Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Publication :
Supervised scaling of semi-structured interview transcripts to characterize the ideology of a social policy reform

En cours de chargement...
Vignette d'image

Date

2017-11-10

Direction de publication

Direction de recherche

Titre de la revue

ISSN de la revue

Titre du volume

Éditeur

Kluwer

Projets de recherche

Structures organisationnelles

Numéro de revue

Résumé

Automated content analysis methods treat ‘‘text as data'' and can therefore analyze efficiently large qualitative databases. Yet, despite their potential, these methods are rarely used to supplement qualitative analysis in small-N designs. We address this gap by replicating the qualitative findings of a case study of a social policy reform using automated content analysis. To characterize the ideology of this reform, we reanalyze the same interview data with Wordscores, using academic publications as reference texts. As expected, the reform's ideology is center/center-right, a result that we validate using content, convergent and discriminant strategies. The validation evidence suggests not only that the ideological positioning of the policy reform is credible, but also that Wordscores' scope of application is greater than expected

Description

Revue

Quality & Quantity, Vol. 52, 2151-2162 (2018)

DOI

10.1007/s11135-017-0650-0

URL vers la version publiée

Mots-clés

Automated content analysis, Supervised scaling, Quantitative text analysis, Social policy, Mixed methods, Case study

Citation

Licence CC

Type de document