Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Publication :
Geometric evolution of complex networks with degree correlations

En cours de chargement...
Vignette d'image

Date

2018-03-19

Direction de publication

Direction de recherche

Titre de la revue

ISSN de la revue

Titre du volume

Éditeur

American Physical Society

Projets de recherche

Structures organisationnelles

Numéro de revue

Résumé

We present a general class of geometric network growth mechanisms by homogeneous attachment in which the links created at a given time t are distributed homogeneously between a new node and the existing nodes selected uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent chemical potential μ(t). The chemical potential limits the spatial extent of newly created links. Using a hidden variable framework, we obtain an analytical expression for the degree sequence and show that μ(t) can be fixed to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that depending on the order in which nodes appear in the network—its history—the degree-degree correlations can be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the average clustering coefficient ⟨c⟩. In the thermodynamic limit, we identify a phase transition between a random regime where ⟨c⟩→ 0 when β<βc and a geometric regime where ⟨c⟩ > 0 when β>βc.

Description

Revue

Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, Vol. 97 (3-1), (2018)

DOI

10.1103/PhysRevE.97.032309

URL vers la version publiée

Mots-clés

Citation

Licence CC

Type de document