990)</td>
<td>Volontaires</td>
<td>Sérologie(Elisa)</td>
<td>551</td>
<td>66</td>
</tr>
<tr>
<td>Thaïlande</td>
<td>Perez-Perez (1990)</td>
<td>Volontaires</td>
<td>Sérologie(Elisa)</td>
<td>161</td>
<td>58,1</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Méraud (1989)</td>
<td>Donneurs de sang</td>
<td>Sérologie(Elisa)</td>
<td>353</td>
<td>60</td>
</tr>
<tr>
<td>Chine</td>
<td>Yang (1990)</td>
<td>Volontaires</td>
<td>Sérologie(Elisa)</td>
<td>1019</td>
<td>60</td>
</tr>
<tr>
<td>Pérou</td>
<td>Ramirez-ramos (1990)</td>
<td>Volontaires</td>
<td>Sérologie(Elisa)</td>
<td>361</td>
<td>65</td>
</tr>
</tbody>
</table>

1.2.3 Facteurs de risque de l’infection à *Helicobacter pylori*

1.2.3.1 Facteurs socio-démographiques

a) Age

De nombreuses études démontrent la relation positive entre l’infection *H. pylori* et l’âge (Deltenre et Koster, 2000; Naficy et al, 2000). La contamination se fait dans la plupart des cas en bas âge (Nabwera et al, 2000; Webb et al, 1994). Dans les pays non-industrialisés, cette prévalence monte rapidement tôt après la naissance et peut atteindre 80 à 90 % à l’âge de 20 ans. La prévalence reste à ce niveau pour le reste de la vie adulte. Dans les pays industrialisés, l’infection est relativement moins fréquente (moins de 20 %) avant l’âge de 25 à 30 ans. La prévalence s’élève ensuite graduellement avec une augmentation estimée être de 1 % par année (Graham et Malaty, 1991). Au-delà de 70 ans la prévalence semble augmenter lentement pouvant atteindre 60 à 70 % dans certains cas (Forman et al, 1990).

b) Sexe

Il est généralement accepté que les hommes et les femmes ont le même risque de s’infecter à tout âge (Megraud, 1993). Cependant, certains auteurs ont observé que la prévalence de l’infection à *H. pylori* était légèrement plus élevée chez le sexe masculin que chez le sexe féminin (Woodward et al, 2000).

Ainsi, en Californie, *H. pylori* était légèrement plus prévalent chez les hommes que chez les femmes parmi 556 sujets âgés de 20 à 39 ans et cette augmentation était encore significative après ajustement pour l’ethnie, l’éducation et le revenu (Replogle et al, 1995).

c) *Ethnie*

d) *Taille*

qu’il s’agit d’une conséquence de l’infection plutôt que d’un facteur de risque ou de susceptibilité.

Ces hypothèses exigent confirmation par d’autres études épidémiologiques dans plusieurs régions et en tenant compte des autres facteurs contribuant au retard de croissance dans l’enfance comme certaines maladies congénitales et chroniques.

e) Situation socio-économique
Le plus important facteur, à part l’âge, en ce qui concerne l’infection à *H. pylori*, est le statut socio-économique. Plus pauvre est la population, plus tôt elle sera infectée dès le jeune âge, et plus élevé sera le taux cumulé de l’infection (Brown, 2000).

L’association entre la situation socio-économique et l’infection à *H. pylori* a été documentée à plusieurs reprises (Deltenre et Koster, 2000). L’étude de Glasgow sur les facteurs associés à l’infection à *H. pylori* a estimé la prévalence à 66 % chez les hommes et les femmes âgés de 25 à 64 ans, un niveau typiquement observé dans les pays en voie de développement (Woodward et al, 2000). Les auteurs ont attribué cette prévalence élevée à la précarité sociale de la population étudiée. Une étude effectuée en Allemagne (Seher et al, 2000) a montré que le niveau socio-économique était peut-être une des raisons qui expliquerait que la prévalence est significativement plus élevée dans la partie Est (ex Allemagne de l’Est) que dans la partie Ouest.

f) Éducation
Des travaux effectués en Argentine (Olmos et al, 2000) sur la prévalence de l’infection à *H. pylori* ont rapporté qu’il y avait une association significative non seulement entre *H. pylori* et le niveau socioéconomique mais aussi avec le niveau d’éducation.

L’étude du groupe Eurogast chez plus de 3000 sujets asymptomatiques repartis en 2 groupes d’âge de 25 à 34 ans et de 55 à 64 ans originaires de 17 populations géographiquement repartis en Europe, Afrique du Nord, Amérique du Nord et Japon, a montré que les sujets avec un niveau élevé d’éducation présentaient moins d’infections (34,1 %), comparés aux sujets ayant uniquement un niveau d’éducation secondaire (46 %), ou ceux avec uniquement un niveau d’éducation primaire (61,6 %).
g) Distribution géographique
La distribution géographique de l’infection à *H. pylori* est associée principalement à l’état de développement économique (Brown, 2000). En général, le taux d’infection décroît avec l’amélioration des conditions socio-économiques, relation qui prétendument reflète les changements dans le style de vie lesquels influencent l’acquisition de la bactérie. La prévalence de l’infection est par conséquent habituellement basse dans les pays industrialisés par rapport aux pays non-industrialisés, un fait qui est particulièrement prononcé chez l’enfant et le jeune adulte. La figure 2 illustre les tendances des courbes de prévalence en fonction de l’âge dans les pays sous-développés par rapport aux pays développés (Forman et al, 1990).

Figure 2: Infection à *H. pylori* ; Prévalence dans les pays sous-développés par rapport aux pays développés (Forman et al, 1990).
h) Prédisposition génétique
Il semblerait que le bagage génétique joue un rôle important dans l’infection à l’H. pylori mais ceci n’est pas encore bien élucidé. Dans une étude des tests sérologiques chez des jumeaux monozygotes et dizygotes suédois, l’infection était plus élevée dans le groupe des jumeaux monozygotes (81 %) que dans le groupe des dizygotes (63 %) (Malaty et al, 1994). Le risque d’infection liée à cette prédisposition génétique pourrait passer par les antigènes de groupe sanguin qui modifieraient l’adhésion de l’H. pylori à la muqueuse gastrique (Boren, 1993).

1.2.3.2 Les habitudes de vie

a) Tabac
On a tenté d'établir la relation entre l’H. pylori et les habitudes de tabac. Les résultats obtenus ont été contradictoires, les uns rapportant que la consommation de tabac était négativement associée à l’infection à H. pylori (effet protecteur) (Ogihara et al, 2000) pendant que d’autres auteurs rapportaient que la prévalence semblait augmenter avec l’augmentation de la dose de nicotine, donc avec la consommation de tabac (Woodward et al, 2000; Wang et al, 2000).

b) Alcool

On attribue à l’alcool une forte activité antimicrobienne par contact direct avec la bactérie dans l’estomac et en même temps, il stimule la sécrétion de l’acide gastrique compromettant ainsi les conditions de vie de l’H. pylori dans l’estomac. Cette notion est
biologiquement plausible. Il y a d’ailleurs une hypothèse qui voudrait qu’une consommation modérée d’alcool facilite spontanément l’élimination de l’infection à *H. pylori* (Fox et al, 2000).

c) **Prise des médicaments**

1.2.3.3 Facteurs environnementaux

a) **La qualité de l’eau**

b) **La profession**
La prévalence des anticorps anti-*H. pylori* dans le sérum a été étudiée chez 473 donneurs de sang canadiens du Manitoba, 212 japonais et 226 américains en bonne santé (Perez-perez, 1990). Cette étude est arrivée à la conclusion que l’âge et la profession des jeunes adultes présentaient chacun un lien significatif avec la prévalence de séropositivité des infections à *H. pylori*. La prévalence de séropositivité était significativement plus élevée chez les agriculteurs par rapport aux employés de bureau et aux ouvriers; mais chez les personnes plus âgées, les taux étaient similaires, quel que soit le métier.
Les patients de l’unité de gastroscopie sont considérés comme ayant une prévalence élevée à cause de potentiel de transmission élevée que représente la gastroscopie et pour les professionnels de la santé, les possibles régurgitations des liquides gastriques des malades infectés (Mégraud, 1993). Certaines données séroépidémiologiques ont souligné le risque de contamination et donc de prévalence élevée pour les gastro-entérologues. Vaira et ses collaborateurs ont démontré que les travailleurs d’abattoirs avait un taux significativement élevés par rapport à d’autres travailleurs (Vaira et al, 2001).

c) Autres facteurs
1.3 PERTINENCE DE L’ÉTUDE

Jusqu’à ce jour, les études sur l’infection à *H. pylori* ont suscité et continuent à susciter beaucoup d’intérêt dans le monde scientifique. Néanmoins, l’*H. pylori* n’a pas encore fini de révéler tous ses secrets. Cette bactérie continue de constituer un problème qui inquiète les cliniciens, les environnementalistes et nécessite une attention particulière partout dans le monde.

La prévalence dans les pays développés a été estimée à environ 30 % selon les endroits, et entre 60 % à 90 % dans les pays du tiers-monde, ce qui fait de cette infection un vrai problème de santé si nous considérons la morbidité qui en découle, de la gastrite asymptomatique au cancer gastrique en passant par la maladie peptique ulcéreuse.

L’infection à *H. pylori* est peu connue en Amérique du Nord et au Canada en particulier, et aucune étude canadienne de population ne s’est intéressée vraiment à faire l’état de la situation en déterminant de façon précise l’ampleur de cette infection, les caractéristiques de la population canadienne atteinte, les facteurs de risque.

Il est clair que dans ce nouveau millénaire, avec plus de la moitié du monde infecté par l’*H. pylori*, l’épidémiologie de l’infection est un domaine d’étude continu de grande importance dans la compréhension de ce problème de santé. La sérologie étant la technique la plus indiquée pour les études épidémiologiques, l’évaluation de la séroprévalence à l’*H. pylori* dans certaines régions rurales du Québec, nous semble très pertinente.
CHAPITRE II

OBJECTIFS ET MÉTHODOLOGIE DE L'ÉTUDE
2.1 OBJECTIFS

Cette étude vise à décrire la prévalence de l’*H. pylori* chez l’adulte et les facteurs qui y sont associés dans certaines régions rurales du Québec. Les principaux objectifs poursuivis par cette étude sont les suivants:
1- Décrire la prévalence de l’infection à l’*H. pylori* dans une population rurale résidant dans des secteurs de culture intensive;
2- Étudier les facteurs associés à cette infection, et plus particulièrement : l’âge, le sexe, la scolarité, l’occupation, la région de résidence, le revenu, le tabagisme, l’alcool, et les maladies associées.

2.2 MÉTHODOLOGIE

2.2.1 Devis de l’étude

Il s’agit d’une étude transversale à visée descriptive. Elle fait partie de la grande étude qui s’est déroulée entre octobre et novembre 1995 dans 4 milieux ruraux de culture intensive dans la région de Québec et qui devait étudier principalement l’impact de la consommation d’eau de puits domestiques potentiellement contaminée par les nitrates sur l’exposition au nitrate chez des adultes (Levallois, 2000). L’infection à *H. pylori* avait alors été étudiée comme facteur susceptible d’être impliqué dans la formation de nitrates endogènes.

2.2.2 Population à l’étude

2.2.2.1 Enquête Léger et Léger

Le groupe de recherche Ecogestion a mené une enquête via la firme québécoise de sondage Léger et Léger. Lors de cette enquête, un échantillon représentatif de la population des régions de Portneuf, l’île d’Orléans, Lanaudière et Nicolet a été constitué (annexe 4).
2.2.2.2 Critères d’éligibilité

Pour être inclus dans l’étude, les participants devaient satisfaire à tous les critères suivants :

- être âgé de 20 à 74 ans;
- résider dans la région depuis au moins 6 mois;
- consommer l’eau de son puits privé chaque jour;
- travailler à la maison ou à proximité de celle-ci.

Par ailleurs, pour les besoins de l’étude sur les nitrates, les personnes possédant des critères suivants étaient exclues :

- avoir été absent de sa résidence dans les trois jours précédant la collecte;
- être utilisateur d’un appareil de traitement d’eau qui filtre les nitrates;
- être consommateur d’une autre sorte d’eau que celle de son puits;
- être incapable de revenir à la maison pour manger les jours prévus par la collecte;
- boire plus qu’un café au travail ou au restaurant par jour;
- pour les femmes : être enceinte ou en période d’allaitement.

