Publication : A wireless electro-optic headstage with a 0.13-μm CMOS customintegrated DWT neural signal decoder for closed-loop optogenetics
bul.description.provenance | elcou28 ; spbar | |
bul.rights.raisonEmbargoInfini | Pour que le document soit diffusé en libre accès, en accord avec le délai prescrit par l’éditeur, il faudrait déposer la version acceptée pour publication, incluant toutes les modifications demandées, mais sans la mise en page de la revue. Pour ce faire, effectuez une demande de modification à l’aide de la liste des dépôts diffusés à partir du tableau de suivi. | |
dc.contributor.author | Gagnon-Turcotte, Gabriel | |
dc.contributor.author | Keramidis, Iason | |
dc.contributor.author | Ethier, Christian | |
dc.contributor.author | De Koninck, Yves | |
dc.contributor.author | Gosselin, Benoit | |
dc.date.accessioned | 2023-01-30T19:09:58Z | |
dc.date.available | 2023-01-30T19:09:58Z | |
dc.date.issued | 2019-07-23 | |
dc.description.abstract | We present awireless electro-optic headstage that uses a 0.13-μm CMOS custom integrated circuit (IC) implementing a digital neural decoder (ND-IC) for enabling real-time closed-loop (CL) optogenetics. The ND-IC processes the neural activity data using three digital cores: 1) the detector core detects and extracts the action potential (AP) of individual neurons by using an adaptive threshold; 2) the data compression core compresses the detected AP by using an efficient Symmlet-2 discrete wavelet transform (DWT) processor for decreasing the amount of data to be transmitted by the low-power wireless link; and 3) the classification core sorts the compressed AP into separated clusters on the fly according to their wave shapes. The ND-IC encompasses several innovations: 1) the compression core decreases the complexity from O(n2) to O(n· log(n)) compared to the previous solutions, while using two times less memory, thanks to the use of a new coefficient sorting tree; and 2) the AP classification core reuses both the compressed DWT coefficients to perform implicit dimensionality reduction, which allows for performing intensive signal processing on-chip, while increasing power and hardware efficiency. This core also reuses the signal standard deviation already computed by theAPdetector core as threshold for performing automatic AP sorting. The headstage also introduces innovations by enabling a new wireless CL scheme between the neural data acquisition module and the optical stimulator. Our CL scheme uses the AP sorting and timing information produced by the ND-IC for detecting complex firing patternswithin the brain. The headstage is also smaller (1.13 cm3), lighter (3.0 g with a 40mAhbattery) and less invasive than the previous solutions, while providing a measured autonomy of 2h40, with the ND-IC. The whole system and the ND-IC are first validated in vivo in the LD thalamus of a Long-Evans rat, and then in freely-moving CL experiments involving a mouse virally expressing ChR2-mCherry in inhibitory neurons of the prelimbic cortex, and the results show that our system works well within an in vivo experimental setting with a freely moving mouse. | en |
dc.identifier.doi | 10.1109/TBCAS.2019.2930498 | |
dc.identifier.issn | 1932-4545 | |
dc.identifier.pubmed | 31352352 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11794/109763 | |
dc.language | eng | |
dc.publisher | IEEE | |
dc.rights | http://purl.org/coar/access_right/c_16ec | |
dc.subject | Adaptive threshold | en |
dc.subject | AP detection | en |
dc.subject | AP waveform classification | en |
dc.subject | Closed-loop optogenetics | en |
dc.subject | DWT compression | en |
dc.subject.rvm | Réseaux locaux sans fil | |
dc.subject.rvm | Électro-optique | |
dc.subject.rvm | Optogénétique | |
dc.subject.rvm | MOS complémentaires | |
dc.subject.rvm | Neurotechnologie | |
dc.title | A wireless electro-optic headstage with a 0.13-μm CMOS customintegrated DWT neural signal decoder for closed-loop optogenetics | |
dc.type | article de recherche | |
dcterms.bibliographicCitation | IEEE transactions on biomedical circuits and systems, Vol. 13 (5), 1036-1051 (2019) | |
dcterms.dateAccepted | 2019-07-23 | |
dspace.accessstatus.time | 2023-09-18 18:12:01 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 284aa4b3-bdf5-4882-8422-0801015285c8 | |
relation.isAuthorOfPublication | 14a42e23-d9ff-4682-b1d6-e31190952579 | |
relation.isAuthorOfPublication | 2760cfea-b501-4746-80d0-d9938c4da2bb | |
relation.isAuthorOfPublication | 41e68e58-be34-41ed-b224-abd2e1867380 | |
relation.isAuthorOfPublication | 26f3faa0-7986-4ceb-856b-569c3a82334c | |
relation.isAuthorOfPublication.latestForDiscovery | 284aa4b3-bdf5-4882-8422-0801015285c8 | |
relation.isResourceTypeOfPublication | 4c433ef5-3937-4530-8252-cca17d715747 | |
relation.isResourceTypeOfPublication.latestForDiscovery | 4c433ef5-3937-4530-8252-cca17d715747 | |
rioxxterms.project.funder-name | Natural Sciences and Engineering Research Council of Canada (NSERC/CRNSG) | |
rioxxterms.project.funder-name | Fonds de recherche du Québec - Nature et technologies (FRQNT) | |
rioxxterms.project.funder-name | Weston Brain Institute | |
rioxxterms.version | Version of Record (VoR) | |
rioxxterms.version-of-record | https://doi.org/10.1109/TBCAS.2019.2930498 |
Fichiers
Bundle original
1 - 1 sur 1
Pas de vignette d'image disponible
- Nom :
- 08769887.pdf
- Taille :
- 11.74 MB
- Format :
- Adobe Portable Document Format
Bundle de license
1 - 1 sur 1
Pas de vignette d'image disponible
- Nom :
- license.txt
- Taille :
- 922 B
- Format :
- Item-specific license agreed upon to submission
- Description :