A comparative study on submillimeter flaws in stitched T-joint CFRP by infrared thermography, micro-CT, ultrasonic c-scan and microscopic inspection

Hai Zhang, a Ulf Hassler, b Marc Genest, c Henrique Fernandes, a Francois Robitaille, d Clemente Ibarra-Castanedo, a Simon Joncas, e Xavier Maldague a

aLaval University, Department of Electrical and Computer Engineering, Computer Vision and Systems Laboratory, 1065 av. de la Medecine, Quebec, Canada, G1V 0A6
bFraunhofer IIS, Fraunhofer Development Center X-ray Technologies (EZRT), Department of Application Specific Methods and Systems (AMS), Flugplatzstrasse 75, 90768 Fuerth, Germany
cNational Research Council Canada, Aerospace Portfolio, Structures, Materials and Manufacturing, 1200 Montreal Road, Ottawa, Canada, K1A 0R6
dUniversity of Ottawa, Department of Mechanical Engineering, 161 Louis Pasteur, Ottawa, Canada, K1N 6N5
eEcole de Technologie Superieure, Department of Automated Manufacturing Engineering, 1100 rue Notre-Dame Ouest, Montreal, Canada, H3C 1K3

Abstract. Stitching is used to reduce dry-core (incomplete infusion of T-joint core) and reinforce T-joint structure. However, it may cause new types of flaws, especially submillimeter flaws. In this paper, microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography and laser spot thermography are used to investigate the internal flaws in a stitched T-joint CFRP. Then, a new micro-laser line thermography is proposed. Micro-CT is used to validate the infrared results. A comparison between micro-laser line thermography and micro-CT is performed. As a conclusion, micro-laser line thermography can detect the internal submillimeter defects. However, the depth and the size of defects can affect the detection results. The micro-porosities with a diameter of less than 54 µm are not detected in the micro-laser line thermography results. Micro-laser line thermography can detect the micro-porosity (a diameter of 0.162 mm) from the depth of 90 µm. However, it cannot detect the internal micro-porosity (a diameter of 0.216 mm) from the depth of 0.18 mm. The potential causes are given. Finally a comparative study is conducted.

Keywords: laser line thermography, x-ray computed tomography, ultrasonic c-scan, NDT, T-joint.

Address all correspondence to: Hai Zhang, Laval University, Department of Electrical and Computer Engineering, Computer Vision and Systems Laboratory, 1065, av. de la Medecine, Quebec, Canada, G1V 0A6; Tel: +1 418-656-2962; Fax: +1 418-656-3159; E-mail: hai.zhang.1@ulaval.ca

1 Introduction

Three-dimensional (3D) carbon fiber reinforced polymer matrix composites (CFRP) are increasingly used for aircraft construction due to the exceptional stiffness and strength-to-mass ratios. Composites made from 3D textile preforms can reduce both the weight and manufacturing cost of advanced composite structures within aircraft, naval vessels and the blades of wind turbines. 1 The in-plane stiffness and strength of 3D woven composites were found to be lower, while the out-of-plane properties were higher compared to conventional 2D laminates. 2 The assembly of 3D
complex composite structures indicates the need for efficient joining methods. The most frequently used joint found in structural applications is the T-joint.

The purpose of T-joints is to transfer flexural, tension and shear loads to the skin. T-stiffeners are used extensively in aircraft wings in order to prevent skin buckling during wing loading. However, designing composite joints is more difficult than metallic joints due to the mechanical properties of composite materials.3

In the design of T-joints, filler is inserted in T-joints and resin is used to reinforce the structure. The fiber insertion technique has the potential of creating a low-cost T-joint with improved damage tolerance and failure strength. 4 However, incomplete infusion of T-joints core (dry-core) is an essential issue. Figure 1 shows a typical dry-core in a non-stitched 3D T-joint CFRP.

Stitching5 is used to reduce dry-core and reinforce T-joint structure.6 However, stitching might cause new types of flaws due to the characteristic of the structure. The corresponding study was poorly documented, especially using non-destructive testing (NDT).

Non-destructive testing (NDT) of composite materials is complicated due to the wide range of flaws encountered (including delamination, microcracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential.7 The ability to identify and characterize such submillimeter flaws accurately is a challenge.