2.2.2.3 Échantillon

Un échantillonnage aléatoire de deux mille trois cent trente-trois (2333) numéros de téléphone à partir d’annuaires téléphoniques des municipalités ciblées (liste des municipalités participantes à l’annexe 4) a été effectué et on a procédé à une enquête téléphonique auprès des répondants en automne 1994. Le répondant au questionnaire par téléphone devait être responsable du foyer et sa date de naissance se situer le plus proche de la date de l’appel. Des 2333 résidents contactés, 1142 (48,9 %) personnes ont accepté de répondre par entrevue au questionnaire général visant à connaître la perception par la population de l’impact des pratiques agricoles sur l’environnement. Trois cent vingt-six personnes (14 %) ont refusé l’entrevue pendant que 865 (37,1 %) sujets n’ont pas pu être interviewés pour des raisons diverses (mauvais numéros, hors secteur, langue étrangère, absence du répondant etc.). À l’aide de ces entrevues, il a été possible d’identifier 932 individus possédant un puits domestique. Et parmi ceux-ci, 344 (36,9 %) se sont montrés...
intéressés à participer à la recherche sur l’exposition aux nitrates et ont répondu aux critères d’éligibilité (voir section 2.2.2.3).

Des 344 personnes qui étaient éligibles, seulement 119 (34,6 %) ont accepté de se soumettre aux exigences de la présente étude (collecte des urines et les prélèvements sanguins). Dix épouses des répondants rencontrant les critères d’éligibilité ont aussi été incluses dans l’étude. Par ailleurs, il fut décidé d’augmenter dans un second temps l’échantillonnage systématique dans les régions à haut-risque de contamination par les nitrates. Le second recrutement comportait en tout 351 individus éligibles dont 107 (30,5 %) acceptèrent de participer. Au total 236 participants enrôlés dans les 2 phases de recrutement ont accepté de se soumettre aux exigences de cette étude.

2.2.3 **Instruments et variables**

2.2.3.1 **Instruments**

a) Questionnaire

Le questionnaire auquel chaque participant a répondu, constitue l'instrument qui nous a permis de recueillir les informations concernant nos variables indépendantes. La plupart des participants à notre étude étaient en bonne santé. Ce questionnaire visait entre autre à évaluer les maladies survenues au cours de la dernière année, les malaises survenus dans les dernières 24 heures et les médicaments consommés dans les dernières 24 heures (le questionnaire est présenté à l’annexe 5).

Le questionnaire a été construit spécifiquement pour cette étude et il incluait quelques questions sur les antécédents gastro-intestinaux et les symptômes éventuels. Un pré-test a été mené auprès de huit résidents de la ville de Québec et a permis d’apporter certaines corrections et ajustements au questionnaire (Louchini, 1997).

b) Analyses de laboratoire

Le deuxième instrument était le test sérologique d’Elisa (Enzyme-linked immunoabsorbent assay) qui nous a permis de connaître le statut sérologique de chacun de nos sujets. Il consistait à un dosage des anticorps à *H. pylori* et cela a été effectué au laboratoire du centre de recherche de l’hôpital du Saint-Sacrement. Le test provenait de la compagnie Biorad (Hercules, CA) (voir annexe 6) et son principe est la recherche des anticorps anti-*H.*
pylori dans le sérum du sujet (anti IgG). Les contrôles de qualité internes étaient fournis par le manufacturier dans chaque lot de 20 sujets. Dix contrôles positifs et dix négatifs ont été inclus dans l’étude. Les contrôles positifs étaient compris entre 18-45 µ/ml alors que les négatifs étaient compris entre 0-3 µ/ml (Annexe 6). Les sérums des participants qui ont été trouvés positifs ou équivoques pour l’*H. pylori* au premier test ont subi un deuxième test sérologique sur le même échantillon. Si les 2 tests donnaient le même résultat, celui-ci était interprété comme tel. Mais lorsque le résultat de ce deuxième test était différent du premier, un troisième test était nécessaire pour départager. Un spécimen avec des valeurs plus grandes que 20 µ/ml dans au moins 2 des 3 résultats était interprété comme positif. Un spécimen avec des valeurs entre 12,5 et 20 µ/ml dans au moins 2 des 3 résultats était considéré comme équivoque.

2.2.3.2 Description des variables

a) Variable dépendante

i) Le statut sérologique
Le statut sérologique était déterminé par les valeurs sériques d’anticorps *H. pylori*. Les valeurs au-delà de 20 µ/ml ont été considérées comme positives, celles entre 12,5 et 20 µ/ml comme équivoques tandis que celles inférieures à 12,5 µ/ml étaient considérées comme négatives. Cependant, lors des analyses présentées dans ce mémoire, nous avons inclus les équivoques dans nos analyses comme étant des positifs. Ceci motivé par le fait que les équivoques ont quand même développé des anticorps contre l’*H. pylori* sans peut-être que les dilutions n’atteignent les valeurs fixées pour les déclarés positifs. Ainsi nous avons évité d’exclure dans les analyses les individus qui avaient plus de chance de se retrouver parmi les positifs que parmi les négatifs.

b) Variables indépendantes

i) Variables socio-démographiques

1. Âge
2. Le sexe
Nous avons aussi pris en considération cette variable dichotomique.

3. La scolarité
La scolarité était pris en compte selon que le sujet avait un niveau élémentaire ou secondaire d’une part ou qu’il avait un niveau de scolarité collégial ou universitaire d’autre part.

4. L’occupation
L’occupation des participants était divisée en quatre catégories qui sont : les cols blancs (employés de bureau), les cols bleus (ouvriers, employés de fonction publique assignés à des travaux de plein air), les sans emplois et les agriculteurs.

5. La région
L’adresse permanente du participant se situant dans l’une des 4 régions à l’étude.

6. Le revenu
Nous avons considéré le revenu brut familial pour chaque individu de l’échantillon. Nous avons préféré créer quatre catégories selon que le revenu total de la famille était inférieur à 20 000 $ par année, entre 20 000 et 40 000 $ par année, 40 000 et 60 000$ par année et enfin selon qu’il était supérieur ou égal à 60 000 $ par année.

ii) Variables associées aux habitudes de vie et à l’histoire médicale

1. Tabagisme
Variable qui évalue l’exposition à la fumée de cigarettes en tant que fumeur. Elle a été considérée comme dichotomique (fumeur ou non-fumeur). Le nombre de cigarettes consommées par jour, le nombre d’année de consommation n’étaient pas inclus dans l’analyse.

2. Alcool
Il s’agit de la consommation d’alcool pendant la période de l’étude. Variable dichotomique, les sujets étaient soit buveur ou soit non-buveur.
3. Les antécédents gastro-intestinaux
Cette variable regroupait les problèmes gastro-intestinaux tels que l’ulcère gastrique, la maladie de Crohn, la colite ulcéreuse, le cancer, les antécédents de gastroscopie et autres. Dans le questionnaire médical (voir annexe 5) le participant devait répondre à la question, à savoir s’il avait déjà consulté pour des problèmes de santé.

4. Les symptômes de 24 heures
Ils consistaient en général en des symptômes en relation avec le tractus digestif et son transit, les douleurs articulaires et autres infections (voir annexe 5).

Les symptômes gastro-intestinaux comme des brûlures d’estomac, des difficultés de digestion, la diarrhée et bien d’autres ont faits l’objet des questions posées aux participants.

5. Les médicaments utilisés
Nous nous sommes intéressés aux médicaments pris par les sujets participants à l’étude au cours de la dernière année et dans les 24 dernières heures (voir annexe 5).

2.2.4 Procédure

Le déroulement de la collecte des données s’est échelonné sur trois jours consécutifs. Les 2 premières journées étaient pour répondre aux exigences de l’étude sur les sources des contaminations aux nitrates. Donc ses résultats ne font pas l’objet de ce mémoire.

Au cours de la troisième journée, était administré par la diététicienne, un questionnaire concernant les habitudes de consommation alimentaire dans le dernier mois, un questionnaire alimentaire et de consommation d’eau dans les dernières 24 heures ainsi que un questionnaire médical par l’infirmière. C’est plutôt la troisième journée qui nous intéresse dans la présente étude. L’infirmière en charge d’administrer le questionnaire médical avait par la même occasion procédé à une prise de sang pour l’examen sérologique au laboratoire (recherche des anticorps anti-Helicobacter pylori). Chaque entrevue durait entre 20 à 30 minutes. Les prélèvements sanguins étaient effectués dans des tubes non-héparinés de 10 ml. Les tubes de sang ont été acheminés au laboratoire du Centre de recherche de l’hôpital du Saint Sacrement dans les 24 heures suivant leur prélèvement.
Ce transport devait s’effectuer dans un environnement conservant les prélèvements à une température de 4°C (voir annexe 7).

2.2.5 Analyses statistiques

2.2.5.1 Méthodes et tests statistiques utilisés
Avant toute chose nous avons procédé à l’intégration de tous les individus avec une sérologie jugée équivoque dans le groupe des individus ayant été testés positifs. Nous les avons considéré comme positifs dans les analyses que nous avons effectuées.

Pour nous permettre de comparer les prévalences de *H. pylori* selon les facteurs associés, les symptômes et les maladies fréquemment rencontrées, nous avons utilisé le test de chi-carré.

Le rapport de côte de prévalence (RC) a été la mesure d’association que nous avons utilisée. La variable dépendante (sérologie positive à l’*H. pylori*) était mesurée sous forme de prévalence à l’*H. pylori*. Une modélisation à l’aide de la régression logistique a été utilisée pour faire des analyses univariées et multivariées. Cette dernière nous a permis d'examiner de façon simultanée les variables indépendantes retenues tout en contrôlant pour les autres variables et facteurs possiblement confondants. Parmi les variables indépendantes étudiées celles associées à l’*H. pylori* avec un seuil de signification statistique inférieur à 0,05 ont été retenues pour les analyses subséquentes.

Nous avons utilisé le logiciel SAS version 8.0 (statistical analysis software) pour effectuer les analyses statistiques.

2.2.5.2 Stratégie
Pour atteindre les objectifs que nous nous sommes assignés, nous avons adopté la stratégie suivante :

Dans un premier temps, nous avons cherché à décrire les caractéristiques de notre échantillon en étudiant la distribution de toutes nos variables indépendantes. Ensuite, nous avons déterminé les proportions d’individus ayant une sérologie à l’*H. pylori* positive,
équivoque ainsi que ceux ayant une sérologie négative à l’intérieur des différents groupes de nos variables socio-démographiques ainsi que parmi les différents groupes de variables associées à l’histoire médicale. Toutes valeurs manquantes étaient écartées des analyses.

Par la suite, nous avons comparé ces proportions entre elles à l’aide du test de khi-carré tout en déterminant le degré de signification de chaque statistique trouvée.

Finalement, nous avons sélectionné les variables indépendantes jugées en relation avec la sérologie positive de manière statistiquement significative au seuil fixé pour en faire des analyses de régression logistique.

2.2.6 Considérations éthiques

Un consentement libre et éclairé a été obtenu auprès de tous les participants lors de l’étude. Seules les personnes pour lesquelles un consentement a été obtenu par téléphone ont été visitées et lors de la collecte, un formulaire de consentement a été lu et signé par le participant à la première visite (voir annexe 9). Toutes les données recueillies dans le cadre de cette étude ont fait l'objet d'un traitement strictement confidentiel. Le projet de recherche a été accepté par le comité d’éthique du CHUL (Louchini, 1997).
CHAPITRE III

RÉSULTATS
3.1 Description de l’échantillon

La répartition des participants selon les différentes régions de résidence est détaillée au tableau VI dans lequel la région de Portneuf domine en nombre avec 156 sujets représentant 66,1 % de l’ensemble de l’échantillon.

Tableau VI : Les régions de résidence des participants à l’étude

<table>
<thead>
<tr>
<th>Région</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanaudière</td>
<td>21</td>
<td>8,90</td>
</tr>
<tr>
<td>Îles d'Orléans</td>
<td>45</td>
<td>19,07</td>
</tr>
<tr>
<td>Portneuf</td>
<td>156</td>
<td>66,10</td>
</tr>
<tr>
<td>Nicolet</td>
<td>14</td>
<td>5,93</td>
</tr>
<tr>
<td>Total</td>
<td>236</td>
<td>100</td>
</tr>
</tbody>
</table>
Le tableau VII nous présente les différentes caractéristiques de notre échantillon. Pour la répartition selon le sexe, il y avait 52,54 % d’individus qui étaient de sexe féminin pendant que le sexe masculin représentait 47,46 %. En ce qui concerne la scolarité, 44,49 % d’individus avaient complété les études secondaires, 22,00 % avaient complété les études primaires pendant que 20,01 % avaient un niveau d’étude collégiale et 13,39 % universitaires.

