Publication :
Étude du mécanisme de gélification du gel couplé B-lactoglobuline/gomme xanthane et des propriétés du gel

En cours de chargement...
Vignette d'image
Date
2014
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
L’interaction électrostatique associative entre la β-lactoglobuline (βlg) native et la gomme xanthane (XG) résultant en la formation des gels couplés a été étudiée par diverses techniques. Les principaux objectifs de cette étude étaient premièrement de mieux comprendre le rôle de la protéine (βlg) et du polysaccharide (XG) dans la structuration du gel et les interactions impliquées dans la stabilisation du gel, et ensuite d’étudier les propriétés du gel en relation avec ses caractéristiques structurales. La gélification des mélanges βlg-XG a été suivie par la rhéologie dynamique. La caractérisation de la structure des gels a été réalisée au moyen de la microscopie confocale à balayage laser. L’effet de plusieurs facteurs environnementaux, incluant le ratio βlg-XG, la concentration des biopolymères, la force ionique, la vitesse d'acidification et la présence d’autres polysaccharides neutres (inuline et β-glucane) a été étudié. Il a été constaté que le réseau initial de XG a fourni le patron de base pour l'organisation de gel; les protéines ont agrégé sur les chaînes de XG et pourrait être considérées comme un agent de réticulation. La structure du gel et ses propriétés peuvent être modifiées et contrôlées en ajustant le ratio βlg-XG, la concentration des biopolymères, la force ionique. L'effet de la vitesse d'acidification a été étudié en utilisant des quantités variables de glucono-delta-lactone (GDL). Cette approche a permis de réduire le temps de gélification sans modifier la structure du gel. De plus, la spectroscopie infrarouge (FTIR) a permis d’étudier la conformation de protéines au cours de la gélification avec la XG. Il a été trouvé que la conformation secondaire de βlg n’a pas changé lors de l'interaction électrostatique avec la XG. La participation des liaisons hydrogène (entre βlg-XG, βlg-βlg) et des interactions hydrophobes (entre βlg-βlg) dans la stabilisation du gel lors d'un traitement thermique de gel à 80°C pendant 30 minutes a été déterminée. Le traitement thermique a non seulement amélioré la stabilisation mais aussi réduit la synérèse du gel. Les résultats de ce projet devraient permettre à l’industrie alimentaire et non-alimentaire (biomédicale, cosmétique, pharmaceutique) de développer des produits semi-solides fonctionnels ou des matériaux intéressants pour incorporer des molécules actives.
The associative electrostatic interaction between native β-lactoglobulin (βlg) and xanthan gum (XG) resulting in the formation of electrostatic gels was studied by several techniques. The main objectives of this study were firstly to better understand the role of βlg and XG in gel structuration and the interactions involved in gel stabilization and secondly to relate gel behaviors to their microstructures. The gelation processes of βlg-XG mixtures were monitored by viscoelastic measurements and the microstructure of the gels was observed by confocal laser scanning microscope. The effect of several environmental factors including the βlg-XG ratio, biopolymer concentration, ionic strength, acidification rate, and presence of neutral polysaccharides (inulin and β-glucan) were investigated. It was revealed that the initial network of XG provided a frame for gel organization; the βlg aggregated along the XG chains and played a role of cross-linking agent. Gel structure and behavior can then be modified and tailored through the adjustment of βlg-XG ratio, biopolymer concentration, and ionic strength. The effect of acidification rate was studied using different quantities of glucono-delta-lactone (GDL). This approach allowed reducing the gelation time without modification in gel structure. In addition, Fourier transform infrared spectroscopy (FTIR) was used to study the conformation of proteins during gelation with the XG. It was found that the secondary conformation of βlg did not change during the electrostatic interaction with the XG. The involvement of hydrogen bonds (between βlg-XG, βlg-βlg) and hydrophobic interactions (between βlg-βlg) in gel stabilization upon thermal treatment of gel at 80°C for 30 minutes were determined. The heat treatment has not only improved the stability but also reduced gel syneresis. The results of this project should enable the food, biomedical, cosmetic, pharmaceutical industries to develop new functional semi-solid products or new interesting materials to incorporate active molecules.
Description
Revue
DOI
URL vers la version publiée
Mots-clés
Citation
Type de document
thèse de doctorat