Publication :
Développement de couches antireflets à base de nanoparticules de silice pour des systèmes photovoltaïques à haute concentration

En cours de chargement...
Vignette d'image
Date
2017
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
Le sujet d’étude de cette thèse porte sur la recherche et le développement d’une couche antireflet (ARC) qu’il serait possible de déposer sur des surfaces à structure particulière (non plane). Plus spécifiquement, il s’agit de surfaces d’éléments optiques utilisés dans des systèmes de concentrateurs photovoltaïques (CPV). Ce projet de recherche a été initié par la compagnie Opsun Technologies Inc. suite à un constat de phénomène de réflexion introduite à l’ajout d’éléments optiques hautement focalisant dans leur système de CPV (que l’on va appeler HCPV par la suite). En effet, pour concentrer le rayonnement solaire sur une cellule photovoltaïque (PV), il est nécessaire d’ajouter une lentille focalisant le rayonnement (lentille de Fresnel). De plus, afin de se garantir une réception de tout le rayonnement nécessaire à la cellule PV, une composante de type guide d’onde est ajoutée. A la fois pour l’homogénéisation du rayonnement incident sur la cellule, mais surtout (dans le cas d’Opsun) pour avoir un angle d’acceptance (du rayonnement focalisé) plus large (±3.2° au lieu des ±0,5° à ±1° usuels). Ainsi, le phénomène de réflexion qui se produit à la surface de cet élément optique, lui enlève toute propriété pour laquelle il a été prévu. Le but du projet consiste alors en l’élimination de ces réflexions en utilisant une méthode de production et de déposition d’ARC, qui soit industrialisable. Dans un premier temps, différents moyens de production et de déposition d’ARC déjà existant ont été investigués. Toujours gardant en tête qu’ils doivent pouvoir être appliqués sur des surfaces particulières tout en restant industrialisables par la suite. Nos études nous ont montrées que ces méthodes classiques ne remplissent pas la condition exigée. Il a alors été décidé de rechercher des moyens de production d’ARC basées sur l’utilisation de nanostructures (NS) ou encore des couches à base de nanoparticules (NP). Dans un deuxième temps, une ARC composée de NS (fournit par l’institut Fraunhofer) a été étudiée en condition de laboratoire afin de connaître ses propriétés optiques (transmission, réflexion, diffusion). Ceci fait, la NS a été introduite dans le système HCPV et des mesures de rendement électrique ont alors été réalisées en temps réel. La NS a bien démontré une diminution de la réflexion sur l’ensemble de la longueur d’onde que nous visions (380-1500nm) qui a augmenté de 91,6% (sans AR) à 98,7% , ce qui s’est également traduit en une augmentation du rendement du système HCPV qui étaient de 5%. La NS reste néanmoins encore une méthode de laboratoire et demande beaucoup de conditions particulières afin d’être produite sur les surfaces que nous avons, augmentant considérablement son coût de production (voir en Annexe 8.1). Il a alors été décidé d’investiguer des ARC à base de NP, qui démontrent une meilleure satisfaction des exigences mentionnées précédemment. Ainsi, une troisième étape a consisté en la production et l’utilisation de NP de silice afin de produire des couches AR. En effet, une méthode bien connue de production de particules de silice a été utilisée pour l’obtention des NP, qu’est la méthode sol-gel. Par la suite, la suspension de NP produite a été déposée sur des surfaces de verre et de PMMA en utilisant une méthode de revêtement par immersion (angl. : dip coating (DC)) et leurs propriétés optiques ont été étudiées. Dans le cas présent, nous avons constaté que selon l’épaisseur d’ARC, nous avons une réflexion qui a été diminuée sur l’ensemble de la bande de longueur d’onde observé (380-1500nm). Il est à noter que, bien que l’on ait une certaine diminution sur la bande mentionnée, l’on observe une diminution maximale de la réflexion plus remarquable sur une bande de longueur d’onde spécifique. De plus, si l’on augmente l’épaisseur de l’ARC, il y a un décalage de cette diminution maximale vers les grandes longueurs d’onde. Si nous comparons les bandes de longueurs d’onde où la diminution est maximale (principalement dans le visible, entre 400nm et 800nm), nous pouvons constater que celle-ci augmente de 92,1% (sans AR) jusqu’à 99,2% suivant les épaisseurs d’ARC. Ces couches AR ont ensuite été ajoutés dans le système HCPV. Il a été observé que le rendement des HCPV ne suit pas une augmentation graduelle suivant l’augmentation de l’épaisseur de l’ARC, contrairement à ce qui été attendu. En effet, il atteint un maximum pour une épaisseur particulière (dans ce cas-ci environ 130nm (ARC4 dans Chapitre 3)) avant de diminuer à nouveau. La valeur du rendement maximal mesuré est comparable à ce qui était obtenu précédemment en utilisant les ARC à base de NS (5%). La variation des valeurs de rendement en fonction de l’épaisseur est due aux propriétés des cellules PV (multijonctions (MJ)) qui sont utilisées dans les HCPV (voir Chapitre 3 pour l’explication). Ainsi, dépendamment de l’ARC que nous pouvons produire et de la cellule MJ choisie, il sera possible d’optimiser le rendement des systèmes HCPV, selon leurs conditions d’utilisations. Pour finaliser ce projet, des tests environnementaux (accélérés) ont également été réalisés sur les ARC dans le but de connaître leur résistance mécanique, environnementale (température) ainsi qu’aux rayonnements UV, pour la même période de garantie du HCPV. Les résultats obtenus démontraient une diminution de l’efficacité de l’ARC de l’ordre de 3% en fin de test environnemental et une diminution de 1,5% pour les tests UV sur les petites longueurs d’onde (< 500nm). Ce qui reste bien inférieur aux pertes de rendement de systèmes CPV prévus par les tests standards, qui est de 20% en 25ans.