Les sans-emploi et les étudiants constituaient plus de la moitié de l’échantillon soit 54,70 % suivi des cols bleus (travailleurs de plein air, 21,37 %), des cols blancs (employés de bureau, 16,24 %) et enfin des agriculteurs (7,63 %).

Parmi les gens dont on avait les informations sur le revenu, 34,07 % avaient entre 20 000 $ à 40 000 $ par année et 32,97 % avaient un revenu compris entre 40 000 $ à 60 000 $.

Quant à la consommation de cigarettes, 85,04 % de notre échantillon était non-fumeur pendant que 14,96 % fumaient la cigarette. Il y avait 73,19 % consommaient de l’alcool contre 26,81 % qui n’en consommaient pas.
Tableau VII : Caractéristiques de l’échantillon à l’étude

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe d’âge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-34 ans</td>
<td>40</td>
<td>16,95</td>
</tr>
<tr>
<td>35-44 ans</td>
<td>60</td>
<td>25,42</td>
</tr>
<tr>
<td>45-54 ans</td>
<td>65</td>
<td>27,54</td>
</tr>
<tr>
<td>55-64 ans</td>
<td>48</td>
<td>20,34</td>
</tr>
<tr>
<td>65 ans et plus</td>
<td>23</td>
<td>9,75</td>
</tr>
<tr>
<td>Sexe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculin</td>
<td>112</td>
<td>47,46</td>
</tr>
<tr>
<td>Féminin</td>
<td>124</td>
<td>52,54</td>
</tr>
<tr>
<td>Scolarité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primaire</td>
<td>46</td>
<td>22,00</td>
</tr>
<tr>
<td>Secondaire</td>
<td>93</td>
<td>44,49</td>
</tr>
<tr>
<td>Collégiale</td>
<td>42</td>
<td>20,01</td>
</tr>
<tr>
<td>Universitaire</td>
<td>28</td>
<td>13,39</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col blanc</td>
<td>38</td>
<td>16,24</td>
</tr>
<tr>
<td>Col bleu</td>
<td>50</td>
<td>21,37</td>
</tr>
<tr>
<td>Agriculteur</td>
<td>18</td>
<td>7,69</td>
</tr>
<tr>
<td>Sans emploi ou étudiant</td>
<td>128</td>
<td>54,70</td>
</tr>
<tr>
<td>Revenu total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moins de 20 000$/an</td>
<td>15</td>
<td>16,48</td>
</tr>
<tr>
<td>20 000$ à 39 999$/an</td>
<td>31</td>
<td>34,07</td>
</tr>
<tr>
<td>40 000$ à 59 999$/an</td>
<td>30</td>
<td>32,97</td>
</tr>
<tr>
<td>60 000 par an et plus</td>
<td>15</td>
<td>16,48</td>
</tr>
<tr>
<td>Tabagisme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumeurs</td>
<td>35</td>
<td>14,96</td>
</tr>
<tr>
<td>Non-fumeurs</td>
<td>199</td>
<td>85,04</td>
</tr>
<tr>
<td>Consommation d’alcool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>172</td>
<td>73,19</td>
</tr>
<tr>
<td>Non</td>
<td>63</td>
<td>26,81</td>
</tr>
</tbody>
</table>
3.2 Résultats de tests sérologiques

Les résultats de la sérologie à *H. pylori* en fonction de l’âge sont présentés au tableau VIII. Sur les 236 sujets de notre étude, 74 (31,35 % intervalle de confiance à 95% : 20,78 – 41,92 %) présentaient une sérologie positive ou équivoque à l’*H. pylori*. Il y avait au total 24 sujets avec un résultat sérologique équivoque. La moyenne d’âge de personnes avec un résultat de sérologie positif était de 53,6 ans avec le minimum à 30 ans et le maximum à 73 ans. Chez les sujets avec un résultat négatif, la moyenne d’âge était de 44,6 ans avec le minimum à 22 ans et le maximum à 72 ans avec l’écart-type à 11,6 ans.

La séroprévalence était de 5,00 % chez les 20 à 34 ans et de 60,87 % pour les 65 ans et plus. Le test de tendance fait sur les résultats de prévalence à l’*H. pylori* selon les catégories d’âge s’est révélé significatif. La valeur du chi-carré total était de 28,99 avec 4 degrés de liberté. Celle du chi-carré tendance était de 26,38 avec 1 degré de liberté et le chi-carré résiduel (linéaire) était de 2,61 avec 3 degrés de liberté. Ces chi-carrés étaient statistiquement significatifs avec une valeur p<=0,0001. Ces résultats permettaient de conclure que la séroprévalence à l’*H. pylori* croît avec l’âge. Cette croissance était linéaire et n’était pas explicable par les seules fluctuations du hasard. L’analyse de l’âge en continu nous montrait que pour toute croissance de l’âge d’une unité, le taux de prévalence à l’*H. pylori* croissait de 1,07 %. Les intervalles de confiance de ces prévalences sont présentés dans ce tableau VIII.
La prévalence de la sérologie positive en fonction des autres caractéristiques des participants est présentée dans le même tableau VIII. La sérologie positive était légèrement élevée chez les hommes (34,82 %) par rapport aux femmes (28,23 %). Mais ces résultats n’étaient pas statistiquement significatifs.

La séropositivité pour *H. pylori* a montré une tendance inverse (p<0,05) avec le niveau d’éducation à partir de 14,29 % chez les sujets avec le niveau d’éducation élevé (universitaire) jusqu’à 28,57 % chez les sujets avec un niveau d’éducation collégial, 30,11 % chez ceux avec un niveau d’éducation secondaire, 45,65 % chez ceux avec un niveau d’éducation primaire seule.

La séropositivité a tendance à baisser lorsque le revenu augmentait mais ce résultat n’était pas statistiquement significatif au seuil de 5 % (p = 0,1066). Quarante pour cent des participants avec un revenu de 20 000 $ année et moins étaient positifs; trente-cinq et quatre-vingt-treize pour cent (39,95 %) des sujets ayant un revenu compris entre 20 000 $ et 40 000 $ par année étaient trouvés positifs pendant que seulement 6,67 % de ceux ayant un revenu de 60 000 $ année et plus ont été trouvé positifs.

La sérologie positive était plus élevée chez les fumeurs (40,00 %) que chez les non-fumeurs (29,65 %) mais cela n’était pas statistiquement significatif (p = 0,2228). La sérologie positive à *H. pylori* était légèrement élevée dans le groupe de personnes qui ne consommait pas d’alcool (34,92 %) par rapport au groupe constitué des personnes consommant l’alcool (30,23 %), mais ce résultat n’était pas significatif (p = 0,4931).
Les résultats de sérologie en fonction des symptômes cliniques et les antécédents pour les signes cliniques sont présentés au tableau IX. La séropositivité pour l’*H. pylori* n’a pas été trouvée très différente chez les personnes avec antécédents de maladie intestinale (33,33 %) par rapport à celles sans antécédents de maladie intestinale (31,16 %). Parmi les maladies
qu’on a trouvé chez les personnes séropositives il y avait les maladies infectieuses comme la pneumonie, la sinusite, les infections urinaires, les pharyngites. Par contre une analyse par maladie était difficile pour des raisons de manque d’effectif. Il n’était pas non plus possible de faire des subdivisions dans les maladies gastro-intestinales par manque d’informations spécifiques rapportées.

La séropositivité était élevée chez les personnes présentant des douleurs articulaires dans les 24 dernières heures (46,67 %) pendant que chez les personnes sans douleurs articulaires dans les 24 dernières heures elle était de 29,27 %.

Elle était élevée aussi chez les personnes présentant des brûlures d’estomac à 37,50 % contre 31,50 % pour celles ne présentant pas ces symptômes mais ce résultat n’était pas statistiquement significatif.

Tableau IX : Prévalence de la séropositivité à l’H. pylori par catégories d’antécédents médicaux, symptômes et signes cliniques

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>n</th>
<th>Prévalence (%)</th>
<th>Valeur p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatologie de 24 heures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brûlures d’estomac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>6/16</td>
<td>37,50</td>
<td>0,5918</td>
</tr>
<tr>
<td>Non</td>
<td>68/219</td>
<td>31,05</td>
<td></td>
</tr>
<tr>
<td>Difficultés à digérer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>2/11</td>
<td>18,18</td>
<td>0,3304</td>
</tr>
<tr>
<td>Non</td>
<td>72/224</td>
<td>32,14</td>
<td></td>
</tr>
<tr>
<td>Diarrhée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>3/8</td>
<td>37,50</td>
<td>0,7096</td>
</tr>
<tr>
<td>Non</td>
<td>71/227</td>
<td>31,28</td>
<td></td>
</tr>
<tr>
<td>Douleurs articulaires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non</td>
<td>60/205</td>
<td>29,27</td>
<td>0,0591</td>
</tr>
<tr>
<td>Oui</td>
<td>14/30</td>
<td>46,67</td>
<td></td>
</tr>
<tr>
<td>Infections dans les 24 heures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>2/5</td>
<td>40,00</td>
<td>0,6788</td>
</tr>
<tr>
<td>Non</td>
<td>72/236</td>
<td>31,30</td>
<td></td>
</tr>
</tbody>
</table>
Tableau IX : Prévalence de la séropositivité à l’*H. pylori* par catégories d’antécédents médicaux, symptômes et signes cliniques (suite)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>n</th>
<th>Prévalence (%)</th>
<th>Valeur p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maladies gastro-intestinales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oui</td>
<td>7/21</td>
<td>33,33</td>
<td>0,8379</td>
</tr>
<tr>
<td>Non</td>
<td>67/215</td>
<td>31,16</td>
<td></td>
</tr>
</tbody>
</table>

Les effets des variables indépendantes ont été évalués à l’aide d’une régression logistique univariée et les résultats sont présentés au tableau X.

Ce tableau nous montre que l’âge avait un grand effet sur la probabilité de séropositivité à l’*H. pylori*. Cet effet était statistiquement significatif pour toutes les catégories d’âge. Pour les 55 à 64 ans, le rapport de cote (RC) de prévalence était de 17,47 (p = 0,0002) comparé au groupe des 20 à 34 ans. Comparé à la même catégorie de référence, le RC de prévalence dans le groupe des 65 et plus était de 29,54 (p < 0,0001).

Il montre les résultats de l’analyse univariée dans laquelle le niveau d’étude, le revenu et les douleurs articulaires des 24 dernières heures étaient associés à une baisse de la prévalence de la séropositivité à *H. pylori*.

En ce qui concerne le niveau de scolarité, cette relation inverse entre le niveau d’étude et la séropositivité à l’*H. pylori* était significative au seuil de 5 % pour la catégorie des universitaires (p = 0,0086) pendant que pour les autres catégories il y avait une association négative mais non significative. Pour le revenu, cette relation protectrice du revenu élevé des sujets sur l’infection à l’*H. pylori* n’était pas statistiquement significative pour toutes les catégories de revenu.
Le tableau X montre également les résultats des analyses de régression logistique multivariée pour l’âge, le niveau de scolarité, les douleurs articulaires. Le niveau de scolarité et les douleurs articulaires ne se sont pas révélés significatifs au seuil de 5 % après avoir pris en considération l’effet de l’âge.

En considérant les 5 catégories d’âge après ajustement pour les autres facteurs on a constaté que toutes les catégories d’âge montraient une association positive avec la séropositivité à l’*H. pylori* de façon statistiquement significative et que l’association était d’autant plus forte que les sujets appartenaient à des catégories des plus âgés (65 ans et plus : RC = 30,23 p = 0,0002). En comparant les rapports de côte (RC) décrivant l’effet de l’âge, nous pouvons constater que les mesures ajustées ne diffèrent pas beaucoup des mesures brutes. Ce qui nous fait penser qu’il n’y a pas d’effet de confusion du niveau de scolarité ou des douleurs articulaires sur l’effet de l’âge. Dans le cas de la scolarité, l’ajustement a fait disparaître l’association négative que nous avions obtenue dans notre modèle brut, ce qui nous fait penser qu’il y avait bel et bien effet de confusion des variables comme l’âge, la scolarité et les douleurs articulaires qui ont été considérées dans l’ajustement.
Tableau X: Variables associées à la séropositivité à l'*H. pylori* (analyse univariée et multivariée).