In this paper, microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography, laser spot thermography using lock-in method are performed to detect a stitched 3D T-joint CFRP. A new micro-laser line thermography is proposed. 18 µm resolution x-ray computed tomography is used to validate the detection results. A comparison between micro-laser line thermography and high resolution x-ray computed tomography is performed. As a conclusion, micro-laser
line thermography can detect the submillimeter internal defects in the sample. However, the depth and the size of defects can affect the detection results. The micro-porosities with a diameter of less than 54 \(\mu \text{m} \) were not detected in the micro-laser line thermography results. Micro-laser line thermography can detect the micro-porosity (a diameter of 0.162 mm) from the depth of 90 \(\mu \text{m} \), but cannot detect the micro-posity (a diameter of 0.216 mm) from the depth of 0.18 mm. The potential causes were given. Finally a comparative study is conducted.

2 Specimen

The complete stitched 3D T-joint CFRP is shown in Fig. 2 (a). The sample contains 6 stitching lines. The purpose of the stitching is to consolidate the T-joint structure and to reduce dry-core. The sample measures 152 mm in length, 148 mm in width, 63 mm in height, 5 mm in thickness (excluding the T-stringer).

The front side of the sample is shown in Fig. 2 (b). The sample was detected using ultrasonic c-scan, pulsed thermography and vibrothermography before microscopic inspection. Then a 30 mm \(\times \) 148 mm part was cut and polished for microscopic inspection. Finally a 10 mm \(\times \) 152 mm zone was detected using micro-laser line thermography and high resolution x-ray tomography.

3 Methods and Results

3.1 Microscopic Inspection

Microscopic inspection was performed through cutting and polishing a part of 30 mm \(\times \) 148 mm shown in Fig. 2 (b). The purpose is to investigate the structure and internal flaws in the sample.

The grinding and polishing procedure is automated, as is the procedure for the stitching of many images obtained by auto-focal and self-travelling microscope. These procedures are thus
automated, but they require supervision. Images are obtained using optical as opposed to SEM, which requires polishing instead of gold sputtering. However, the overall time required for either device is probably comparable and optical is far more accessible. The physical size corresponding to the assembled image is about 12 mm \times 12 mm, which is the largest that can be accommodated. The resolution of the inspection is 7 μm. The quality of the images is good and sufficient for inspection. There are scratches, watermarks and dirt on these first images but these can be sorted.

The microscopic inspection results are shown in Fig. 3. Figure 3 (a) shows the micro-porosities in top-section. Figure 3 (b) shows the stitching and micro-porosities in cross-section. The stitching is shown in the image. In Fig. 3 (b), more micro-porosities in resin redundancy zone are inspected than in other zones. Most micro-porosities measure a diameter of around 0.1 mm to 0.2 mm shown in Fig. 3.

3.2 Ultrasonic C-scan

Ultrasonic C-scan is a well-established NDT method which has the ability to detect flaws in either the partial or entire thickness of the materials. It has been widely used to detect flaws in metals. It is also increasingly used to detect composites due to its flexibility and convenience.

It is a challenge to detect thick 3D CFRP using ultrasonic c-scan due to its complex internal structure. The complex internal structure can cause attenuation and scattering of ultrasonic beams. Ultrasonic c-scan has been widely used to detect voids and laminates in composites. However, submillimeter flaws detection was poorly documented.

Ultrasonic c-scan was performed to detect the entire sample. Water immersion method was used. The detection results using the transducer with the frequency of 2.25 MHz are shown in Fig. 4. The images were acquired before the microscopic inspection. Figure 4 (a) shows the
detection result using pulsed-echo technique. Pulsed-echo technique uses a transducer to emit ultrasonic beams, and uses the same transducer to receive the reflected signals. Figure 4 (b) shows the detection result using through-transmission technique. Through-transmission technique uses a transducer to emit ultrasonic beams, and uses another transducer with the same parameters to receive the transmitted signals on the opposite side. Figure 4 (c) shows the color scale for signal amplitude percent.

