Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Mayrand, Dominique

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Mayrand

Prénom

Dominique

Affiliation

Université Laval. Département de biologie moléculaire, de biochimie médicale et de pathologie

ISNI

ORCID

Identifiant Canadiana

ncf11848372

person.page.name

Résultats de recherche

Voici les éléments 1 - 4 sur 4
  • PublicationRestreint
    High definition confocal imaging modalities for the characterization of tissue-engineered substitutes
    (Springer, 2018-04-01) Fradette, Julie; Mayrand, Dominique
    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.
  • PublicationAccès libre
    Enhancing repair of full-thickness excisional wounds in a murine model : impact of tissue-engineered biological dressings featuring human differentiated adipocytes
    (Elsevier, 2015-04-29) Laterreur, Véronique; Maux, Amandine; Gagné, Valérie; Moulin, Véronique; Fradette, Julie; Morissette Martin, Pascal; Mayrand, Dominique
    Promotion of skin repair for acute or chronic wounds through the use of tissue-engineered products is an active field of research. This study evaluates the effects mediated by tissue-engineered biological dressings containing human in vitro-differentiated adipocytes and adipose-derived stromal cells (ASCs). Re-epithelialization, granulation tissue formation and neovascularization of full-thickness cutaneous wounds were specifically assessed using a murine model featuring a fluorescent epidermis. In comparison with wounds that did not receive an adipocyte-containing biological dressing, treated wounds displayed a slight but significantly faster wound closure based on macroscopic observations over 18 days. Non-invasive imaging of GFP-expressing keratinocytes determined that the kinetics of re-epithelialization were similar for both groups. Treated wounds featured thicker granulation tissues (1.7-fold, P < 0.0001) enriched in collagens (1.3-fold, P < 0.0104). In addition, wound cryosections labeled for detection of CD31-expressing cells indicated a 2.2-fold (P < 0.0002) increased neovascularization for the treated wounds at the time of terminal biopsy. This is in accordance with the secretion of pro-angiogenic factors detected in media conditioned by the dressings. Taken together, these results establish that a new type of engineered substitutes featuring a mixture of adipocytes and ASCs can promote cutaneous healing when applied as temporary dressings, suggesting their potential relevance for chronic wound management studies.
  • PublicationAccès libre
    Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products
    (Elsevier, 2014-09-30) Vincent, Caroline; Proulx, Maryse; Aubin, Kim; Fradette, Julie; Mayrand, Dominique
    The development of tissue-engineered substitutes of substantial volume is closely associated with the need to ensure rapid vascularization upon grafting. Strategies promoting angiogenesis include the in vitro formation of capillary-like networks within engineered substitutes. We generated both connective and adipose tissues based on a cell sheet technology using human adipose-derived stromal cells. This study evaluates the morphology and extent of the capillary networks that developed upon seeding of human microvascular endothelial cells during tissue production. We posited that adipocyte presence/secretory products could modulate the resulting capillary network when compared to connective substitutes. Analyses including confocal imaging of CD31-labeled capillary-like networks indicated slight differences in their morphological appearance. However, the total volume occupied by the networks as well as the frequency distribution of the structure’s volumes were similar between connective and adipose tissues. The average diameter of the capillary structures tended to be 20% higher in reconstructed adipose tissues. Quantification of pro-angiogenic molecules in conditioned media showed greater amounts of leptin (15×), angiopoietin-1 (3.4×) and HGF (1.7×) secreted from adipose than connective tissues at the time of endothelial cell seeding. However, this difference was attenuated during the following coculture period in endothelial cell-containing media, correlating with the minor differences noted between the networks. Taken together, we developed a protocol allowing reconstruction of both connective and adipose tissues featuring well-developed capillary networks in vitro. We performed a detailed characterization of the network architecture within engineered tissues that is relevant for graft assessment before implantation as well as for in vitro screening of angiogenic modulators using three-dimensional models.
  • PublicationAccès libre
    Impact of TNF and IL-1β on capillary networks within engineered human adipose tissues
    (Royal Society of Chemistry, 2016-04-27) Proulx, Maryse; Maux, Amandine; Safoine, Meryem; Aubin, Kim; Fradette, Julie; Mayrand, Dominique
    Inflammation is a normal phase of the wound healing process, which likely occurs following tissue transplantation. For reconstructive surgery purposes, engineered adipose tissues represent promising alternatives to autologous fat grafts. It is therefore important to study the impact of an inflammatory microenvironment on the cellular functions of the different cell types comprised within matrix-rich reconstructed tissues. In this study, human reconstructed adipose tissues (hrATs) featuring a preformed capillary network formed by microvascular endothelial cells (hMVECs) were produced from adipose-derived stem/stromal cells (ASCs) by the self-assembly approach of tissue engineering. We hypothesized that a prolonged inflammatory context, mediated by tumor necrosis factor (TNF) and interleukin-1β (IL-1β), would impact hrATs' secretory profile and mediate detrimental effects on the microvascular network in vitro. Analysis of conditioned media established tissue responsiveness through the increased secretion of monocyte chemoattractant protein-1 (up to 23 fold), interleukin-6 (up to 69 fold) and angiopoietin-1 (up to 2.7 fold) after 3 and 6 days of cytokine exposure, along with a significant reduction in adiponectin secretion. Imaging of the preformed capillary network within the hrATs revealed increased disorganization in the presence of TNF/IL-1β, featuring a less extended and less ramified network with apoptotic hMVECs in the remaining capillary structures. These results indicate that a prolonged inflammatory context can be deleterious to the capillary network featured by in vitro engineered tissues. Strategies aiming at preserving the integrity of the vascular network will help develop substitutes that are better suited to face inflammatory conditions upon grafting.