<table>
<thead>
<tr>
<th>Variables et catégories</th>
<th>RC bruts (IC à 95%)</th>
<th>RC ajustés (IC à 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Âge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-34</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>35-44</td>
<td>7,51 (1,63-34,62)</td>
<td>6,44 (1,37-30,25)</td>
</tr>
<tr>
<td>45-54</td>
<td>7,27 (1,59-33,32)</td>
<td>6,32 (1,30-30,68)</td>
</tr>
<tr>
<td>55-64</td>
<td>17,47 (3,78-80,71)</td>
<td>18,49 (3,68-92,91)</td>
</tr>
<tr>
<td>65 ans et plus</td>
<td>29,54 (5,67-153,81)</td>
<td>30,23 (4,88-187,30)</td>
</tr>
<tr>
<td>Scolarité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primaire</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Secondaire</td>
<td>0,51 (0,25-1,06)</td>
<td>1,16 (0,48-2,84)</td>
</tr>
<tr>
<td>Collégiale</td>
<td>0,48 (0,20-1,16)</td>
<td>1,47 (0,49-4,38)</td>
</tr>
<tr>
<td>Universitaire</td>
<td>0,20 (0,06-0,66)</td>
<td>0,46 (0,12-1,77)</td>
</tr>
<tr>
<td>Douleurs articulaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absentes</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Présentes</td>
<td>2,12 (0,97-4,60)</td>
<td>1,48 (0,377-5,76)</td>
</tr>
<tr>
<td>Revenu total ($/an)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< à 20 000</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>20 000 à 39 999</td>
<td>1,99 (0,52-7,65)</td>
<td></td>
</tr>
<tr>
<td>40 000 à 59 999</td>
<td>1,18 (0,29-4,71)</td>
<td></td>
</tr>
<tr>
<td>60 000 par an et plus</td>
<td>0,20 (0,02-2,02)</td>
<td></td>
</tr>
</tbody>
</table>
CHAPITRE IV
DISCUSSION
4.1 Résumés des principaux résultats

En résumé, nos principaux résultats indiquent que la sérologie à *Helicobacter pylori* était positive chez 74 sujets (31,35 %, intervalle de confiance à 95 % : 20,78 – 41,92 %). Elle était fortement associée, de façon positive, à l’âge (5,0 % pour les 20-34 ans et 60,87 % pour les 65 ans et plus, p < 0,0001) et, de façon négative, au niveau d’éducation (14,29 % pour le niveau universitaire ; 28,57 % pour le niveau collégial et 30,11 % pour le niveau primaire). Après ajustement pour la scolarité et les douleurs articulaires, les résultats pour l’âge montraient une forte association (65 ans et plus : RC = 30,23 p = 0,0002). De plus, la séroprévalence à l’*H. pylori* croissait linéairement avec l’âge et cela n’était pas due au simple fait du hasard (chi-carré = 28,99 p< 0,0001).

4.2 Forces et limites de l’étude

4.2.1 Représentativité de l’échantillon
Le protocole de l’étude ainsi que les méthodes d’échantillonnage nous semblent adéquats pour cette étude transversale à visée descriptive ayant pour objectif de dresser une image de la séroprévalence à l’*H. pylori* en milieu rural Québécois. La représentativité de l’échantillon devait être assurée par un échantillonnage aléatoire (probabiliste). La technique d’échantillonnage consistait à sélectionner de manière aléatoire les numéros de téléphone de nos sujets à partir d’un sous-ensemble défini de la population (individus de 20 à 74 ans dans les 4 régions ciblées : Portneuf, île d’Orléans, Lanaudière, Nicolet).

4.2.1.1 Taille de l’échantillon
Une limite de l’étude était la petite taille de l’échantillon. Partant des méthodes de détermination de la taille de l’échantillon, en utilisant des formules statistiques conventionnelles et des postulats faits dans les autres études, lesquels sont basés sur une prévalence de l’infection à *H. pylori* estimée à 30 %, avec un niveau d’erreur de 5 % et un intervalle de confiance à 95 %, notre échantillon devait comprendre environ 312 personnes. Mais malgré plusieurs recrutements et à cause des contraintes pratiques non quantifiables, nous n’avons pu incorporer dans l’étude que 236 sujets, ce qui pourrait être à l’origine
d’une certaine imprécision dans les estimations de prévalence. Ce qui se traduit par de larges intervalles de confiance.

4.2.1.2 Validité de l’échantillon

Soixante-six pour cent (66 %) des sujets éligibles, qui auraient pu faire parti de l’étude, n’y ont pas participé.

Les hypothèses les plus plausibles justifiant le nombre élevé d’abstention ou de refus de participer à l’étude seraient :

- le fait de subir une prise de sang (considéré comme une atteinte à l’intégrité physique);

- la longue durée de la collecte des données;

- les critères d’éligibilité très sélectifs;

Ce faible taux de participation pourrait avoir comme effet d’introduire un biais possible dans la sélection des sujets, qui ne seraient pas représentatifs de la population cible, ou encore à une erreur aléatoire susceptible d’influencer l’estimation et la précision de nos mesures (prévalence).

Cependant, les efforts pour minimiser l’erreur ont porté sur la multiplication des recrutements pour augmenter le nombre de participants. Malgré cela l’échantillon n’avait pas atteint la taille idéale.

Les recrutements des sujets ayant été faits à partir des annuaires téléphoniques, il fallait craindre de ne pas inclure certaines personnes plus à risque d’être infectées par l’*H. pylori* tout simplement parce qu’elles étaient injoignables (absentes lors des appels téléphoniques, personnes avec horaires incompatibles, numéros de téléphone indisponibles), ce qui pourrait sous-estimer la séroprévalence à *H. pylori*.
Bien que le taux de participation soit faible, on a remarqué que les caractéristiques d’âge, de sexe et de tabagisme de l’échantillon de l’étude n’étaient pas différentes de celles de l’échantillon initial des personnes ayant un puits privé et de celles des participants à l’analyse d’eau seulement, selon ce que nous rapporte les résultats de l’étude sur les nitrates (Louchini, 1997). En d’autres termes, toutes les personnes non-participantes et celles écartées de l’étude avaient des caractéristiques comparables aux sujets participants à cette étude. Ceci est donc rassurant pour la validité de notre étude.

Par ailleurs, l’impact du fait d’avoir des buveurs d’eau de puits peut aussi poser un problème de représentativité de l’échantillon. En effet, si l’infection à H. pylori est véhiculée par la consommation de cette eau, ce qui semble peu probable, le risque de trouver cette infection parmi les individus de cette population serait plus élevé par rapport aux territoires qui ne consomment pas l’eau de puits.

4.2.2 Validité des instruments (questionnaires et tests sérologiques)

Pour atteindre nos objectifs, nous avons utilisé 2 types d’instruments : les questionnaires administrés à tous les participants et les analyses sérologiques des échantillons de sang.

4.2.2.1 Questionnaire

Le questionnaire médical dans sa 1e partie nous a permis de recueillir certaines de nos variables indépendantes comme l’âge, le sexe, la scolarité, l’occupation, la région. Ces informations sont simples, faciles à collecter et le questionnaire a été administré par une infirmière qualifiée. Nous estimons qu’il est peu probable qu’elles soient erronées. Les autres variables indépendantes comme la consommation d’alcool, le revenu provenaient du questionnaire alimentaire déjà utilisé par santé Québec (1986). Le questionnaire a été prétesté avant le début de l’étude.

En ce qui concerne le tabagisme, bien que le questionnaire permettait d’évaluer le tabagisme en terme de nombre de cigarettes par jour, nombre d’année de consommation, notre étude n’a analysé ces données que sous forme de variable dichotomique (fumeurs ou non-fumeurs). La prise en compte de toutes ces informations aurait pu nous permettre de calculer le nombre de paquets par année pour chaque individu fumeur, ce qui aurait été un
très bon outil de comparaison de la prévalence à *H. pylori* dans la population non-fumeuse par rapport à la population fumeuse et cela à des différents degrés.

Pour ce qui est de l’alcoolisme, la même chose s’est produite. Nous avons analysé aussi les données sur l’alcoolisme comme une variable dichotomique (s’ils consommaient ou non de l’alcool) et même le questionnaire de santé Québec était complet et suffisant pour pousser plus loin les comparaisons de prévalence dans plusieurs sous-groupes comme par exemple entre les buveurs de vins et ceux de bière ou même en fonction de la quantité et de la durée de consommation. Cette simplification de l’analyse est liée principalement à la petite taille de l’échantillon qui limitait le nombre de classes à utiliser pour chacune des variables.

4.2.3 **Prélèvements et tests sérologiques**

Les prélèvements, la conservation et le transport de sang ont été exécutés en respectant strictement la procédure décrite en annexe 7. Les contrôles de qualité des analyses sérologiques ont été rigoureusement effectués avec les tests de contrôle procurés par le manufacturier (annexe 8).

Le test d’Elisa utilisé était d’abord acceptable sur le plan médical et ensuite sur le plan économique. Les résultats sérologiques obtenus après analyses des sérums de nos sujets peuvent être considérés comme jouissant d’une validité acceptable dans la mesure où le test utilisé était connu à travers la littérature comme ayant une sensibilité entre 77 et 94 % et une spécificité qui variait entre 65 à 95 % (Jensen et al, 1994). Celui que nous avons utilisé, Elisa (Biorad) jouissait d’une sensibilité à 99,4 % et une spécificité à 93,5 % (Annexe 6). Ainsi, plusieurs études épidémiologiques ont utilisé comme nous la sérologie Elisa et l’ont jugée adéquate pour mesurer la séroprévalence de l’*H. pylori*. Nous estimons que ce test est un indicateur acceptable de la présence ou non de l’infection à *H. pylori*. Malgré cela, l’une des limites (voir annexe 6) de ce test est le fait que pour un test positif, en dehors d’une confirmation clinique, on a de la difficulté à faire la différence entre une infection courante et une infection passée étant donné que parfois les titres restent élevés même après traitement contre l’*H. pylori* (Goodwin, 1997 ; Perez-perez, 1994).
Par ailleurs, le fait que l’on ait inclus les résultats équivoques dans le groupe des positifs, pourrait avoir entraîné une augmentation de la sensibilité et une diminution de la spécificité du test Elisa. La valeur prédictive positive du test en a probablement été affectée.

Ceci peut avoir eu comme conséquence une surestimation de la prévalence de l’infection. Cependant, le caractère équivoque du résultat était établi après double vérification par le laboratoire, ce qui nous rassure qu’il ne s’agissait pas d’un résultat négatif. Il est cependant possible que nous ayons inclus quelques infections anciennes, avec faible taux d’anticorps, dans nos résultats positifs.

De plus, il faut reconnaître que le test d’Elisa n’est pas recommandé comme seul test diagnostic de l’infection à H. pylori ou de la maladie gastro-intestinale. Il devrait en fait être utilisé en association avec d’autres tests plus spécifiques, notamment la biopsie, l’histologie et la culture.

L’impact de cette limite dans notre étude réside dans la sémantique utilisée. Le terme infection à H. pylori devrait donc être pris avec beaucoup plus de nuance lorsqu’on est conscient de cette limite. Il est en effet possible que des taux faiblement élevés d’anticorps témoignent d’une infection ancienne plutôt que d’une infection récente.

Une autre limite, est que le résultat négatif n’exclut pas non plus la présence d’H. pylori. La colonisation à son début pouvant être associée à des titres très faibles que le test ne détecte pas. Ceci devrait cependant être rare, vu la grande sensibilité du test et le probable faible taux de nouvelles infections chez une population comme la nôtre.

4.3 **Interprétation des résultats sérologiques**

Il est vrai que la prévalence de l’H. pylori varie selon les régions géographiques, ainsi on s’attendait à ce que la prévalence de l’infection à l’H. pylori dans notre étude (Canada) soit plus basse que dans les pays en voie de développement et comparable à celle observée dans les pays industrialisés.