In Fig. 4 (a), many abnormalities are detected. Some of them might be voids and porosities. However, it is a challenge to identify and characterize them due to the attenuation and scattering of the ultrasonic beams, which are caused by the complex internal structure. In Fig. 4 (b), three large-sized abnormalities are shown. They might be resin abnormalities or internal structural flaws. However they are also difficult to be identified and characterized accurately. Ultrasonic c-scan using transducers with the frequencies of 5 MHz, 10 MHz, 15 MHz were also performed. However, none of them can identify and characterize the internal flaws accurately.

3.3 Pulsed Thermography

Infrared thermography is increasingly used to detect composites. In the past few years, a great number of new infrared thermography methods have been proposed, such as eddy-current thermography, induction thermography, vibrothermography, etc. However, submillimeter flaws detection using infrared thermography was still poorly documented.

Pulsed thermography is a classical NDT method. Pulsed thermography was used to detect flaws in mono-materials in the early period. In the past two decade, a majority of detection on flaws in composites has been reported. In 1996, Maldague and Marinetti proposed pulsed phase thermography (PPT) to process pulsed thermography data. Pulsed thermography is currently
becoming a classical NDT method in aerospace industry.

In pulsed thermography, usually a high-energy flash lamp is used to generate a uniform plane heating source on the sample surface. The heat travels through the inspected material to the subsurface anomalies (defects or damages) and back to the surface. When the pulse heat flux is applied to the sample surface, an out-of-plane heat flow is generated in the sample. The uniform temperature increase is observed on the surface, if the sample has no defects. If the sample has defects such as voids and delamination damage, a localized high temperature region appears on the sample surface just above the defect due to the insulation effect of the defects. The shape of the high temperature region reflects the defect shape under the surface. The location, shape and size of the defect can be estimated from the temperature distribution on the sample surface.12,13

Pulsed thermography was performed to detect the sample. Figure 5 (a) shows the classical pulsed thermography set-up.13 Figure 5 (b) shows the experimental set-up. In the set-up, a mid-wave infrared (MWIR) camera (FLIR Phoenix, InSb, 3-5 μm, 640 \times 512 pixels) at a frame rate of 55 Hz was used to record the temperature profile. Two photographic flashes (Balcar FX 60 with pulse duration of 5 ms and producing 6.4 kJ per flash) were used to heat the sample.

Figure 6 shows the detection results before the microscopic inspection. Figure 6 (a) shows the image from first derivative image processing. Figure 6 (b) shows the image from second derivative image processing. In Fig. 6, some voids measured around 1 mm to 2 mm are inspected. Pulsed thermography can detect large-sized flaws. However it is a challenge to characterize submillimeter flaws. Several image processing methods were conducted. However, none of them can identify and characterize submillimeter flaws.
3.4 Vibrothermography

Vibrothermography, also known as ultrasonic thermography or thermosonics, utilizes mechanical waves to directly stimulate internal defects without heating the surface as in optical methods such as lock-in thermography and pulsed thermography. In classical ultrasound testing, a transducer is placed in contact with the sample with the help of a coupling media. The ultrasonic waves travel through the specimen and are transmitted back to the surface where the transducer picks up the reflected signal (pulsed-echo technique), or they are collected on the opposite side (transmission). The principle of defect detection is based on the differences in specific acoustic impedances between materials. In vibrothermography, ultrasonic waves travel freely through a homogeneous material, whereas an internal defect produces a complex combination of absorption, scattering, beam spreading, and dispersion of the waves, whose primary manifestation will be in the form of heat. Heat then travels by conduction in all directions; an infrared camera can be directed to one of the surfaces of the specimen to capture the defect signature.\(^{13}\)

Figure 7 (a) shows the classical vibrothermography set-up.\(^{13}\) Figure 7 (b) shows the experimental set-up. In the set-up, a mid-wave infrared (MWIR) camera (FLIR Phoenix, InSb, 3-5 \(\mu\)m, 640 \(\times\) 512 pixels) at a frame rate of 55 Hz was used to record the temperature profile. The transducer horn was pressed against the sample and a burst of ultrasound wave (20 kHz, 2200 W) at a modulation frequency of 0.25 Hz and with amplitude modulated between 10 - 30\% of maximum power was delivered to the sample.

