Publication : Machine learning implementation for unambiguous refractive index measurement using a self-referenced fiber refractometer
bul.description.provenance | elcou28 sbpar chlac | |
bul.rights.raisonEmbargoInfini | Pour que le document soit diffusé en libre accès, en accord avec le délai prescrit par l’éditeur, il faudrait déposer la version acceptée pour publication, incluant toutes les modifications demandées, mais sans la mise en page de la revue. Votre version est une version éditeur avec la mention "© 2022 IEEE. Personal use of this material is permitted" Pour ce faire, effectuez une demande de modification à l’aide de la liste des dépôts diffusés à partir du tableau de suivi. | |
dc.contributor.author | Martínez-Manuel, Rodolfo | |
dc.contributor.author | Valentín-Coronado, Luis M. | |
dc.contributor.author | Esquivel-Hernández, Jonathan | |
dc.contributor.author | Monga, Kaboko Jean-Jacques | |
dc.contributor.author | LaRochelle, Sophie | |
dc.date.accessioned | 2023-01-20T17:18:28Z | |
dc.date.available | 2023-01-20T17:18:28Z | |
dc.date.issued | 2022-06-21 | |
dc.description.abstract | The implementation of a machine learning algorithm for measuring refractive index of liquid samples using Fresnel reflection at the tip of a fiber is proposed in order to overcome the measurement ambiguity between samples having refractive index values below and above the effective refractive index of the fiber fundamental mode. This is the first time that a machine learning algorithm is implemented in a fiber refractometer. The algorithm, used for pattern classification, is the Support Vector Machine (SVM). The sensing head is formed by two-cascaded cavities that generate an interference pattern that changes each time the fiber is immersed in a different sample. The changes in the interference pattern are classified by the proposed algorithm, which extends the sensing range and eliminates any ambiguity in the obtained RI values. The proposed system is also self-referenced, and therefore it is unaffected by any intensity change of the optical source. A theoretical model and experimental results are presented in detail to demonstrate the effectiveness of the proposed system. | en |
dc.identifier.doi | 10.1109/JSEN.2022.3183475 | |
dc.identifier.issn | 1530-437X | |
dc.identifier.uri | http://hdl.handle.net/20.500.11794/108883 | |
dc.language | eng | |
dc.publisher | IEEE Sensors Council | |
dc.rights | http://purl.org/coar/access_right/c_16ec | |
dc.subject | Machine learning | en |
dc.subject | Fiber-optic refractometer | en |
dc.subject | Fresnel reflection | en |
dc.subject | Optical fiber sensors | en |
dc.subject.rvm | Algorithmes d'apprentissage | |
dc.subject.rvm | Réfractométrie | |
dc.subject.rvm | Réfractomètres | |
dc.subject.rvm | Fibres optiques | |
dc.title | Machine learning implementation for unambiguous refractive index measurement using a self-referenced fiber refractometer | |
dc.type | article de recherche | |
dcterms.bibliographicCitation | IEEE Sensors Journal, Vol. 22 (14), 14134 - 14141 (2022) | |
dcterms.dateAccepted | 2022-06-21 | |
dspace.accessstatus.time | 2023-09-13 18:00:59 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 23cd7c00-c28c-48ad-b487-c4c3f3e4809a | |
relation.isAuthorOfPublication | e8df24b1-dcf2-4696-bf01-cbcb1878641e | |
relation.isAuthorOfPublication | b669d36d-66f6-4320-a346-b1a7ab352ebc | |
relation.isAuthorOfPublication.latestForDiscovery | b669d36d-66f6-4320-a346-b1a7ab352ebc | |
relation.isResourceTypeOfPublication | 4c433ef5-3937-4530-8252-cca17d715747 | |
relation.isResourceTypeOfPublication.latestForDiscovery | 4c433ef5-3937-4530-8252-cca17d715747 | |
rioxxterms.project.funder-name | Natural Sciences and Engineering Research Council of Canada | |
rioxxterms.project.funder-name | Consejo Nacional de Ciencia y Tecnología (CONACYT), México | |
rioxxterms.version-of-record | https://doi.org/10.1109/JSEN.2022.3183475 |
Fichiers
Bundle original
1 - 1 sur 1
Pas de vignette d'image disponible
- Nom :
- Martinez-Manuel_Machine-doi.org_10.1109_JSEN.2022.3183475.pdf
- Taille :
- 1.86 MB
- Format :
- Adobe Portable Document Format
Bundle de license
1 - 1 sur 1
Pas de vignette d'image disponible
- Nom :
- license.txt
- Taille :
- 922 B
- Format :
- Item-specific license agreed upon to submission
- Description :