The subject of this thesis is to focus on the research and development of an antireflective coating (ARC) to coat surfaces with specific structuration (not plane). The surfaces in question are those of optical components used in high concentrating photovoltaic (HCPV) systems. This project has been initiated by Opsun Technologies Inc. after they were experiencing reflection phenomena when the concentrating optical components were added in the system. Indeed, to concentrate light on a photovoltaic (PV) cell, it is essential to use a lens (Fresnel lens). Furthermore, to ensure reception of all the incident wavelengths, a second optical component is added in the HCPV system. It can be assimilated to a waveguide, which is aimed to homogenize the rays. More importantly, it has the property to increase the angular aperture of the received light (±3.2° instead of the usual ±0,5° à ±1°). Thus, adding this second optical component, added a reflection phenomenon due to the extra interface, preventing the component to be used for its initial property. The aim of this project is thus to produce an ARC and coat these surfaces with a specific method, the whole processes must be industrializable at the same time. Hence, a first step was aimed to investigate different existing ARC production and coating methods that can correspond to our required properties. Classical ARC production methods have quickly been considered as non-eligible, therefore new methods have been explored such as nanostructured (NS) ARC or coatings based on nanoparticles (NP). In a second part of the work, a NS (kindly provided by the Fraunhofer institute), was studied in laboratory conditions, to know its optical properties (transmission, reflection, scattering). Afterwards, it was introduced in the HCPV system to get real-time studies of the electrical performance. The NS did show an increase in the optical transmission, on the whole wavelength ranges we are interested in (350-1500nm), which increased from 91,6% (without AR) up to 98,7% , which resulted in a direct increase of the electrical performance of the HCPV that was about 5%. Anyways, the NS is still a method developed and used on a laboratory level and requires a lot of specific production conditions, increasing its final coast (see Appendix 8.1). Thus, it was decided that coatings based on NP needed also to be investigated. A third step of this work was then to produce ARC based on silica NP using a well-known production method, which is the sol-gel process. The obtained NP were then deposed by a homemade dip coating (DC) method on glass and PMMA slides and their optical properties were studied (on a wavelength band varying from 380 to 1500nm). In this case, we also noticed an increase in the transmission, which was totally dependent on the ARC thicknesses. Indeed, a shift of the maximum transmission towards higher wavelengths was observed when the ARC thickness increased. It is important to mention that, even though a certain transmission increase on the considered wavelengths was obtained, a maximum increase on a specific wavelength (in the visible wavelengths, from 400nm to 800nm) band was observed for each ARC (or thickness). Those maximum transmissions of the different ARC, when compared, showed an increase from 92,1% (without AR) up to 99,2% depending on the ARC thickness. When the ARC were added in the HCPV system, the response of the electrical performance did not increase gradually, depending of the increase of the coating thickness, which was our expectation. Instead, it reached a maximum for a specific thickness (around 130nm (ARC4 in Chapitre 3)), before it decreased when higher thicknesses were used. The maximum electrical output value obtained has been found to be comparable to the results obtained using the NS (5%). This phenomenon can be explained by the specific properties of the PV cells (multijunction (MJ), see Chapitre 3 for the explanation). Thus, for a specific PV cell a specific ARC can be produced to optimize the electrical yield of the HCPV system, depending on the conditions they are used in. An ultimate step consisted in the environmental testing (accelerated tests) of our obtained ARC, to have information about their resistance in terms of mechanical deterioration, temperature and UV variation, for the same lifetime warranty of CPV systems. The results obtained showed a decrease of the ARC efficiency that was about 3% at the end of the temperature tests and a 1,5% variation of the transmission was observed after the UV tests for small wavelengths (< 500nm). This is relatively low compared to the warranty of CPV system efficiencies that are expected to decrease about 20% in 25 year lifetime.
Description
Revue
DOI
URL vers la version publiée
Mots-clés
Citation
Type de document
thèse de doctorat