Publication : Intégration à l'usage du mathématicien : extensions transcendantes
Fichiers
Date
Auteurs
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Résumé
Ce mémoire présente dans un langage moderne la théorie de l'intégration en termes finis. Le grand mathématicien J. Liouville l'initia et bien d'autres la poursuivirent, il fallut pourtant attendre deux articles de R. H. Risch, à la fin des années soixante pour connaitre enfin un algorithme intégrant explicitement les fonctions élémentaires. La méthode a été développée, raffinée et étendue au cours des décennies qui suivirent. Notre approche emprunte principalement aux articles et aux autres écrits de M. Bronstein (1963- 2005). Nous détaillons ces nouveaux algorithmes, notamment dans le cas des fonctions élémentaires transcendantes. Ils ont tous été programmés et testés dans le langage Maple Il.0. Nous avons tenté de rendre le contenu vivant, insistant sur l'apport historique et la source des découvertes. Ce mémoire n'est qu'une facette d'un objectif plus, large qui consistait à explorer l'ensemble du calcul formel ("Computer Algebra").
[Théorème de Liouville]