En comparant nos résultats sérologiques avec les quelques études qui ont été faites en Amérique du nord, nous remarquons que les prévalences trouvées sont tout à fait
comparables (voir tableau XI). Dans toutes les études, une progression se voit avec l’âge. Les études effectuées à Denver et à Houston (USA) sur les volontaires ont trouvé une prévalence globale à 30 % (Graham et Malaty, 1991) qui approche la nôtre à 31,35 %. Dans l’autre étude de Perez (Perez-Perez et al, 1990) sur l’effet de l’âge et de l’occupation sur la séroprévalence à l’*H. pylori*, dont une partie a été réalisée à Winnipeg, Manitoba, sur 473 donneurs, la prévalence de séropositivité augmentait progressivement avec l’âge dans les trois populations (Manitoba, Japon et E.U) et elle atteint son pic (supérieur à 55 %) chez les sujets âgés de 60 ans et plus. Des prévalences semblables ont été remarquées lors de cette étude. Plus encore, nous pouvons voir notre étude d’un œil positif en ce sens-ci qu’elle s’est faite, non pas avec des donneurs de sang comme au Manitoba, ou des patients référées à l’hôpital pour un problème autre que digestif, ou des personnes consultants un médecin comme dans plusieurs autres études, mais plutôt avec une population ayant fait l’objet d’un échantillonnage aléatoire.

Le tableau XI fait une comparaison des prévalences obtenues dans quelques études faites au Canada (Manitoba) et aux États-Unis et celles de notre étude selon les différents groupes d’âge.

Tableau XI : Comparaison des prévalences selon les groupes d’âge.

<table>
<thead>
<tr>
<th>Age</th>
<th>Denver Prévalence</th>
<th>Houston Prévalence</th>
<th>Age</th>
<th>Winnipeg Prévalence</th>
<th>Age</th>
<th>Québec Prévalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30 ans</td>
<td>30</td>
<td>3,90</td>
<td>15-29 ans</td>
<td>30,0</td>
<td>20-34 ans</td>
<td>5,00</td>
</tr>
<tr>
<td>31-40 ans</td>
<td>37</td>
<td>11,11</td>
<td>30-39 ans</td>
<td>33,0</td>
<td>35-44 ans</td>
<td>28,33</td>
</tr>
<tr>
<td>41-50 ans</td>
<td>18</td>
<td>11,39</td>
<td>40-49 ans</td>
<td>37,0</td>
<td>45-54 ans</td>
<td>27,69</td>
</tr>
<tr>
<td>51-60 ans</td>
<td>18</td>
<td>15,67</td>
<td>50-59 ans</td>
<td>50,0</td>
<td>55-64 ans</td>
<td>47,92</td>
</tr>
<tr>
<td>61 et plus</td>
<td>41</td>
<td>18,08</td>
<td>60-69 ans</td>
<td>67,4</td>
<td>65 et plus</td>
<td>60,80</td>
</tr>
</tbody>
</table>
4.3.1 Âge

La séroprévalence à l’*H. pylori* augmentait avec l’âge de façon statistiquement significatif respectant ainsi une caractéristique bien connue de l’épidémiologie de l’infection à *H. pylori* que décrit les études effectuées dans les pays industrialisés.

Les résultats de la large étude sur 3 194 sujets de 17 populations différentes reparties dans tous les continents montraient pour ce qui est de l’Amérique du nord (Minneapolis, USA) une augmentation de la prévalence à l’*H. pylori* avec l’âge, de 15 % dans le groupe de 25-34 ans à 35 % dans le groupe de 55-64 ans (Eurogast, 1993). L’étude de Houston a montré aussi une augmentation avec l’âge de 1 % par année dans la population générale (Graham et Malaty, 1991) pendant que notre analyse de l’âge en continu nous a donné une estimation de la croissance de la prévalence comparable de 1,1 %. Nos résultats semblent beaucoup aller dans le même sens que ceux de ces études effectuées aux États-Unis et ailleurs dans des pays industrialisés.

Deux hypothèses ressortent de la littérature pour expliquer cette augmentation de la prévalence avec l’âge. La première, la plus évoquée, l’attribuerait à un effet de cohorte, le taux le plus élevé d’acquisition se trouvant parmi les enfants nés vers les années 1950 (Banatvala et al, 1993; Parsonnet et al, 1992).

La deuxième hypothèse, c’est l’effet de l’âge tout simplement, les plus vieux dans l’étude ayant une prévalence élevée de l’infection parce qu’ils ont vécu assez longtemps et de ce fait, ont plus d’opportunité pour s’infecter (voyage, contacts).

L’effet cohorte est défini comme une variation dans le statut sanitaire, laquelle résulte des différents facteurs causaux auxquels chaque cohorte de naissance d’une population est exposée comme les changements sociaux et environnementaux (Banatvala et al, 1993; Parsonnet et al, 1992). Les incidences de plusieurs maladies infectieuses ont aussi diminué au cours de cette décennie en parallèle avec l’amélioration des conditions de vie. Le phénomène (effet de cohorte ou de génération) est difficile à prouver car les banques de sérums anciens ne sont pas disponibles. Quelques études ont cependant essayé d’étudier ce

Nous pensons que ces 2 hypothèses pourraient aussi être avancées pour expliquer l’augmentation de la prévalence avec l’âge.

4.3.2 Sexe

Nous avons observé que la seroprévalence à l’*H. pylori* était légèrement plus élevée, bien que de façon non significative, chez les hommes que chez les femmes. Cependant, nous pensons que cette différence pourrait aussi être le simple fait du hasard ou des variables non considérées dans notre étude. Les avis qui étaient divergents commencent à se clarifier de plus en plus en faveur de l’absence de la relation entre l’*H. pylori* et le sexe. Les études futures qui tiennent compte des facteurs qui influencent l’infection en fonction du sexe pourront confirmer l’égalité entre sexe de la prévalence à l’*H. pylori*.

4.3.3 Scolarité

Nous avons observé une relation inverse statistiquement significative entre le niveau de scolarité et la séropositivité à l’*H. pylori* mais cette relation ne persistait pas lors de l’analyse multivariée. Comme dans la partie de l’étude d’Eurogast réalisée aux États-Unis la prévalence à l’*H. pylori* parmi la population blanche avec seulement le niveau de scolarité primaire était de 43 % alors que chez les sujets ayant plus de 16 ans de scolarisation la prévalence était de 20 %. Nous pensons que cette relation inverse serait dû au fait que le niveau de scolarité va généralement dans la même direction que l’amélioration de conditions d’hygiène. Selon la littérature (Eurogast, 1993), le niveau de scolarité ne devrait probablement pas être interprété comme un facteur causal.

Ce facteur devrait plutôt être considéré comme marqueur indirect des mécanismes de transmission de l’infection. Le standard d’éducation (primaire, secondaire, supérieur) est évidemment un indicateur puissant de la classe socioéconomique, spécialement chez les sujets plus âgés qui ont grandi pendant la période où la possibilité d’accéder à une
éducation secondaire ou supérieure était restreinte et réservée seulement aux individus de classe sociale élevée dans plusieurs populations à l’étude.

L’ajustement a fait disparaître l’association négative que nous avions obtenue, ce qui nous fait penser à un effet confondant possible des variables comme l’âge, le revenu ou les douleurs articulaires qui ont été considérées dans l’ajustement.

4.3.4 Situation socio-économique ou le revenu

Dans nos analyses, nous avons trouvé que le revenu était associé de façon non significative à une réduction de la prévalence de la séropositivité à l’H. pylori. Les sujets avec le revenu annuel de plus de 60 000 $ ne comprenaient qu’un faible pourcentage (6,67 %) des personnes séropositives. Des situations pareilles sont décrites dans plusieurs études que nous avons eu l’occasion de consulter. Mégraud et al. (1995) ont observé que le revenu familial était un facteur de risque important. Sur des sujets américains, dans l’étude de Mégraud (1992), la prévalence de l’infection dans les familles avec un revenu inférieur à 5000 $/année était le double de celle des familles ayant plus de 75 000 $/année de revenu (Fiedorek, 1991). Nos résultats, comme nous l’avons mentionné plus tôt, n’étaient pas significatifs au seuil de 5 %. La faible taille de l’échantillon, d’une part, et le taux élevé des non-réponses sur cette question spécifique sur le revenu, d’autre part, ne nous a pas beaucoup aidé dans la recherche des résultats valides.

L’imprécision de la variable revenu, étant donné que la situation socio-économique dépend aussi de la taille de la famille, peut aussi être responsable de ces résultats.
4.3.5 Occupation

Nous n’avons trouvé aucun lien significatif entre les occupations des participants à notre étude et la séropositivité à l’H. pylori. Et nos résultats n’ont montré aucune différence entre les 4 groupes à savoir les cols bleus, les cols blancs, les agriculteurs et les sans emploi (incluant les étudiants).

Pourtant, plusieurs auteurs ont décrit un lien entre certaines professions à risque comme les agriculteurs (par rapport aux employés de bureau et aux ouvriers) avec l’infection à H. pylori (Perez-Perez, 1990).

La seroprévalence parmi les agriculteurs de notre échantillon était de 27,78 %, ce qui n’était pas très différent de la prévalence dans les autres professions notamment les cols blancs (23,68 %), les cols bleus (32,00 %) et les groupes d’étudiants et des sans-emploi (32,81 %).

Il est possible qu’avec un échantillon plus large, nous aurions trouvé peut-être des différences en fonction des professions des sujets à l’étude. Les subdivisions quelque peu grossières de nos catégories (de profession) pourraient être la cause de ces résultats obtenus.

4.3.6 Consommation d’alcool

Selon notre étude, la consommation d’alcool pourrait être associée à la réduction de la prévalence de l’infection dans ces territoires de culture intensive. Et bien que nos résultats ne soient pas statistiquement significatifs, ils vont dans le sens de ce que rapportent la plupart des études dans la littérature (Murray, 1997). Brenner et al. (1999) ont rapporté une prévalence élevée parmi les sujets qui ne buvaient pas d’alcool (47,5 %), décroissante avec l’augmentation de niveau de consommation d’alcool, par exemple 40,1 % pour une consommation de moins de 10 grammes par jour, 36,1 % pour les individus consommant entre 10 à 20 gr/jr d’alcool.
Dans notre étude, l’évaluation de la consommation d’alcool par questionnaire était faite de manière dichotomique (‘oui’ ou ‘non’) sans pour autant faire attention aux différents niveaux de consommation, à la quantité consommée, aux types de breuvage alcoolisé (vin ou bière) et aux biais potentiels par changement dans les habitudes de consommation au fil des années. En tenant compte de tous ces facteurs là, Brenner et al. (1999) ont observé une relation dose-réponse inverse constante pour la bière ou le vin.

4.3.7 Maladies

La relation entre les douleurs articulaires et la séroprévalence à l’H. pylori a été observée. Elle semblait être positive (RC = 2,12) mais n’était pas statistiquement significative même après ajustement. Dans la littérature cette relation n’a pas été évoquée et il est possible qu’elle soit tout simplement le fait du hasard. La séropositivité était augmentée dans le groupe de sujets chez qui on avait diagnostiqué dans le passé une maladie gastro-intestinale mais cela n’était pas statistiquement significatif.

Et pourtant il est établi que l’H. pylori est à l’origine d’une gastrite et causant des pathologies comme des ulcères peptiques, des lymphomes, la gastrite atrophique et même l’adénocarcinome de l’antre de l’estomac. Une fois de plus la petite taille de notre échantillon et les informations limitées du questionnaire ne nous ont pas permis de nous intéresser spécifiquement à la relation entre l’H. pylori et les maladies gastro-intestinales. D’ailleurs, l’objectif de notre étude n’était pas d’évaluer l’effet de l’infection qui est déjà bien établi.

4.3.8 Sources d’eau

Parmi les critères d’échantillonnage hérités de l’étude sur les nitrates à partir de laquelle notre échantillon a été tiré, il y avait la consommation d’eau de puits privés chaque jour. Nous pouvons déduire que la prévalence chez les consommateurs d’eau de puits privés était de 31,35 %. Par contre nous n’avons pas pu comparer les résultats de prévalence trouvés parmi les consommateurs d’eau de puits avec ceux dont la source d’approvisionnement en
eau était autre que les puits privés. Cette comparaison aurait pu être intéressante dans la mesure où plusieurs études font état de différence de prévalence de l’infection *H. pylori* selon la source d’approvisionnement en eau de boisson. Il serait intéressant lors des études futures de prendre en compte cette comparaison pour avoir une idée sur la prévalence selon les sources d’eau.

