Publication :
A wireless electro-optic headstage with a 0.13-μm CMOS customintegrated DWT neural signal decoder for closed-loop optogenetics

bul.description.provenanceelcou28 ; spbar
bul.rights.raisonEmbargoInfiniPour que le document soit diffusé en libre accès, en accord avec le délai prescrit par l’éditeur, il faudrait déposer la version acceptée pour publication, incluant toutes les modifications demandées, mais sans la mise en page de la revue. Pour ce faire, effectuez une demande de modification à l’aide de la liste des dépôts diffusés à partir du tableau de suivi.
dc.contributor.authorGagnon-Turcotte, Gabriel
dc.contributor.authorKeramidis, Iason
dc.contributor.authorEthier, Christian
dc.contributor.authorDe Koninck, Yves
dc.contributor.authorGosselin, Benoit
dc.date.accessioned2023-01-30T19:09:58Z
dc.date.available2023-01-30T19:09:58Z
dc.date.issued2019-07-23
dc.description.abstractWe present awireless electro-optic headstage that uses a 0.13-μm CMOS custom integrated circuit (IC) implementing a digital neural decoder (ND-IC) for enabling real-time closed-loop (CL) optogenetics. The ND-IC processes the neural activity data using three digital cores: 1) the detector core detects and extracts the action potential (AP) of individual neurons by using an adaptive threshold; 2) the data compression core compresses the detected AP by using an efficient Symmlet-2 discrete wavelet transform (DWT) processor for decreasing the amount of data to be transmitted by the low-power wireless link; and 3) the classification core sorts the compressed AP into separated clusters on the fly according to their wave shapes. The ND-IC encompasses several innovations: 1) the compression core decreases the complexity from O(n2) to O(n· log(n)) compared to the previous solutions, while using two times less memory, thanks to the use of a new coefficient sorting tree; and 2) the AP classification core reuses both the compressed DWT coefficients to perform implicit dimensionality reduction, which allows for performing intensive signal processing on-chip, while increasing power and hardware efficiency. This core also reuses the signal standard deviation already computed by theAPdetector core as threshold for performing automatic AP sorting. The headstage also introduces innovations by enabling a new wireless CL scheme between the neural data acquisition module and the optical stimulator. Our CL scheme uses the AP sorting and timing information produced by the ND-IC for detecting complex firing patternswithin the brain. The headstage is also smaller (1.13 cm3), lighter (3.0 g with a 40mAhbattery) and less invasive than the previous solutions, while providing a measured autonomy of 2h40, with the ND-IC. The whole system and the ND-IC are first validated in vivo in the LD thalamus of a Long-Evans rat, and then in freely-moving CL experiments involving a mouse virally expressing ChR2-mCherry in inhibitory neurons of the prelimbic cortex, and the results show that our system works well within an in vivo experimental setting with a freely moving mouse.en
dc.identifier.doi10.1109/TBCAS.2019.2930498
dc.identifier.issn1932-4545
dc.identifier.pubmed31352352
dc.identifier.urihttp://hdl.handle.net/20.500.11794/109763
dc.languageeng
dc.publisherIEEE
dc.rightshttp://purl.org/coar/access_right/c_16ec
dc.subjectAdaptive thresholden
dc.subjectAP detectionen
dc.subjectAP waveform classificationen
dc.subjectClosed-loop optogeneticsen
dc.subjectDWT compressionen
dc.subject.rvmRéseaux locaux sans fil
dc.subject.rvmÉlectro-optique
dc.subject.rvmOptogénétique
dc.subject.rvmMOS complémentaires
dc.subject.rvmNeurotechnologie
dc.titleA wireless electro-optic headstage with a 0.13-μm CMOS customintegrated DWT neural signal decoder for closed-loop optogenetics
dc.typearticle de recherche
dcterms.bibliographicCitationIEEE transactions on biomedical circuits and systems, Vol. 13 (5), 1036-1051 (2019)
dcterms.dateAccepted2019-07-23
dspace.accessstatus.time2023-09-18 18:12:01
dspace.entity.typePublication
relation.isAuthorOfPublication284aa4b3-bdf5-4882-8422-0801015285c8
relation.isAuthorOfPublication14a42e23-d9ff-4682-b1d6-e31190952579
relation.isAuthorOfPublication2760cfea-b501-4746-80d0-d9938c4da2bb
relation.isAuthorOfPublication41e68e58-be34-41ed-b224-abd2e1867380
relation.isAuthorOfPublication26f3faa0-7986-4ceb-856b-569c3a82334c
relation.isAuthorOfPublication.latestForDiscovery284aa4b3-bdf5-4882-8422-0801015285c8
relation.isResourceTypeOfPublication4c433ef5-3937-4530-8252-cca17d715747
relation.isResourceTypeOfPublication.latestForDiscovery4c433ef5-3937-4530-8252-cca17d715747
rioxxterms.project.funder-nameNatural Sciences and Engineering Research Council of Canada (NSERC/CRNSG)
rioxxterms.project.funder-nameFonds de recherche du Québec - Nature et technologies (FRQNT)
rioxxterms.project.funder-nameWeston Brain Institute
rioxxterms.versionVersion of Record (VoR)
rioxxterms.version-of-recordhttps://doi.org/10.1109/TBCAS.2019.2930498
Fichiers
Bundle original
Voici les éléments 1 - 1 sur 1
Pas de vignette d'image disponible
Nom :
08769887.pdf
Taille :
11.74 MB
Format :
Adobe Portable Document Format
Bundle de license
Voici les éléments 1 - 1 sur 1
Pas de vignette d'image disponible
Nom :
license.txt
Taille :
922 B
Format :
Item-specific license agreed upon to submission
Description :