Figure 8 shows the detection results before the microscopic inspection. None of the two images can identify flaws. The potential reason is heat source coupling caused by the complex internal structure.
3.5 Laser Spot Thermography and Lock-in Thermography

Laser spot thermography has been used to detect surface cracks and fiber orientation in composites. Surface cracks detection using laser spot thermography was reported in 2007.15,16 Fiber orientation detection using laser spot thermography was reported in 2013.17,18 Further studies on surface cracks19–21 and fiber orientation22,23 were reported recently.

Figure 9 (a) shows the classical laser spot thermography set-up.13 Figure 9 (b) shows the experimental set-up. In the set-up, a mid-wave infrared (MWIR) camera (FLIR Phoenix, InSb, 3-5 µm, 640 × 512 pixels) at a frame rate of 55 Hz was used to record the temperature profile. A diode-laser was used for heating source. The laser wavelength is 805 nm. The laser beam power is 4.2 W. A convex lens was used to focalize the laser beam. A micro-lens was used to detect the submillimeter flaws. The magnification of the micro-lens is 1 ×. Lock-in method was used to identify and characterize the internal flaws.

Lock-in thermography, also known as modulated thermography, which is a technique derived from photo thermal radiometry. In the latter, a small surface spot is periodically illuminated by an intensity modulated laser beam to inject thermal waves into the specimen. The thermal response is recorded at the same time using an infrared detector and decomposed by a lock-in amplifier to extract the amplitude and phase of the modulation. Photo thermal radiometry is a raster point-by-point technique that requires long acquisition times, especially in the case of deep defects involving very low modulation frequencies. Furthermore, extra hardware such as a lock-in amplifier, is needed in order to retrieve the amplitude and phase of the response. Heat diffusion through a solid
is a complex 3D problem that can be described by Fourier's law of heat diffusion:

\[\nabla^2 T - \frac{1}{\alpha} \cdot \frac{\partial T}{\partial t} = 0 \]

(1)

where \(T \) is temperature, \(t \) is time, \(\alpha = \frac{k}{\rho c_p} \) is the thermal diffusivity of the material being inspected, \(k \) is the thermal conductivity, \(\rho \) is the density, and \(c_p \) is the specific heat at constant pressure.

A four-point methodology for sinusoidal stimulation can be employed24,25 to calculate the phase and amplitude from the response signal. Input and output have the same shape when sinusoids are used. There is only a change in amplitude and phase that can be calculated as follows:24

\[A = \sqrt{(S_1 - S_3)^2 + (S_2 - S_4)^2} \]

(2)

\[\varphi = \arctan\left(\frac{S_1 - S_3}{S_2 - S_4}\right) \]

(3)

where \(A \) is the amplitude and \(\varphi \) is the phase. The 4-point method is fast but it is valid only for sinusoidal stimulation and is affected by noise. The signal can be de-noised in part by averaging several points instead of a single one and/or by increasing the number of cycles. Another possibility is to fit the experimental data using least squares regression and to use this synthetic data to calculate the amplitude and the phase. These two alternatives contribute to slow down the calculations. Empirical expressions have been proposed to relate the depth of a given defect to the heat source frequency. The thermal diffusion length \((\mu) \)26 can be used to fit experimental data and
estimate the depth \((Z)\) as proposed by:\(^{27}\)

\[
Z = C_1 \sqrt{\frac{\alpha}{\pi f_b}} = C_1 \mu
\]

(4)

where \(Z\) is the depth of detection. \(\mu\) is the thermal diffusion length. \(\alpha\) is the diffusivity of the material or sound area \(S_a\). \(\alpha\) in CFRP is \(4.2 \times 10^{-7}(m^2/s)\), measured by Ibarra-Castanedo in 2005.\(^{27}\) \(f_b\) is the blind frequency. \(f_b\) is related to the time when defects become visible, and this is how the thermal images are generated for a given detection depth. \(C_1\) is a correlation constant. The reported values of \(C_1\) range from 1.5 to 2. \(C_1 = 1.8\) is frequently adopted.\(^{13}\)

Figure 10 (a) shows the image prior to heating. The infrared image measures 12 mm \(\times\) 14 mm. Point 4 is the heating spot shown in Fig. 10 (b).\

Figure 11 (a) shows the detection result on the surface. Figure 11 (b) shows the result from the depth of 0.21 mm. Figure 11 (c) shows the result from the depth of 0.65 mm. The detected depths were calculated using Equation (4). In Fig. 11, no defect is detected. Laser spot thermography can detect internal structure and flaws using lock-in method. However, it is a time-consuming technique. It is difficult to detect the entire sample (152 mm \(\times\) 148 mm) using laser spot thermography.

