Une période de maintenance est prévue mardi 27 février 2024 entre 8h et 10h. Le service CorpusUL ne sera pas disponible pendant cette période. // A maintenance period is planned on Tuesday February 27st 2024 between 8am and 10am. CorpusUL will be unavailable during this time.
Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Publication :
Influence of complex environments on LiDAR-Based robot navigation

En cours de chargement...
Vignette d'image

Date

2016

Direction de publication

Titre de la revue

ISSN de la revue

Titre du volume

Éditeur

Projets de recherche

Structures organisationnelles

Numéro de revue

Résumé

La navigation sécuritaire et efficace des robots mobiles repose grandement sur l’utilisation des capteurs embarqués. L’un des capteurs qui est de plus en plus utilisé pour cette tâche est le Light Detection And Ranging (LiDAR). Bien que les recherches récentes montrent une amélioration des performances de navigation basée sur les LiDARs, faire face à des environnements non structurés complexes ou des conditions météorologiques difficiles reste problématique. Dans ce mémoire, nous présentons une analyse de l’influence de telles conditions sur la navigation basée sur les LiDARs. Notre première contribution est d’évaluer comment les LiDARs sont affectés par les flocons de neige durant les tempêtes de neige. Pour ce faire, nous créons un nouvel ensemble de données en faisant l’acquisition de données durant six précipitations de neige. Une analyse statistique de ces ensembles de données, nous caractérisons la sensibilité de chaque capteur et montrons que les mesures de capteurs peuvent être modélisées de manière probabilistique. Nous montrons aussi que les précipitations de neige ont peu d’influence au-delà de 10 m. Notre seconde contribution est d’évaluer l’impact de structures tridimensionnelles complexes présentes en forêt sur les performances d’un algorithme de reconnaissance d’endroits. Nous avons acquis des données dans un environnement extérieur structuré et en forêt, ce qui permet d’évaluer l’influence de ces derniers sur les performances de reconnaissance d’endroits. Notre hypothèse est que, plus deux balayages laser sont proches l’un de l’autre, plus la croyance que ceux-ci proviennent du même endroit sera élevée, mais modulé par le niveau de complexité de l’environnement. Nos expériences confirment que la forêt, avec ses réseaux de branches compliqués et son feuillage, produit plus de données aberrantes et induit une chute plus rapide des performances de reconnaissance en fonction de la distance. Notre conclusion finale est que, les environnements complexes étudiés influencent négativement les performances de navigation basée sur les LiDARs, ce qui devrait être considéré pour développer des algorithmes de navigation robustes.


To ensure safe and efficient navigation, mobile robots heavily rely on their ability to use on-board sensors. One such sensor, increasingly used for robot navigation, is the Light Detection And Ranging (LiDAR). Although recent research showed improvement in LiDAR-based navigation, dealing with complex unstructured environments or difficult weather conditions remains problematic. In this thesis, we present an analysis of the influence of such challenging conditions on LiDAR-based navigation. Our first contribution is to evaluate how LiDARs are affected by snowflakes during snowstorms. To this end, we create a novel dataset by acquiring data during six snowfalls using four sensors simultaneously. Based on statistical analysis of this dataset, we characterized the sensitivity of each device and showed that sensor measurements can be modelled in a probabilistic manner. We also showed that falling snow has little impact beyond a range of 10 m. Our second contribution is to evaluate the impact of complex of three-dimensional structures, present in forests, on the performance of a LiDAR-based place recognition algorithm. We acquired data in structured outdoor environment and in forest, which allowed evaluating the impact of the environment on the place recognition performance. Our hypothesis was that the closer two scans are acquired from each other, the higher the belief that the scans originate from the same place will be, but modulated by the level of complexity of the environments. Our experiments confirmed that forests, with their intricate network of branches and foliage, produce more outliers and induce recognition performance to decrease more quickly with distance when compared with structured outdoor environment. Our conclusion is that falling snow conditions and forest environments negatively impact LiDAR-based navigation performance, which should be considered to develop robust navigation algorithms.

Description

Revue

DOI

URL vers la version publiée

Mots-clés

Citation

Licence CC

Type de document