Publication :
Conception d'un nouveau produit en bois d'ingénierie structural provenant d'essences sous-utilisées

En cours de chargement...
Vignette d'image
Date
2009
Direction de publication
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
La forte concurrence sur le marché du bois de construction exige de la part des industriels de produire des matériaux très performants et à faible coût. Un nouveau produit se doit donc d’être encore plus performant et moins coûteux que les produits déjà établis sur le marché. On peut contrôler le facteur « coût » s’il est possible de se servir d’essences sous-utilisées et d’accéder à des usines existantes auxquelles il faudrait apporter peu de changements dans les procédés de fabrication. On peut contrôler le facteur « performance » en évaluant les différents paramètres qui déterminent les propriétés mécaniques et physiques du produit. Dans le cas des bois d’ingénierie destinés à la charpente, par exemple, voici quelques-uns des facteurs considérés : l’essence, la géométrie des lamelles et leur alignement, les adhésifs utilisés, ainsi que tous les paramètres de pressage. L’objectif de cette étude consiste à développer un produit composite structural à base de bois de haute résistance de type « oriented strand lumber » (OSL), fabriqué par collage de lamelles de bois sous pression. À cette fin, on a développé une stratégie de fabrication d’une poutre composite en utilisant des panneaux de lamelles orientées fabriqués à partir des essences disponibles dans l’Est du Canada. On a déterminé un procédé de pressage qui permet d’obtenir des profils de densité comparables pour le peuplier faux-tremble et le bouleau à papier. On a étudié les effets de l’essence, de la teneur en adhésif, de la longueur et de l’épaisseur des lamelles, ainsi que les effets de la surface spécifique et du coefficient d’élancement. En général, en respectant les mêmes paramètres de production, la performance des panneaux de peuplier est supérieure à celle des panneaux de bouleau. Une teneur en adhésif plus élevée améliore la cohésion interne, mais n’affecte pas les propriétés en flexion. On a également observé qu’une augmentation de la longueur des lamelles augmente les propriétés en flexion et qu’une diminution de l’épaisseur produit le même effet. En conséquence, les panneaux de peuplier faux-tremble avec des lamelles longues et minces pour une résistance à la flexion de 66,3 MPa et une rigidité en flexion sur rive de 13,5 GPa en flexion sur rive offrent la meilleure performance. En ce qui a trait à la surface spécifique, on a établi que l’usage des lamelles avec une surface spécifique similaire permet d’obtenir une performance en flexion comparable pour les deux essences. Le même coefficient d’élancement pour la même essence donne des résultats en flexion comparables ainsi qu’une augmentation du coefficient d’élancement, c’est-à-dire l’usage de lamelles plus longues ou de lamelles plus minces, améliore la performance. Finalement, on a fabriqué des poutres composites à partir de panneaux fabriqués selon les résultats des étapes précédentes et d’autres poutres à partir de panneaux de lamelles orientées (OSB) industriels utilisés pour l’âme des poutrelles en I . La performance en flexion sur rive des poutres laminées d’OSL a été supérieure à celle des poutres laminées d’OSB. La résistance en flexion moyenne d’OSL de peuplier et de bouleau, ajustée à une hauteur de 120 mm, a été estimée à 45,8 MPa et 51,4 MPa, respectivement. La comparaison avec TimberStrand® LSL (bois de lamelles stratifiées) et Solid Start® LSL, a démontré que les propriétés mécaniques du nouveau produit sont concurrentielles.
Intense competition on the construction material market forces the engineered wood product (EWP) industry to produce high-performance materials at low cost. Any new product must not only outperform established products, it must also be more cost efficient. Costs can be kept under control by making minor changes to the manufacturing process in existing mills and by exploiting currently under-utilized species. Performance can be controlled by manipulating different manufacturing parameters that influence the mechanical and physical properties of the final product. For engineered wood products, these factors include species, strand geometry and alignment, resin, and pressing parameters. The objective of this research was to develop a new oriented strand lumber (OSL) type EWP. To achieve this, a concept was developed for a laminated beam, using oriented strand panels made from species currently available in Eastern Canada. A pressing procedure was determined to obtain similar density profiles for aspen and paper birch. The influence of species, resin content, strand geometry, specific surface, and slenderness ratio were studied. Generally, aspen panels outperformed birch panels when using the same production parameters. A higher resin content increased the internal bond, but did not affect the bending properties. Bending properties could be improved by using longer or thinner strands. The best bending properties were therefore observed for panels made from long, thin aspen strands, with an average bending strength (MOR) of 66.3 MPa and a bending stiffness (MOE) of 13.5 GPa. It was shown that a comparable bending performance for both species could be achieved by using strands with a similar specific surface. Within a given species, maintaining the same slenderness ratio resulted in comparable bending properties, while increasing the slenderness ratio—i.e., using longer or thinner strands—improved performance. Based on these results, laminated OSL beams were produced using long, thin aspen and birch strand panels. In addition, laminated OSB beams were produced from commercial web-stock material. Small scale 3-ply OSL and 4-ply OSB beams were tested in edgewise bending, with OSL yielding superior results. The average MOR and shear corrected MOE values obtained for aspen OSL (52.0 MPa and 9.9 GPa respectively) and birch OSL (58.4 MPa and 10.6 GPa respectively) put both prototypes comfortably within the range required to compete with similar engineered wood products.
Description
Revue
DOI
URL vers la version publiée
Mots-clés
Citation
Type de document
thèse de doctorat