Publication :
Développement de catalyseurs hétérogènes pour la photodégradation du néonicotinoïde acétamipride dans l'eau

En cours de chargement...
Vignette d'image
Date
2021
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
En raison de l'utilisation généralisée de l'acétamipride dans de nombreuses régions et de ses résidus potentiels présents dans l'environnement, ce néonicotinoïde a reçu une attention considérable de la part de la communauté scientifique en quête active de méthodes efficaces assurant sa dégradation. Au cours des dernières décennies, la photocatalyse hétérogène et l'application des semi-conducteurs ont été largement étudiées pour la dégradation des polluants organiques. Cette thèse vise à développer des photocatalyseurs efficaces à base d'oxyde de zinc (ZnO), en appliquant différentes stratégies, telles que le couplage de ZnO avec des métaux et des non-métaux permettant de réduire les inconvénients possibles, tels que la recombinaison électron-trou et d'étendre l'absorption de la lumière dans le domaine du visible. Dans les études réalisées dans le cadre de la présente thèse, il a été proposé la production de photocatalyseurs par la méthode de précipitation simple et la précipitation assistée par microondes, avec dopage et co-catalyse de matériaux métalliques (Ce, Cu, Fe, Pd) et non métalliques (N et oxyde de graphène). Les différents nanomatériaux catalytiques synthétisés ont été caractérisés afin d'évaluer leur morphologie, leur structure et leurs propriétés optiques et texturales. Les photocatalyseurs ont par la suite été appliqués au processus de réaction de photocatalyse hétérogène sous la lumière visible pour la dégradation de l'acétamipride dans l'eau. Les photocatalyseurs dopés simultanément à l'azote et à l'oxyde de graphène ainsi qu'au palladium et à l'oxyde de graphène ont donné des résultats les plus prometteurs en assurant la dégradation totale de l'acétamipride au bout de 300 min à la température ambiante. Par ailleurs, afin d'améliorer les performances de dégradation du polluant, le recours aux ultrasons a été mis en œuvre de deux méthodes différentes. La première consistait à utiliser les ultrasons comme prétraitement avant la photocatalyse. La deuxième consistait en une combinaison simultanée de la cavitation ultrasonore et de la photocatalyse hétérogène. Cette dernière stratégie s'est avérée la plus efficace en permettant d'assurer une dégradation complète de l'acétamipride au bout de 120 min de réaction sonophotocatalytique. En conclusion, la présente recherche s'est révélée positive, répondant à l'objectif principal de dégradation de l'acétamipride dans l'eau, en utilisant des procédés innovants dans le domaine de la photocatalyse, qui sont simples et faciles à appliquer et à manipuler.
Due to the widespread use of acetamiprid in many regions worldwide and its potential residues in the environment, this neonicotinoid has received considerable attention from the scientific community actively seeking effective methods to ensure its degradation. In recent decades, heterogeneous photocatalysis and the application of semiconductors have been widely studied for the degradation of organic pollutants. The present thesis aims to develop efficient photocatalysts based on zinc oxide (ZnO), by applying different strategies, such as the coupling of ZnO with metals and non-metals allowing to reduce the possible drawbacks, such as electron recombination -hole and extend the absorption of light to the visible range. In the investigations carried out within the framework of this thesis, it was proposed the production of photocatalysts by the simple precipitation method and the precipitation assisted by microwaves, with doping and co-catalysis of metallic materials (Ce, Cu, Fe, Pd) and non-metallic (N and graphene oxide). The different catalytic nanomaterials synthesized were characterized to evaluate their morphology, structure, optical and textural properties. The photocatalysts were subsequently applied to the heterogeneous photocatalysis reaction process under visible light irradiation for the degradation of acetamiprid in water. Photocatalysts doped simultaneously with nitrogen and graphene oxide as well as palladium and graphene oxide have given the most promising results by ensuring the complete degradation of acetamiprid after 300 min of reaction at ambient temperature. Furthermore, to improve the pollutant degradation performances, the use of ultrasound was implemented in two different methods. The first was to use ultrasonication as a pretreatment before photocatalysis. The second consisted of a simultaneous combination of ultrasonic cavitation and heterogeneous photocatalysis. The latter strategy has proven to be the most effective in ensuring complete degradation of acetamiprid after 120 min of sonophotocatalytic reaction. In conclusion, the present research was shown to be positive, meeting the main objective of degradation of acetamiprid in water, using innovative processes in the field of photocatalysis, which are simple and easy to apply and manipulate.
Description
Revue
DOI
URL vers la version publiée
Mots-clés
Citation
Type de document
thèse de doctorat