Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Publication :
Deep learning-enabled framework for automatic lens design starting point generation

En cours de chargement...
Vignette d'image

Date

2021-01-25

Direction de publication

Direction de recherche

Titre de la revue

ISSN de la revue

Titre du volume

Éditeur

Optical Society of America

Projets de recherche

Structures organisationnelles

Numéro de revue

Résumé

We present a simple, highly modular deep neural network (DNN) framework to address the problem of automatically inferring lens design starting points tailored to the desired specifications. In contrast to previous work, our model can handle various and complex lens structures suitable for real-world problems such as Cooke Triplets or Double Gauss lenses. Our successfully trained dynamic model can infer lens designs with realistic glass materials whose optical performance compares favorably to reference designs from the literature on 80 different lens structures. Using our trained model as a backbone, we make available to the community a web application that outputs a selection of varied, high-quality starting points directly from the desired specifications, which we believe will complement any lens designer's toolbox.

Description

Revue

Optics express, Vol. 29 (3), 3841-3854 (2021)

DOI

10.1364/OE.401590

URL vers la version publiée

Mots-clés

Citation

Type de document