L’étude de Lima au Pérou a rapporté que chez les enfants, l’eau municipale semblait être une importante source d’infection à *H. pylori* avec une prévalence estimée à 37 % par rapport à seulement 4 % pour les enfants dont la source d’eau était des puits communautaires (Klein et al., 1991) (Hulten et al., 1996). Aux États-Unis, aucune association entre les sources d’eau n’était observée (Fiedorek et al., 1991). Ceci faisait penser que la relation observée au Pérou pourrait être l’apanage des pays en voies de développement à cause des conditions d’hygiène douteuses.
CONCLUSION

Les résultats de cette étude indiquent une prévalence de l’infection similaire à celles des autres études dans les pays industrialisés. Ils indiquent également que la prévalence de l’infection à l’*H. pylori* était plus importante (31,35 %) que celle avancée pour la population canadienne, soit entre 10 à 20 % (Veldhuyzen Van Zanten et al, 1994), ce qui montre que le problème est peut-être quelque peu sous-estimé.

Cette étude confirme la relation entre la séroprevalence à l’*H. pylori* et l’âge des individus dans les régions rurales de Québec. Nous n’avons pas pu confirmer la relation entre la séroprevalence à l’*H. pylori* et d’autres facteurs comme le revenu, l’occupation, le sexe, les maladies gastro-intestinales.

Cependant, il faut rappeler que la prévalence à l’*H. pylori* dans cette population rurale de Québec a été évaluée à partir d’un faible effectif, réduisant la précision de nos résultats. De plus, les caractéristiques des sujets étudiés (consommateurs d’eau de puits en milieu d’agriculture intensive) fait que, l’inference statistique de nos résultats à la population générale est difficile.

Il serait nécessaire de faire d’autres études avec un échantillon plus représentatif de la population générale et utiliser un questionnaire plus développé. Par ailleurs, il serait important que des études d’incidence de l’infection à l’*H. pylori* soient menées pour aider à mieux comprendre son histoire naturelle et sa transmission.
BIBLIOGRAPHIE

Annexe 1

Généralités sur le test de sérologie
Usages de la sérologie

La sérologie dans le diagnostic des maladies bactériennes infectieuses pose des problèmes d’interprétation qui ne peuvent être résolus que par une appréhension globale de l’interprétation des tests biologiques dans un contexte clinico-microbiologique précis.

La sérologie a, avant tout, un usage indiscuté et indispensable qui est celui du diagnostic. Il convient ici de rappeler que le paramètre évalué est le plus souvent la réponse immunologique humorale à un agent infectieux (par exemple l’Helicobacter pylori) et que celle-ci nécessite un temps variable (de 5 à 15 jours en règle) et persiste longtemps (de quelques semaines à quelques années). Dans cette réponse humorale les IgM apparaissent et disparaissent souvent plus précocement. Ainsi l’utilité d’un titrage d’IgM sur un sérum unique comme indicateur d’une infection récente doit être évaluée pour chaque agent infectieux. Dans certaines pathologies infectieuses (fièvre, toxoplasmose…) un dosage des IgA peut avoir un intérêt.

De ceci découle, que souvent une séquence de prélèvements, espacés de quelques jours, permettra seule d’apprécier la cinétique des anticorps et donc d’affirmer le caractère récent de l’infection. Cette répétition des prélèvements permettra d’objectiver une séroconversion (premier sérum négatif, deuxième sérum positif) ou une élévation significative (x4) du titre des anticorps.

Les prélèvements uniques permettront rarement un diagnostic et ainsi celui-ci surviendra dans la plupart des cas durant la convalescence. La sérologie peut également être utilisée pour apprécier l’état d’immunité d’une population (séro-épidémiologie) et sa valeur sera alors en fonction du titre considéré comme positif. La sensibilité et la spécificité du test ELISA pour la détection de l’infection à Helicobacter Pilory varie de 85 à 95 %, mais sa valeur prédictive positive peut être inférieure (ex : avec une prévalence à 30 %, la valeur prédictive positive du test sera d’environ 60 %)

La sérologie ne devrait pas être employée pour définir l’appartenance étiologique d’une pathologie, ce type de travaux ayant abouti dans presque tous les cas à l’échec (sclérose en plaques et rickettsies à titre d’exemple).
Techniques de sérologie

Certaines techniques sérologiques, les plus connues et les plus anciennes, telles les agglutinations bactériennes classiques (Widal, Wright, Weil-felix), ont du fait de leur grossièreté technique une valeur modeste liée à de nombreuses réactions croisées.

La plupart des techniques développées actuellement utilisent une réaction immunologique de type ‘Sandwich’ révélant une réaction entre un antigène et un anticorps anti-humain marqué par une molécule fluorescente (immuno-fluorescence), radioactive (RIA) ou enzymatique (ELISA).

Ces méthodes peuvent permettre de détecter des antigènes (pris entre deux anticorps spécifiques) ou de capturer de façon privilégiée les IgM. Par ailleurs se développent des techniques d’agglutination de matériel inerte (latex) qui ont une valeur théorique moindre mais une plus grande maniabilité et une rapidité incontestable (quelques minutes).
Annexe 2

Prise en charge
Traitement et éradication

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Posologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsalicylate de bismuth</td>
<td>2 Comprimés x 4/jour Pendant 14 Jours</td>
</tr>
<tr>
<td>Tétracycline</td>
<td>500 mg x 4/jour Pendant 14 Jours</td>
</tr>
<tr>
<td>Ou Amoxycilline</td>
<td>500 mg x 4/jour Pendant 14 Jours</td>
</tr>
<tr>
<td>Métronidazole</td>
<td>250 mg x 3/jour Pendant 14 Jours</td>
</tr>
</tbody>
</table>

La meilleure combinaison actuelle pour l’éradication de l’*H. pylori*. Tiré de la revue le clinicien (1996)

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Posologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oméprazole</td>
<td>20 mg 2 fois/jour Pendant 7 jours</td>
</tr>
<tr>
<td>Clarithromycine</td>
<td>250 mg 2 fois/jour Pendant 7 jours</td>
</tr>
<tr>
<td>Métronidazole</td>
<td>500 mg 2 fois/jour Pendant 7 jours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Posologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oméprazole</td>
<td>20 mg 2 fois/jour Pendant 7 jours</td>
</tr>
<tr>
<td>Amoxycilline</td>
<td>1 g 2 fois/jour Pendant 7 jours</td>
</tr>
<tr>
<td>Clarithromycine</td>
<td>500 mg 2 fois/jour Pendant 7 jours</td>
</tr>
</tbody>
</table>
Annexe 3

Les espèces d’*H. pylori*
Espèces d'*H. pylori* et leurs hôtes jusqu’en 1993 (Goodwin, 1998)

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Hôtés</th>
<th>Site primaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori</td>
<td>Humain (singe? Porc?)</td>
<td>Estomac</td>
</tr>
<tr>
<td>H. mustelae</td>
<td>Furet</td>
<td>Estomac</td>
</tr>
<tr>
<td>H. felis</td>
<td>Chat, Chien</td>
<td>Estomac</td>
</tr>
<tr>
<td>H. nemestrinae</td>
<td>Cochon, Singe</td>
<td>Estomac</td>
</tr>
<tr>
<td>H. acinonyx</td>
<td>Guépard</td>
<td>Estomac</td>
</tr>
<tr>
<td>H. muridarum</td>
<td>Souris et Rats</td>
<td>Intestin</td>
</tr>
<tr>
<td>H. cinaedi</td>
<td>Humain et Rongeurs</td>
<td>Intestin</td>
</tr>
<tr>
<td>H. fennellia</td>
<td>Humain</td>
<td>Intestin</td>
</tr>
<tr>
<td>H. rappini</td>
<td>Mouton, Chien, Humain</td>
<td>Foie, Estomac, Intestin</td>
</tr>
</tbody>
</table>
Annexe 4

Liste des municipalités participantes
LES MUNICIPALITÉS DE LANAUDIÈRE

Les municipalités de la Lanaudière sont :

Chertsey, Entrelacs, Lac Croche, Notre-Dame-de-la-Merci, Rawdon (canton), Rawdon (village), Saint-Alphonse-Rodriguez, Saint-Côme, Saint-Damien, Saint-Donat-de-Montcalm, Saint-Félix-de-Valois, Saint-Jean-de-Matha, Saint-Michel-des-Saints, Saint-Zénon, Sainte-Béatrix, Sainte-Émélie-de-l'Énergie, Sainte-Marcelline-de-Kildare, Berthierville, La Visitation-de-l’Île-Dupas, Lanoraie-d'Autray, Lavaltrie, Saint-Antoine-de-Lavaltrie, Saint-Barthélémy, Saint-Charles-de-Mandeville, Saint-Cléophas-de-Brandon, Saint-Cuthbert, Saint-Didace, Saint-Gabriel-de-Brandon (paroisse), Saint-Gabriel-de-Brandon (ville), Saint-Gabriel-de-Brandon (ville), Saint-Joseph-de-Lanoraie, Saint-Norbert, Saint-Thomas-de-Joliette, Saint-Viateur, Sainte-Élisabeth, Sainte-Geneviève-de-Berthier, Saint-Alexis-de-Montcalm (paroisse), Saint-Alexis-de-Montcalm (ville), Saint-Calixte, Saint-Esprit, Saint-Jacques, Saint-Liguori, Saint-Lin, Saint-Roch-de-L'Achigan, Saint-Roch-Ouest, Sainte-Julienne, Sainte-Marie-Salomé, Ville-des-Laurentides, Crabtree, Joliette, Notre-Dame-de-Lourdes, Notre-Dame-des-Prairies, Sacré-Cœur-de-Jésus, Saint-Ambroise-de-Kildare, Saint-Charles-Borromée, Saint-Paul, Saint-Pierre, Sainte-Mélanie, Charlemagne, L'Assomption, L'Épiphanie (paroisse), L'Épiphanie (ville), Le Gardeur, Repentigny, Saint-Gérard-Majella, Saint-Sulpice, La Plaine, Lachenaie, Mascouche, Terrebonne
Les municipalités de l’Île d’Orléans

Sainte-Famille, Île-d’Orléans, Sainte-Pétronille, Saint-François, Saint-Jean, Saint-Laurent, Saint-Pierre-de-l’Île-d’Orléans
LES MUNICIPALITÉS DE NICOLET

LES MUNICIPALITÉS DE PORTNEUF

Annexe 5

Questionnaire médical
ECO-RECHERCHE – UNIVERSITÉ LAVAL

Questionnaire médical

Date de l’entrevue : J M A

Numéro d’identification de participant :

Nom :___

Prénom :___

Adresse :___

__

Numéro de téléphone :_________________________________

Sexe : F M

Taille :_________________ Poids :__________________lbs ou Kg

Date de naissance : J______-M________-A___________

Maintenant, j’aimerais vous poser quelques questions concernant votre santé générale.

Q10) Avez-vous déjà eu les problèmes de santé suivants?:

<table>
<thead>
<tr>
<th></th>
<th>Oui=1</th>
<th>Non=2</th>
<th>Date du dernier Épisode (mois/année)</th>
<th>Spécifier (Diagnostic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhumatismes (ex : arthrite, arthrose, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problèmes gastro-intestinaux (ex : ulcère, gastrite, crohn, colite ulcéreuse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problèmes pulmonaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q11) Avez-vous déjà eu une gastroscopie?

______ oui=1 si oui, à quelle date?
J______/M______/A______

non=2

Résultat : __

Q12) Lors de la dernière année, avez-vous déjà :

<table>
<thead>
<tr>
<th>Oui=1</th>
<th>si oui, quand?</th>
<th>Pour quelle raison?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non=2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Été hospitalisé?:

Consulté un médecin?

Pris des médicaments prescrits?

Pris des médicaments non prescrits?

Q13) Durant les dernières 24 heures, avez-vous eu?

Oui=1 non=2

Des brûlures d’estomac?

De la difficulté à digérer?

Des douleurs articulaires?

Une infection?

Spécifier___

Q14) Au cours des dernières 24 heures, avez-vous pris?

Oui=1 non=2

Des médicaments prescrits?

