Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.

Publication :
Transfer learning for sEMG hand gesture recognition using convolutional neural networks

En cours de chargement...
Vignette d'image



Direction de publication

Direction de recherche

Titre de la revue

ISSN de la revue

Titre du volume



Projets de recherche

Structures organisationnelles

Numéro de revue


In the realm of surface electromyography (sEMG) gesture recognition, deep learning algorithms are seldom employed. This is due in part to the large quantity of data required for them to train on. Consequently, it would be prohibitively time consuming for a single user to generate a sufficient amount of data for training such algorithms. In this paper, two datasets of 18 and 17 able-bodied participants respectively are recorded using a low-cost, low-sampling rate (200Hz), 8-channel, consumer-grade, dry electrode sEMG device named Myo armband (Thalmic Labs). A convolutional neural network (CNN) is augmented using transfer learning techniques to leverage inter-user data from the first dataset and alleviate the data generation burden imposed on a single individual. The results show that the proposed classifier is robust and precise enough to guide a 6DoF robotic arm (in conjunction with orientation data) with the same speed and precision as with a joystick. Furthermore, the proposed CNN achieves an average accuracy of 97.81% on seven hand/wrist gestures on the 17 participants of the second dataset.



IEEE International Conference On Systems, Man and Cybernetics



URL vers la version publiée


Training, Computer architecture, Robots, Spectrogram, Machine learning, Electrodes, Robustness


Licence CC