3.6 Micro-laser Line Thermography and X-ray Tomography

Laser line thermography has been used to detect surface cracks.\(^{28}\) However, the detection of other types of flaws was poorly documented. Li et al. used a beam expander and a cylindrical lens to convert a laser spot with a radius of around 0.9 mm to a laser line source.\(^{28}\) In this paper, the authors used a galvanometer scanning mirror with the frequency of 600 Hz to generate a laser line.\(^{29}\) A micro-lens was used to identify and characterize submillimeter flaws.
Figure 12 (a) shows the experimental set-up for micro-laser line thermography. In the set-up, the sample was fixed on a robot. A mid-wave infrared (MWIR) camera (FLIR Phoenix, InSb, 3-5 µm, 640 × 512 pixels) at a frame rate of 55 Hz was used to record the temperature profile. A diode-laser was used. The laser wavelength is 805 nm. The laser beam power is 2.9 W. The heating time is 0.5 s. A convex lens was used to focalize the laser beam. A micro-lens was used to identify and characterize the submillimeter flaws. The magnification of the micro-lens is 1 ×. A galvanometer scanning mirror was mounted between the IR camera and the sample. In Fig. 12 (b), the laser spot was converted to a laser line when the galvanometer scanning mirror swung with the frequency of 600 Hz. Figure 12 (b) shows the heating source. Its length is around 10 mm and its width is around 3 mm.

Figure 2 (b) shows the detected zone. The laser line crosses a stitching line. The robot moved per 3 mm towards the direction shown in Fig. 2 (b). A total of 51 tests were performed to detect the 10 mm × 152 mm area shown in Fig. 2 (b). The method is defined as micro-laser line thermography.

Figure 13 shows the comparison of micro-laser line thermography results and high resolution x-ray tomography results. Some specific micro-porosities are marked in the images. Figure 13 (b) shows the surface image of a detected zone. The image was acquired using 18 µm resolution x-ray tomography. Some micro-porosities are detected on the surface. Figure 13 (a) shows the micro-laser line thermography image in the same zone. The infrared image was from cold image subtraction. This image processing method is to reduce the effects of fixed artifacts in a thermographic sequence. For example, reflections from the environment such as residual heating coming from the lamps and even the reflection from the camera that appears during the acquisition. Since these artifacts are more or less constant during the whole acquisition, including before heating
when the image is "cold", this image or the average of several images can be subtracted before
heating, so their effect is reduced. In Fig. 13 (a), some micro-porosities on the surface such as C
and D (marked in purple) are detected. However, some other micro-porosities on the surface such
as some in the zone E (marked in yellow) are not detected. The potential cause is the IR camera
resolution limitation. The micro-porosities with a diameter of less than 54 \(\mu m\) cannot be detected
in Fig. 13 (a).

In Fig. 13 (a), the micro-porosity A (marked in red) is detected. However, it is not detected
on the surface shown in Fig. 13 (b). It appears from the depth of 90 \(\mu m\) shown in Fig. 13 (d).
Figure 13 (d) shows the x-ray tomography image from the depth of 90 \(\mu m\). The micro-porosity
A measures a diameter of 0.162 mm. The micro-porosity A can be detected more clearly in the
infrared image with contrast rectification shown in Fig. 13 (c). Figure 13 (e) shows the infrared
image from principal component thermography (PCT). In Fig. 13 (e), the performance of the
micro-porosity A is exceptional (darker in contrast) compared to the other micro-porosities. Micro-
laser line thermography can detect the internal submillimeter defects in the sample. However, the
depth and the size of defects can affect the detection results.