Des médicaments non prescrits?
(Q14) Suite) Si oui, donnez-moi le (les) nom (s) du (des) médicament (s) et la posologie

__
__
__

À l’entrevue :
Demander le (s) contenant (s) de (s) médicament (s) et inscrivez bien le(s) nom (s).

Q15) Actuellement, quel travail effectuez-vous?

__

Le nom et l’adresse de l’entreprise :
__
__

Q16) Quelle sont les tâches que vous effectuez régulièrement?

__

Q17) Quelles sont les tâches particulières que vous avez effectuées pendant les dernières 24 heures (détailler)

__

Si cela s’avère nécessaire, accepteriez-vous que le Dr. Patrick Levallois fasse parvenir à votre médecin traitant vos résultats personnels? _____oui _____non
(Si oui, remplissez les renseignements suivants)

Nom : __

Adresse : __

Téléphone : __

Signature de l’infirmière : ___
Annexe 6

Manuel d’Instruction :
Recherche des IgG *H. pylori*
Elisa (Biorad)
<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Tests</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>404 2050</td>
<td>96</td>
<td>G.A.P. IgG H. pylori ELISA</td>
</tr>
</tbody>
</table>

DECEMBER 1992
SUMMARY AND EXPLANATION

Helicobacter pylori (previously known as *Campylobacter pylori*) has been found in gastric epithelium from biopsy samples showing active type B gastritis or chronic gastritis.\(^{1,2,3,4,5}\) Although the source of *H. pylori* infection is unknown, reports have shown that *H. pylori* infection is associated with chronic gastritis.\(^{6,7,8}\) A correlation has been found between the presence of *H. pylori* and gastric lesions in some cases of duodenal ulcers.\(^{9,10}\) Complete resolution of gastritis after eradication of the organism has also been reported.\(^{11,12}\)

H. pylori is a gram negative, curved, spiral shaped rod, 0.2 - 0.8 μm in width by 0.5 - 5.0 μm in length. Colonization is found in the deep portion of the mucous gel layer and the apical surface of the gastric mucosal epithelial cells.\(^{13}\) The organism may also be located in the junction between adjacent mucosal epithelial cells. Colonization may stimulate the host's immune response and may cause clinical signs and symptoms including neutrophilic infiltration and antibody production.

The presence of *H. pylori* can be detected by both invasive and non-invasive methods. Invasive methods include culture, histology and a rapid urease test performed on biopsy samples. The reference procedure for the detection of *H. pylori* in tissue is a combination of culture and histological staining of mucosal biopsy specimens obtained by endoscopy.\(^{14}\) Due to the patchy distribution of *H. pylori* in tissue and the difficulties of culturing this organism, false negative culture results are common. Histological staining by the Giemsa or hematoxylin stains can be used to indicate the presence of the organism. Non-invasive procedures include a urea breath test which utilizes radiolabelled urea and a serum test for antibodies against *H. pylori*.

Antibody production against *H. pylori* has been studied by several different groups. In 1986, Goodwin *et al.* used serum complement fixation, hemagglutination and bacterial agglutination.\(^{15}\) Rathbone *et al.* used ELISA techniques to show a significant rise of IgG antibodies specific for *H. pylori* in patients with histological evidence of the organism.\(^{16}\)

The mechanism by which *H. pylori* causes disease is not well understood. The organism can survive in the gastric mucosa, possibly for several years. *H. pylori* is also common in individuals who are considered healthy, with no clinical signs or symptoms of disease. The presence of *H. pylori* has been reported in gastric biopsy samples from healthy individuals who were found to be normal by endoscopic examination.\(^{17}\)

PRINCIPLE OF THE PROCEDURE

The G.A.P. IgG kit is a qualitative ELISA assay for the detection of antibodies specific for *H. pylori* in human serum. Partially purified *H. pylori* antigens are immobilized on
the wells of a microtiter plate and diluted patient serum is added to the wells. The IgG antibodies, specific to \textit{H. pylori}, in the serum will bind to the antigen on the wells. Non-specific antibodies are washed away with buffer. Anti-human IgG enzyme conjugate is added to the wells and binds to the antigen-antibody complex. Excess enzyme conjugate is washed away. The color is developed by the addition of an enzyme substrate. The intensity of the color corresponds directly to the amount of antibody present.

\section*{TEST COMPONENTS}

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen Coated Wells</td>
<td>12 x 8 well strips</td>
</tr>
<tr>
<td>Microtiter wells coated with inactivated \textit{H. pylori} antigens. Store at 2 - 8 °C.</td>
<td></td>
</tr>
<tr>
<td>Calibrator Set</td>
<td>5 x 1 ml Zero, 12.5, 25</td>
</tr>
<tr>
<td>\textit{H. pylori} antibodies in buffer with human serum, contains 0.01% sodium azide as a preservative. Store at 2 - 8 °C.</td>
<td>50 and 100 units/ml.</td>
</tr>
<tr>
<td>Enzyme Conjugate</td>
<td>1 x 10 ml</td>
</tr>
<tr>
<td>Goat anti-human IgG horseradish peroxidase conjugate in a TRIS/BSA buffer, contains 0.1% amphotericin B as a preservative (red). Store at 2 - 8 °C.</td>
<td></td>
</tr>
<tr>
<td>Sample Diluent Concentrate</td>
<td>1 x 20 ml</td>
</tr>
<tr>
<td>Phosphate buffered saline with Tween, contains 0.25% sodium azide (green). Store at 2 - 8 °C.</td>
<td></td>
</tr>
<tr>
<td>Substrate Solution A</td>
<td>1 x 8 ml</td>
</tr>
<tr>
<td>TMB in an acetate buffer with 20% DMSO. Store at 2 - 8 °C.</td>
<td></td>
</tr>
<tr>
<td>Substrate Solution B</td>
<td>1 x 8 ml</td>
</tr>
<tr>
<td>Hydrogen peroxide in an acetate buffer. Store at 2 - 8 °C.</td>
<td></td>
</tr>
</tbody>
</table>
Wash Concentrate (50x)
Phosphate buffered saline with
Tween 20, contains 0.1% amphotericin B
as a preservative. Store at 2 - 8 °C.

1 x 20 ml

Stop Solution
A solution of 1 N HCl. Store at 2 - 8 °C.

1 x 6 ml

Control Set*
H. pylori antibodies in buffer with human
serum, contains 0.01% sodium azide as
a preservative. Store at 2 - 8 °C.

1 x 1 ml Positive
1 x 1 ml Negative

* See PRECAUTIONS

ADDITIONAL ITEMS REQUIRED,
AVAILABLE FROM BIO-RAD

Microplate Reader
A microplate reader capable of reading at a
wavelength of 450 nm.

Bio-Rad Model 450 Reader:
Catalog No. 170 6621

Microtiter Plate Washer
Bio-Rad Strip Washer:
Catalog No. 170 6681

ADDITIONAL ITEMS REQUIRED,
NOT SUPPLIED

Micropipets capable of dispensing 25, 50 and 100 μl
Volumetric pipets capable of dispensing 5 and 10 ml
Graduated cylinders: 500 and 1000 ml
Test tubes: 13 x 100 mm
Laboratory film (Parafilm or equivalent)
Distilled or deionized water
PRECAUTIONS

The components of this product contain material of human origin which has been tested by FDA approved methods and found to be non-reactive for Hepatitis B Surface Antigen (HBsAg) and HIV-1 antibody. However, no test method can offer complete assurance of safety. These components have NOT been tested for antibodies to HCV, HIV-2, HTLV-I or HTLV-II. For this reason it is recommended that the components of this product be considered potentially infectious and handled with the same precautions used with patient samples.

Some reagents in this kit contain sodium azide as a preservative. Sodium azide may react with lead and copper plumbing to form explosive metal azides. When disposing of these reagents, always flush with large volumes of water to prevent azide build-up.

These reagents are for IN VITRO diagnostic use only.

Dimethyl sulfoxide is a skin and eye irritant. Avoid skin and eye contact. Wear gloves and safety glasses. If skin or eye contact occurs, flush with water for a minimum of 5 minutes.

QUALITY CONTROL

In keeping with good laboratory practice, the Positive and Negative Controls should be run in parallel with patient specimens, each time the test is performed.

The optical density of the Zero Calibrator must be less than 0.20.

The Negative Control should give a value of less than 10 U/ml.

The Positive Control should read 25 - 50 U/ml.

Failure to obtain the appropriate values for controls may indicate imprecise manipulations, improper sample handling or deterioration of reagents.

PROCEDURE

REAGENT PREPARATION

Sample Diluent Solution

Add the entire contents of the vial of Sample Diluent Concentrate into a 500 ml container. Add 480 ml of distilled water. Rinsing the vial with the water is
recommended to remove any precipitated crystals. Mix thoroughly. Label. Stable until kit expiration when stored at 2 - 8 °C.

Wash Solution
Add the entire contents of the Wash Concentrate into a 1 liter container. Add 960 ml of distilled water. Rinsing the vial with the water is recommended to remove any precipitated crystals. Mix thoroughly. Label. Stable until kit expiration when stored at 2 - 8 °C.

Working Substrate Solution
Within 1 hour of use, mix equal volumes of Substrate Solution A and Substrate Solution B. Label. Prepare only the required amount. Each microwell strip will require a minimum of 800 µl of substrate solution. As an example, for 6 microwell strips, mix 3.0 ml of Substrate Solution A with 3.0 ml of Substrate Solution B. This step is best done during the 30 minute incubation step that occurs after the addition of the Enzyme Conjugate.

SPECIMEN COLLECTION
The specimen should be serum. The usual precautions for venipuncture should be observed. Do not use anticoagulants or preservatives. Do not use grossly hemolyzed or grossly lipemic specimens. Avoid samples with bacterial contamination. Serum may be stored at 2 - 8 °C for up to 10 days and should be stored frozen at -20 °C or lower for longer periods. Excessive hemolysis, lipemia, the presence of large clots or bacterial growth may interfere with the performance and accuracy of this test.

PROCEDURE NOTES
1) Strict adherence to the specified times and temperatures of the incubations is essential for accurate results.

2) Store all components of the kit at 2 - 8 °C at all times. Do not allow the reagents to remain at room temperature for extended periods of time.

3) A thorough understanding of this package insert is necessary for successful use of the product. Reliable results will only be obtained by using precise laboratory techniques and accurately following the package insert. A calibrator curve must be included with every assay.

4) Do not mix various lots of any kit component within an individual assay. Do not use the components beyond the expiration date shown on the kit label.

5) Prior to performing the assay, each serum sample should be diluted with the Sample Diluent Solution. To labeled 13 x 100 mm test tubes, add 5 ml of Sample
Diluent Solution and 25 µl of the serum sample. Mix thoroughly by inversion or
with a vortex mixer.

6) Controls and calibrators are supplied prediluted and are ready to use.

7) Wash procedure:
 a) If using an automatic or manual plate washer, aspirate each well and then
 wash three times with 300 µl of wash solution.
 b) If using a squeeze bottle, invert the microwell strip holder with a smooth,
 continuous motion over a waste container, allowing the solution to pour out.
 Blot the strip holder dry with a paper towel. Fill each well to the top with
 the wash solution. Avoid air bubbles. Decant the wells over a waste container
 and blot dry. Repeat two more times.

ASSAY STEPS

1. Assemble the desired number of microwell strips into the strip holder.

2. Leaving the first position (A1) empty, pipet 100 µl of each of the calibrators,
 controls and diluted patient samples into each well. Note: The calibrators and
 controls are prediluted and ready to use.

3. Cover the plate with plastic film and incubate for 1 hour at 24 ± 2 °C.

4. Decant the wells and wash three times with Wash Solution. Blot thoroughly
 after each wash step. See PROCEDURE NOTES for more details.

5. Leaving the first position empty, add 100 µl of Enzyme Conjugate to each well.
 Cover the plate with plastic film and incubate for 30 minutes at 24 ± 2 °C.

6. Prepare the Working Substrate Solution. See REAGENT PREPARATION for
 more detailed information.

7. Decant the wells and wash three times with Wash Solution. Blot thoroughly
 after each wash step. See the procedure notes for more detailed information.

8. To each well, including the first position, add 100 µl of the Working Substrate
 Solution. Cover the plate with plastic film and incubate for 10 minutes in the
 dark at 24 ± 2 °C.

