Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.

Publication :
Probabilistic K-means with local alignment for clustering and motif discovery in functional data

En cours de chargement...
Vignette d'image



Direction de publication

Direction de recherche

Titre de la revue

ISSN de la revue

Titre du volume


Taylor & Francis

Projets de recherche

Structures organisationnelles

Numéro de revue


We develop a new method to locally cluster curves and discover functional motifs, that is, typical shapes that may recur several times along and across the curves capturing important local characteristics. In order to identify these shared curve portions, our method leverages ideas from functional data analysis (joint clustering and alignment of curves), bioinformatics (local alignment through the extension of high similarity seeds) and fuzzy clustering (curves belonging to more than one cluster, if they contain more than one typical shape). It can employ various dissimilarity measures and incorporate derivatives in the discovery process, thus exploiting complex facets of shapes. We demonstrate the performance of our method with an extensive simulation study, and show how it generalizes other clustering methods for functional data. Finally, we provide real data applications to Italian Covid-19 death curves and Omics data related to mutagenesis. Supplementary materials for this article are available online.



Journal of computational and graphical statistics, 1-70 (2023)



URL vers la version publiée


Clustering, Functional data analysis, Local alignment, Motif discovery


Licence CC

Type de document