Publication :
Quality of sawmilling output predictions according to the size of the lot - The size matters!

En cours de chargement...
Vignette d'image
Date
2021-05-07
Direction de publication
Direction de recherche
Titre de la revue
ISSN de la revue
Titre du volume
Éditeur
Projets de recherche
Structures organisationnelles
Numéro de revue
Résumé
Lors de l'évaluation de modèles d'apprentissage automatique supervisé, on considère généralement le rendement de prédiction moyen obtenu sur les tests individuels comme mesure de choix. Toutefois, lorsque le modèle est destiné à prédire quels produits du bois seront obtenus lors du sciage de certains billots, c'est généralement la performance pour un lot complet qui importe. Dans cet article, nous montrons l'impact de cette nuance en termes d'évaluation du modèle. En fait, la qualité d'une prédiction (globale) s'améliore considérablement lorsque l'on augmente la taille des lots, ce qui offre un solide soutien à l'utilisation de ces modèles en pratique.
When comparing supervised learning models, one generally considers the average prediction performance obtained over individual test samples. However, when using machine learning to predict which lumber products will be obtained when sawing logs, it is usually the performance over the entire lot that matters. In this paper, we show the impact of this by evaluating a model performance for various batch sizes. The quality of a (global) prediction improves tremendously when batch size increases, which offers a strong support for the use of such models in practice.
Description
Revue
International Conference on Industrial Engineering and Quality (CIGI-Qualita21)
DOI
URL vers la version publiée
Mots-clés
Simulation de débitage , Évaluation de modèles d’apprentissage supervisé , Application d’apprentissage automatique , Industrie des produits forestiers , Sawing Simulation , Supervised Learning Models Evaluation , Machine Learning Application , Forest products industry
Citation
Type de document
article dans une conférence