Figure 13 (f) shows the x-ray tomography image from the depth of 0.18 mm. The micro-
porosity A measures a diameter of 0.306 mm from the depth of 0.18 mm. The micro-porosity B
(marked in blue) is detected. It measures a diameter of 0.216 mm from the depth of 0.18 mm.
However, the micro-porosity B cannot be detected in the infrared images. One potential cause is
that the depth of 0.18 mm exceeds the IR camera detection limitation with the laser power of 2.9
W. Another potential cause is that the micro-porosity B is below the fiber F (marked in orange)
shown in Fig. 13 (a) and Fig. 13 (b). It might reduce the heat diffusion. A finite element simulation
could be contributive to the analysis.
4 Conclusion

In this paper, several techniques were used to detect a stitched 3D T-joint CFRP. Microscopic inspection can obtain the internal structure and submillimeter flaws in a clear manner. However, it is a time-consuming and destructive technique. Ultrasonic c-scan cannot indentify and characterize the internal flaws accurately. Pulsed thermography can detect the large-sized flaws, but cannot detect the submillimeter flaws. Vibrothermography cannot detect the internal flaws due to the complex structure. Laser spot thermography using lock-in method can detect the internal structure and flaws. However, it is a time-consuming technique.

A new micro-laser line thermography was defined. 18 µm resolution x-ray tomography was used to validate the micro-laser line thermography results. A comparison of micro-laser line thermography and high resolution x-ray tomography was conducted. As a conclusion, micro-laser line thermography can detect the internal submillimeter defects in the sample. However, the depth and the size of defects can affect the detection results. The micro-porosities with a diameter of less than 54 µm cannot be detected in the micro-laser line thermography results. Micro-laser line thermography can detect the micro-porosity (a diameter of 0.162 mm) from the depth of 90 µm. However, it cannot detect the internal micro-porosity (a diameter of 0.216 mm) from the depth of 0.18 mm. One potential cause is that the depth of 0.18 mm exceeds the IR camera detection limitation with the laser beam power of 2.9 W. Another potential cause is that the micro-porosity from the depth of 0.18 mm is below a fiber. It might reduce the heat diffusion. A finite element simulation could be contributive to the analysis.
Acknowledgments

This research is supported by Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) through Project No. CRIAQ COMP-501 - CRDPJ 408010-10.

The authors would like to acknowledge the financial support to the project provided by Bell Helicopter (Canada) Inc. and Bombardier Inc. The authors would like to acknowledge the support provided by the Canada Research Chair in Multipolar Infrared Vision (MiViM) and the industrial partners: Delastek Inc., Hutchinson Inc., Texonic Inc., CTT group.

The authors would also like to thank Wolfgang Holub from Fraunhofer EZRT (Germany), Michael Brothers from National Research Council (Canada), Lucas West from the University of Ottawa (Canada) and Catherine Leduc from Ecole de Technologie Superieure (Canada) for their assistance.

References

23 H.-C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts

Hai Zhang works in the Computer Vision and Systems Laboratory, Department of Electrical and
Computer Engineering, Laval University in Quebec City, Canada. His current research interests include infrared thermography, x-ray computed tomography, NDT, image processing and composite materials.

List of Figures

1 A typical dry-core in a non-stitched 3D CFRP (microscopic inspection).

2 (a) Complete stitched 3D T-joint sample, (b) front side of the sample.

3 Microscopic inspection results (a) top-section, (b) cross-section.

4 Ultrasonic c-scan results (2.25 MHz) (a) pulsed-echo, (b) through-transmission, (c) color scale for signal amplitude percent.

5 (a) Classical pulsed thermography set-up, (b) experimental set-up.

6 Pulsed thermography results (a) first derivative, (b) second derivative.

7 (a) Classical vibrothermography set-up, (b) experimental set-up.

8 Vibrothermography results.

9 (a) Classical laser spot thermography set-up, (b) experimental set-up.

10 (a) image prior to heating, (b) heating spot.

11 Laser spot thermography results (locked-in method) (a) surface, (b) depth: 0.21 mm, (c) depth: 0.65 mm

12 (a) Micro-laser line thermography experimental set-up, (b) laser spot to laser line.

13 (a) micro-laser line thermography result (cold image), (b) x-ray tomography result (surface), (c) micro-laser line thermography result (contrast rectification), (d) x-ray tomography result (depth:
90 μm), (e) micro-laser line thermography result (PCT), (f) x-ray tomography result (depth: 0.18 mm).

List of Tables