Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Blondin, Patrick.

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Blondin

Prénom

Patrick.

Affiliation

Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval

ISNI

ORCID

Identifiant Canadiana

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationRestreint
    The use of adenosine to inhibit oocyte meiotic resumption in Bos taurus during pre-IVM and its potential to improve oocyte competence
    (Elsevier Inc., 2019-10-07) Vigneault, Christian; Caballero, Julieta; Richard, François J.; Sirard, Marc-André; Blondin, Patrick.
    One of the major challenges of artificial reproductive technologies is to develop new methods for pro-ducing greater numbers of embryos. An oocyte fosters the ability to develop into an embryo beforeoocyte meiotic resumption. The aim of the present study was to assess the effect of adenosine (ADO), apurine nucleoside found in follicularfluid, on the inhibition of oocyte meiotic resumption and theproduction of blastocysts. The results showed the efficacy of ADO to inhibit oocyte meiotic resumption.The use of ADO (3 mM) during a pre-in vitro maturation (pre-IVM) culture period of 6 h resulted in asignificant increase (p<0.05) of blastocysts compared to control conditions with no pre-IVM cultureperiod. No effect on the percentage of cleavage was observed. The effect of adenosine on blastocyst yieldwas time- and concentration-dependent with an optimum effect at 3 mM for 6 h. Supplementing theADO pre-IVM culture medium with estradiol, follicle-stimulating hormone, progesterone, epidermalgrowth factor, insulin-like growth factor-2 or reelin did not improve the blastocyst yield. Transcriptionalanalyses of ADO-treated cumulus cells revealed that NRP1, RELN, MAN1A1, THRA and GATM were up-regulated. Finally, bioinformatic analysis identified mitochondrial function as the top canonicalpathway affected by ADO. This opens up new opportunities for further investigations.
  • PublicationRestreint
    Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes
    (Commonwealth Scientific and Industrial Research Organization, 2013-07-05) Vigneault, Christian; Bunel, Audrey; Nivet, Anne-Laure; Richard, François J.; Sirard, Marc-André; Blondin, Patrick.
    The final days before ovulation impact significantly on follicular function and oocyte quality. This study investigated the cumulus cell (CC) transcriptomic changes during the oocyte developmental competence acquisition period. Six dairy cows were used for 24 oocyte collections and received FSH twice daily over 3 days, followed by FSH withdrawal for 20, 44, 68 and 92 h in four different oestrous cycles for each of the six cows. Half of the cumulus–oocyte complexes were subjected to in vitro maturation, fertilisation and culture to assess blastocyst rate. The other half of the CC underwent microarray analysis (n = 3 cows, 12 oocyte collections) and qRT-PCR (n = 3 other cows, 12 oocyte collections). According to blastocyst rates, 20 h of FSH withdrawal led to under-differentiated follicles (49%), 44 and 68 h to the most competent follicles (71% and 61%) and 92 h to over-differentiated ones (51%). Ten genes, from the gene lists corresponding to the three different follicular states, were subjected to qRT-PCR. Interestingly, CYP11A1 and NSDHL gene expression profiles reflected the blastocyst rate. However most genes were associated with the over-differentiated status: GATM, MAN1A1, VNN1 and NRP1. The early period of FSH withdrawal has a minimal effect on cumulus gene expression, whereas the longest period has a very significant one and indicates the beginning of the atresia process.
  • PublicationRestreint
    Changes in granulosa cells' gene expression associated with increased oocyte competence in bovine.
    (Journals of Reproduction and Fertility, 2013-05-01) Nivet, Anne-Laure; Vigneault, Christian; Sirard, Marc-André; Blondin, Patrick.
    One of the challenges in mammalian reproduction is to understand the basic physiology of oocyte quality. It is believed that the follicle status is linked to developmental competence of the enclosed oocyte. To explore the link between follicles and competence in cows, previous research at our laboratory has developed an ovarian stimulation protocol that increases and then decreases oocyte quality according to the timing of oocyte recovery post-FSH withdrawal (coasting). Using this protocol, we have obtained the granulosa cells associated with oocytes of different qualities at selected times of coasting. Transcriptome analysis was done with Embryogene microarray slides and validation was performed by real-time PCR. Results show that the major changes in gene expression occurred from 20 to 44 h of coasting, when oocyte quality increases. Secondly, among upregulated genes (20-44 h), 25% were extracellular molecules, highlighting potential granulosa signaling cascades. Principal component analysis identified two patterns: one resembling the competence profile and another associated with follicle growth and atresia. Additionally, three major functional changes were identified: (i) the end of follicle growth (BMPR1B, IGF2, and RELN), involving interactions with the extracellular matrix (TFPI2); angiogenesis (NRP1), including early hypoxia, and potentially oxidative stress (GFPT2, TF, and VNN1) and (ii) apoptosis (KCNJ8) followed by iii) inflammation (ANKRD1). This unique window of analysis indicates a progressive hypoxia during coasting mixed with an increase in apoptosis and inflammation. Potential signaling pathways leading to competence have been identified and will require downstream testing. This preliminary analysis supports the potential role of the follicular differentiation in oocyte quality both during competence increase and decrease phases.