Publication :
Selection of Wood Supply Contracts to Reduce Cost in the Presence of Risks in Procurement Planning

Vignette d'image
Date
2020
Direction de publication
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
Les activités d'achat dans l'industrie des pâtes et papiers représentent une part importante du coût global de la chaîne d'approvisionnement. Les décideurs prévoient l'approvisionnement en bois requis jusqu'à un an à l'avance afin de garantir le volume d'approvisionnement pour le processus de production en continu dans leur usine. Des contrats réguliers, flexibles et d'options avec des fournisseurs de différents groupes sont disponibles. Les fournisseurs sont regroupés en fonction de caractéristiques communes, telles que la propriété des terres forestières. Cependant, lors de l'exécution du plan, des risques affectent les opérations d'approvisionnement. Si les risques ne sont pas intégrés dans le processus de planification des achats, l'atténuation de leur impact sera generalement coûteuse et compliquée. Des contrats ad hoc coûteux supplémentaires pourraient être nécessaires pour compenser le manque de livraisons. Pour aborder ce problème dans cette thèse, dans un premier projet, un modèle mathématique déterministe des opérations d'approvisionnement est développé. L'objectif du modèle est de proposer un plan d'approvisionnement annuel pour minimiser le coût total des opérations relatives. Les opérations sont soumises à des contraintes telles qu’une proportion minimale de l'offre par chaque groupe de fournisseurs, des niveaux cibles des stocks, de la satisfaction de la demande, la capacité par la cour à bois et la capacité du procédé de mise en copeaux. Les décisions sont liées à la sélection des contrats d'approvisionnement, à l'ouverture de cour à bois et aux flux du bois. Dans un deuxième projet, une évaluation du plan d'approvisionnement à partir du modèle déterministe du premier projet est effectuée en utilisant une approche de simulation Monte Carlo. Trois stratégies contractuelles différentes sont comparées : fixes, flexibles et une combinaison des deux types des contrats. L'approche de simulation de ce projet évalue la performance du plan par la valeur attendue et la variabilité du coût total, lorsque le plan est exécuté pendant l'horizon de planification. Dans un troisième projet, une approche de programmation stochastique en deux étapes est utilisée pour fournir un plan d'approvisionnement fiable. L'objectif du modèle est de minimiser le coût prévu du plan d'approvisionnement en présence de différents scénarios générés en fonction des risques. Les décisions lors de la première étape sont la sélection des contrats dans la première période et l'ouverture des cours à bois. Les décisions de la deuxième étape concernent la sélection des contrats commençant après la première période, les flux, l'inventaire et la production du procédé de la mise en copeaux. iii L'étude de cas utilisée dans cette thèse est inspirée par Domtar, une entreprise des pâtes et papiers située au Québec, Canada. Les résultats des trois projets de cette thèse aident les décideurs à réduire les contraintes humaines liées à la planification complexe des achats. Les modèles mathématiques développés fournissent une base pour l'évaluation de la stratégie d'approvisionnement sélectionnée. Cette tâche est presque impossible avec les approches actuelles de l'entreprise, car les évaluations nécessitent la formulation de risques d'approvisionnement. L'approche de programmation stochastique montre de meilleurs résultats financiers par rapport à la planification déterministe, avec une faible variabilité dans l'atténuation de l'impact des risques.
Procurement activities in the pulp and paper industry account for an important part of the overall supply chain cost. Procurement decision-makers plan for the required wood supply up to one year in advance to guarantee the supply volume for the continuous production process at their mill. Regular, flexible and option contracts with suppliers in different groups are available. Suppliers are grouped based on common characteristics such as forestland ownership. However, during the execution of the plan, sourcing risks affect procurement operations. If risks are not integrated into the procurement planning process, mitigating their impact is likely to be expensive and complicated. Additional expensive ad hoc contracts might be required to compensate for the lack of deliveries. To tackle this problem, the first project of this thesis demonstrates the development of a deterministic mathematical model of procurement operations. The objective of the model is to propose an annual procurement plan to minimize the total cost of procurement operations. The operations are subject to constraints such as the minimum share of supply for each group of suppliers, inventory target levels, demand, woodyard capacity, and chipping process capacity. The decisions are related to the selection of sourcing contracts, woodyards opening, and wood supply flow. In the second project, an evaluation of the procurement plan from the deterministic model from project one is performed by using a Monte Carlo simulation approach. Three different strategies are compared as fixed, flexible, and a mix of both contracts. The simulation approach in this project evaluates the performance of the plan by the expected value and variability of the total cost when the plan is executed during the planning horizon. In the third project, a two-stage stochastic programming approach is used to provide a reliable procurement plan. The objective of the model is to minimize the expected cost of the procurement plan in the presence of different scenarios generated based on sourcing risks. First-stage decisions are the selection of contracts in the first period and the opening of woodyards. Second-stage decisions concern the selection of contracts starting after the first period, flow, inventory, and chipping process production. The case study used in this thesis was inspired by Domtar, which is a pulp and paper company located in Quebec, Canada. The results of three projects in this doctoral dissertation support decision-makers to reduce the human limitation in performing complicated procurement planning. The developed mathematical models provide a basis to evaluate the selected procurement strategy. This task is nearly impossible with current approaches in the company, as the evaluations require the formulation of v sourcing risks. The stochastic programming approach shows better financial results comparing to deterministic planning, with low variability in mitigating the impact of risks.
Description
Revue
DOI
URL vers la version publiée
Mots-clés
Citation
Type de document
thèse de doctorat