Publication : Structure-activity studies of the bacteriocin bactofencin A and its interaction with the bacterial membrane
Date
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Résumé
The antimicrobial peptide bactofencin A is an unmodified non-pediocin-like bacteriocin that inhibits several clinically relevant pathogens, including Listeria monocytogenes and Staphylococcus aureus. Here we report the synthesis and structure–activity relationship studies of bactofencin A and novel analogues thereof. Synthetic bactofencin A was a potent inhibitor of L. monocytogenes (MIC = 8.0 μM) and S. aureus (MIC = 4.0 μM), similar to the bacteriocin produced naturally by Lactobacillus salivarius. Of particular interest is the fact that linear analogues lacking the disulfide bond found in bactofencin A were as potent and also active against several strains of methicillin-resistant S. aureus (MRSA) and one strain of vancomycin-resistant S. aureus (VRSA). Supported by the structure–activity relationship study, investigation of the interaction of bactofencin A with bacterial membrane by molecular dynamics simulations showed the importance of the positively charged N-terminal tail for peptide–membrane interaction. These results suggest that the C-terminal macrocycle is involved in target protein binding and bacterial growth inhibition.