9. Immediately after incubation add 50 µl of Stop Solution to each well.

10. Set the microplate reader to read at a wavelength of 450 nm and measure the
 optical density of each well against the reagent blank (the first position). The
 plate should be read within 1 hour after the addition of the Stop Solution.
CALCULATIONS

1) Read the optical density (O.D.) of the calibrators, controls and patient samples and record the data as shown in the following table.

2) If using manual data reduction, construct a calibration curve on linear graph paper with the O.D. on the y axis and the calibrator value on the x axis. Draw a smooth curve from point-to-point. Interpolate the patient values from the calibrator curve.

3) If using automated data reduction, such as Bio-Rad’s Microplate Manager program, select the quadratic curve fit function for the calibration curve.

SAMPLE DATA

<table>
<thead>
<tr>
<th>Sample</th>
<th>Optical Density</th>
<th>Calibrator Value*</th>
<th>Calculated Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Calibrator</td>
<td>0.138</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calibrator 1</td>
<td>0.529</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Calibrator 2</td>
<td>0.943</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Calibrator 3</td>
<td>1.457</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>Calibrator 4</td>
<td>2.070</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Negative Control</td>
<td>0.298</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Positive Control</td>
<td>1.078</td>
<td></td>
<td>32.0</td>
</tr>
<tr>
<td>Sample 1</td>
<td>1.042</td>
<td></td>
<td>29.5</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.306</td>
<td></td>
<td>5.2</td>
</tr>
</tbody>
</table>

* Bio-Rad reference values.
PERFORMANCE CHARACTERISTICS

INTERPRETATION OF RESULTS

Positive Results: Patient samples with values greater than or equal to 20 units/ml are considered to be positive for the presence of IgG specific antibodies to *H. pylori*.

Negative Results: Patient samples with values less than or equal to 12.5 units/ml are considered to be negative for the presence of IgG specific antibodies to *H. pylori*.

Equivocal Results: Patient samples with values between 12.5 and 20 units/ml are equivocal. Patients with equivocal results should be redrawn after 2 weeks and the second sample assayed together with the first sample.

EXPECTED VALUES

An independent study was performed at four separate clinics using the G.A.P. IgG assay on patients who reported with clinical symptoms of gastritis. The following table indicates the percentage of those patients that had a positive result on the G.A.P. IgG test, separated by diagnosis.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Atrophic Gastritis</td>
<td>85 - 100 %</td>
</tr>
<tr>
<td>Superficial Gastritis</td>
<td>70 - 95 %</td>
</tr>
<tr>
<td>Duodenal Ulcer</td>
<td>85 - 95 %</td>
</tr>
<tr>
<td>Gastric Ulcer</td>
<td>70 - 90 %</td>
</tr>
</tbody>
</table>

Persons 50 years of age or more have a higher likelihood of past encounters with *H. pylori* and may have a low but detectable level of antibodies specific for *H. pylori* without clinical symptoms. 15,16,17,18
SPECIFICITY AND SENSITIVITY

Clinical trials with the G.A.P. IgG assay were performed at four independent clinics. A total of 277 samples were analyzed from patients presenting with clinical symptoms typical of gastritis. Endoscopic biopsy samples taken from these patients were tested by culture, urease or histological stains. Based on the results from testing of the biopsy samples, 104 patients were identified as negative for the presence of \(\text{H. pylori} \) and 173 were identified as positive. Based on the above results, the performance of the G.A.P. IgG assay gave the following performance results:

\[
\text{Sensitivity} = 99.4\% \\
\text{Specificity} = 93.5\% \\
\text{Accuracy} = 97.4\%
\]

\[
\text{Sensitivity} = \frac{\text{True Positive} - \text{False Negatives}}{\text{True Positive}} \times 100\\
\text{Specificity} = \frac{\text{True Negatives} - \text{False Positive}}{\text{True Negatives}} \times 100\\
\text{Accuracy} = \frac{\text{True Positive} + \text{True Negatives}}{\text{Total Patients}} \times 100
\]

<table>
<thead>
<tr>
<th></th>
<th>G.A.P. Positive</th>
<th>G.A.P. Equivocal</th>
<th>G.A.P. Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy Positive</td>
<td>172</td>
<td>0</td>
<td>1</td>
<td>173</td>
</tr>
<tr>
<td>Biopsy Negative</td>
<td>6</td>
<td>11</td>
<td>87</td>
<td>104</td>
</tr>
<tr>
<td>Total Samples</td>
<td>178</td>
<td>11</td>
<td>87</td>
<td>277</td>
</tr>
</tbody>
</table>

Equivocal results by the G.A.P. IgG assay were not considered in the calculations for accuracy or specificity. Equivocal results were considered negative for the calculations for sensitivity.
PRECISION

Within-Run

Within-run precision was determined by measuring the units/ml of 12 replicates of confirmed low, medium and high antibody positive \(H.\ pylori \) patient samples.

<table>
<thead>
<tr>
<th>Mean (U/ml)</th>
<th>Standard Deviation (U/ml)</th>
<th>Coefficient of Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>0.82</td>
<td>7.1</td>
</tr>
<tr>
<td>21.2</td>
<td>2.3</td>
<td>11.2</td>
</tr>
<tr>
<td>45.9</td>
<td>3.6</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Between-Run

Between-run precision was determined by measuring the units/ml of confirmed low, medium and high antibody positive \(H.\ pylori \) patient samples in ten separate runs, using four different operators.

<table>
<thead>
<tr>
<th>Mean (U/ml)</th>
<th>Standard Deviation (U/ml)</th>
<th>Coefficient of Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6</td>
<td>1.6</td>
<td>13.7</td>
</tr>
<tr>
<td>20.6</td>
<td>2.2</td>
<td>10.6</td>
</tr>
<tr>
<td>45.3</td>
<td>3.3</td>
<td>7.2</td>
</tr>
</tbody>
</table>

SPECIFICITY

Inhibition assays were performed using extracts from pure strains of \(Campylobacter jejuni, C. coli, C. fetus \) and \(Escherichia coli \). Less than 1% cross-reactivity was observed when human antibodies to \(H.\ pylori \) were absorbed with 10 ug per sample of the above bacterial extracts and then run on the G.A.P. IgG assay.
LIMITATIONS OF THE PROCEDURE

The G.A.P. IgG assay is a qualitative test to detect the presence of IgG antibodies specific for H. pylori and does not indicate the titer of the antibody.

A positive test result does not distinguish between colonization or infection by H. pylori and does not indicate the presence of gastrointestinal disease. This test should be used as an aid in the detection of gastrointestinal disease with other clinical tests, such as histology, urease detection and culture.

A negative test result does not preclude the presence of H. pylori. Colonization may be present but in its very early stages or the antibody titer may be too low for the test to detect.

If the clinical symptoms and test results are inconclusive, additional testing should be done on a subsequent sample.

The G.A.P. IgG assay should be used only for patients reporting clinical signs and symptoms related to gastritis. The test should not be used for patients who are asymptomatic.

REFERENCES

Annexe 7

Protocole de prélèvement et de transport
PROTOCOLES DE PRÉLÉVEMENT ET TRANSPORT.

Les prélèvements sanguins seront effectués par votre infirmière de recherche dans des tubes non héparinés de 10 ml. Deux alternatives peuvent être prises en considération quant au transport de prélèvement. La première d’acheminier à notre laboratoire les tubes de sang dans les 24 heures suivant leur prélèvement. Ce transport devra s’effectuer dans un environnement les conservant à 4*C, soit dans une boîte de styromousse avec des Ice Pack. Le transport pourrait être assuré par l’infirmière de recherche. La seconde alternative est de récolter le sérum par centrifugation et de la conserver au congélateur à -20*C. Cette étape de centrifugation pourrait être réalisée par le personnel de laboratoire où se feront les autres analyses biochimiques ou encore au centre hospitalier de Portneuf. Les sérums peuvent ainsi nous parvenir en un seul envoi. Quelle que soit l’alternative choisie, nous pourrons vous fournir le matéri el nécessaire (tubes à prélèvement, tubes pour conservation des sérums, Ice Pack, boîte de styromousse).

Protocole pour les analyses.

Les anticorps dirigés contre Helicobacter pylori seront mis en évidence par un test ELISA (enzyme linked immunosorbent assay) commercial. La compagnie Biorad offre la possibilité de déterminer semi-quantitativement la présence de ces anticorps de classe IgG par le test “G.A.P. IgG Helicobacter pylori ELISA”. Vous trouvez ci-inclus le protocole du test offert par la compagnie.

Matériel

Tubes pour prélèvement sanguin.

Tubes pour conservation sérum.

Embouts pipettes.
Matériel (suite)

Tests ELISA.

(Avec un test ELISA, on peut évaluer 90 patients,

Donc pour tester les 200 patients, il faudra acheter trois ELISA. Ainsi, si vous le désirez, on pourrait tester 70 patients de plus. Il n’en coûterais que 1,00$ de plus de patient additionnel).
Annexe 8

Résultats de contrôle de qualité
Table 1 : Résumé des résultats des contrôles positifs et négatifs

<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Positive Control (u/ml)</th>
<th>Negative Control (u/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 : Contrôle supplémentaire

Il a été inclus dans certains des lots de sérums provenant des patients avec test CLO positif :

Ce tableau montre les résultats obtenus.

<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Patient initials and values u/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R.D</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>
Annexe 9

Formulaire de Consentement
INTRODUCTION

L’étude de l’Université Laval à laquelle on m’a invité à participer vise à mieux connaître les entre la santé d’une population et son environnement. La région où je réside a été choisie car elle représente des caractéristiques particulières en raison des activités agricoles intenses se pratiquant sur le territoire. L’objectif de la présente recherche est donc d’évaluer l’impact de la contamination de l’eau sur ma santé.

PROCÉDURES

Un agent de recherche viendra à domicile prélever un échantillon d’eau de mon robinet afin que les chercheurs en évaluent la teneur en nitrates. L’agent de recherche me demandera de recueillir mes urines pendant une période de 24 heures et il me posera des questions afin d’évaluer ma consommation habituelle d’eau potable. Lors de la deuxième visite, une diététiste me demandera de compléter un questionnaire alimentaire. Une infirmière viendra prendre une prise de sang afin de doser les anticorps à *Hélicobater pylori* et la protéine C réactive. Ces facteurs peuvent influencer la formation de nitrates dans l’organisme. Les adduits (modification au niveau des gènes) reliés aux nitrates seront aussi évalués dans mes cellules sanguines. De plus, j’aurai à répondre à un questionnaire concernant mon travail, mes antécédents médicaux et mon état de santé actuel.
RISQUES ET INCONFORTS

Les procédures que je devrai subir pourront entraîner certains inconvénients mineurs. Le recueil d’urine devra être complet pendant les périodes pour lesquelles il est requis. De plus, la prise de sang peut entraîner, de façon occasionnelle, de légères ecchymoses.

BÉNÉFICES

Tous les résultats de mes tests me seront adressés personnellement par le Dr Levallois de CHUL et ils seront accompagnés d’une interprétation. En cas de résultat anormal l’on me conseillera de consulter un médecin spécialisé.

Je ne recevrai aucune compensation monétaire pour ma participation à cette étude.

Cependant, je suis conscient que ma participation permet à l’équipe des chercheurs de l’Université Laval de mieux évaluer l’impact de la qualité de l’eau sur la santé humaine.

D’autre part, on m’a averti que je pourrais recevoir le compte rendu de cette recherche sur simple demande.

CONFIDENTIALITÉ

Tous les renseignements recueillis pendant cette étude seront traités de façon confidentielle et je ne serai identifié que par un numéro lors de la phrase d’analyse statistique. Tous les renseignements personnels qui me concernent seront détruits dès la fin de la recherche et tous les rapports découlant de cette recherche seront toujours dépersonnalisés.

CONSENTEMENT

Cette étude et le formulaire m’ont été bien expliqués. Les responsables de la recherche ont répondu à toutes mes questions et je comprends tout-à-fait ce qu’implique ma participation. Si je désire plus de renseignements sur cette étude, je peux rejoindre en tout temps le Dr Patrick Levallois au DSC du CHUL au (418) 666-7000 poste 210.

En signant le présent document, je me porte volontaire pour participer à cette étude, je reconnais avoir reçu une copie du présent formulaire et je sais que je peux me retirer de l’étude à n’importe quel moment sans préjudice.

Signature du (de la) participant(e) Signature de l’agent de recherche
__________________________________ ________________________________

Signature du médecin __________________________________