Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Mayrand, Dominique

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Mayrand

Prénom

Dominique

Affiliation

Université Laval. Département de biologie moléculaire, de biochimie médicale et de pathologie

ISNI

ORCID

Identifiant Canadiana

ncf11848372

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationRestreint
    High definition confocal imaging modalities for the characterization of tissue-engineered substitutes
    (Springer, 2018-04-01) Fradette, Julie; Mayrand, Dominique
    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.
  • PublicationAccès libre
    Short-term post-implantation dynamics of in vitro engineered human microvascularized adipose tissues
    (Elsevier Science Publishers, 2018-10-01) Boisvert, Annie; Vincent, Caroline; Proulx, Maryse; Aubin, Kim; Trottier, Valérie; Fradette, Julie; Mayrand, Dominique
    Engineered adipose tissues are developed for their use as substitutes for tissue replacement in reconstructive surgery. To ensure a timely perfusion of the grafted substitutes, different strategies can be used such as the incorporation of an endothelial component. In this study, we engineered human adipose tissue substitutes comprising of functional adipocytes as well as a natural extracellular matrix using the self-assembly approach, without the use of exogenous scaffolding elements. Human microvascular endothelial cells (hMVECs) were incorporated during tissue production in vitro and we hypothesized that their presence would favor the early connection with the host vascular network translating into functional enhancement after implantation into nude mice in comparison to the substitutes that were not enriched in hMVECs. In vitro, no significant differences were observed between the substitutes in terms of histological aspects. After implantation, both groups presented numerous adipocytes and an abundant matrix in addition to the presence of host capillaries within the grafts. The substitutes thickness and volume were not significantly different between groups over the short-term time course of 14 days (d). For the microvascularized adipose tissues, human CD31 staining revealed a human capillary network connecting with the host microvasculature as early as 3 d after grafting. The detection of murine red blood cells within human CD31+ structures confirmed the functionality of the human capillary network. By analyzing the extent of the global vascularization achieved, a tendency towards increased total capillary network surface and volume was revealed for prevascularized tissues over 14 d. Therefore, applying this strategy on thicker reconstructed adipose tissues with rate-limiting oxygen diffusion might procure added benefits and prove useful to provide voluminous substitutes for patients suffering from adipose tissue loss or defects.
  • PublicationAccès libre
    Oxidative activity of 17β-hydroxysteroid dehydrogenase on testosterone in male abdominal adipose tissues and cellular localization of 17β-HSD type 2
    (North-Holland, 2015-06-26) Fouad Mansour, Mohamed; Boulet, Marie Michèle; Poirier, Donald; Luu The, Van; Brochu, Gaétan; Cianflone, Katherine M.; Lebel, Stefane; Pelletier, Mélissa; Fradette, Julie; Tchernof, André; Mayrand, Dominique
    Testosterone can be converted into androstenedione (4-dione) by 17β-hydroxysteroid dehydrogenase (HSD) activity likely performed by 17β-HSD type 2. Our objective was to evaluate the rate of testosterone conversion to 4-dione as well as expression and localization of 17β-HSD type 2 in omental (OM) vs. subcutaneous (SC) adipose tissues of men. Formation of 4-dione from testosterone was significantly higher in homogenates (p ≤ 0.001) and explants (p ≤ 0.01) of OM than SC tissue. Microscopy analyses and biochemical assays in cell fractions localized the enzyme in the vasculature/endothelial cells of adipose tissues. Conversion of testosterone to 4-dione was weakly detected in most OM and/or SC preadipocyte cultures. Positive correlations were found between 17β-HSD type 2 activity in whole tissue and BMI or SC adipocyte diameter. We conclude that conversion of testosterone to 4-dione detected in abdominal adipose tissue is caused by 17β-HSD type 2 which is localized in the vasculature of the adipose compartment.