Personne :
Leroueil, Serge

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Nom de famille
Université Laval. Département de génie civil et de génie des eaux
Identifiant Canadiana

Résultats de recherche

Voici les éléments 1 - 6 sur 6
  • Publication
    Accès libre
    Hydrogeology of a complex Champlain Sea deposit (Quebec, Canada) : implications for slope stability
    (National Research Council of Canada, 2020-11-25) Young, Nathan Lee; Locat, Pascal; Delottier, Hugo; Cloutier, Catherine; Locat, Ariane; Lemieux, Jean-Michel; Fortier, Philippe; Locat, Jacques; Leroueil, Serge; Demers, Denis; Germain, Alexandra
    The thick sequences of marine clayey deposits which blanket the St. Lawrence Lowlands in south-eastern Canada are highly susceptible to landslides. With 89% of the population of the Province of Quebec living in this region, improving our understanding of the mechanisms causing landslides in these sediments is a matter of public security. To accomplish this goal, instruments were deployed at a field site in Sainte-Anne-de-la-Pérade, Quebec, Canada to monitor atmospheric, soil, and groundwater conditions. Field and laboratory measurements of soil geotechnical and hydraulic properties were also performed. Results indicate that the groundwater and pore pressure dynamics at the site cannot be explained using simplified site conceptual models. Further analysis indicates that groundwater dynamics and pore pressures in the massive clay deposits on-site are determined by (i) the highly-heterogeneous nature of the local geological materials (ii) the contrasting hydraulic and geotechnical properties of these materials, (iii) the presence of two unconfined aquifers at the site, one surficial and one at depth, and (iv), the presence of the Sainte-Anne River. These results were used to create a new conceptual model which illustrates the complex groundwater flow system present on site, and shows the importance of including hydrogeologic context in slope stability analysis.
  • Publication
    Accès libre
    Numerical modeling of progressive failure and its application to spreads in sensitive clays
    (Conseil national de recherches du Canada, 2013-07-15) Locat, Ariane; Jostad, Hans Petter; Leroueil, Serge
    Les étalements sont de grands glissements de terrain survenant dans les argiles sensibles. Les méthodes d’analyse de la stabilité utilisant la méthode à l’équilibre limite donnent des coefficients de sécurité élevés et ne peuvent s’appliquer à ces glissements. Le mécanisme de rupture progressive expliquerait l’initiation et la propagation de la surface de rupture et la dislocation du sol en horst et en grabens, typiques aux étalements. Une méthode numérique est présentée afin d’identifier les paramètres influençant la rupture progressive et de valider son application aux étalements. Cette méthode évalue les contraintes présentes initialement dans le talus et modélise l’initiation et la propagation de la rupture progressive. Il est démontré que les hautes pentes, fortement inclinées ayant un coefficient de pression des terres au repos élevé sont susceptibles à la rupture progressive et que la surface de rupture se propage sur une grande distance. La rupture est favorisée par un sol ayant une grande fragilité lors du cisaillement. Une faible résistance à grande-déformation du sol favorise une grande distance de propagation. Les argiles de l’est du Canada, pouvant présenter une forte sensibilité et une grande fragilité lors du cisaillement, sont donc susceptibles à la rupture progressive et celle-ci explique l’occurrence d’étalements dans ces sols.
  • Publication
    Accès libre
    The Saint-Jude landslide of May 10th, 2010, Quebec, Canada : investigation and characterisation of the landslide and its failure mechanism
    (Ottawa National Research Council of Canada, 2017-09-26) Locat, Pascal; Locat, Ariane; Robitaille, Denis; Leroueil, Serge; Demers, Denis; Lefebvre, Guy
    A landslide occurred on May 10, 2010, along the Salvail River, in the municipality of Saint- Jude, Quebec. Debris of the landslide was formed of blocks clay having horst and graben shapes, typical of spreads in sensitive clays. A detailed investigation was carried out by the Ministère des Transports, de la Mobilité durable et de l’électrification des transports du Québec in collaboration with Université Laval, with the objective of characterizing this landslide, determining the causes and learning about its failure mechanism. The soil involved is a firm, grey, sensitive lightly overconsolidated clay with some silt. Data from piezometers installed near the landslide indicated artesian conditions underneath the Salvail River. Cone penetration tests allowed to location of two failure surface levels. The first one starting 2.5 m below the initial river bed and extending horizontally up to 125 m and a second one 10 m higher reaching the backscarp. Investigation of the debris with onsite measurements, light detector and ranging surveys, cone penetration tests, and boreholes allowed a detailed geotechnical and morphological analysis of the debris and reconstitution of the dislocation mechanism of this complex spread.
  • Publication
    Accès libre
    Development of a long term monitoring network of sensitive clay slopes in Québec in the context of climate change
    (springer international publishing, 2017-05-24) Locat, Pascal; Cloutier, Catherine; Locat, Ariane; Fortin, Alexis; Lemieux, Jean-Michel; Locat, Jacques; Leroueil, Serge; Demers, Denis; Bilodeau, Chantal
    The Government of Québec recently initiated the deployment of a vast groundwater pressures monitoring network in postglacial marine clays to document their variations in time and improve our understanding of the relationship between failure initiation and climate in clay slopes. This project aims at evaluating the impacts of climate change on clay-slope stability and how it can be integrated in landslide risk management to improve public safety. Hydrogeological data will be acquired at sites located throughout the Québec Province’s post-glacial clay deposits to create a public georeferenced index of typical hydrogeological conditions. The project goes beyond the characterization of groundwater pressures and their variations in clay slopes. Indeed, slope deformation will be measured at several sites. Also, two sites in flat terrain will be instrumented in order to evaluate mechanical properties of clay layers in simple 1-D conditions and groundwater recharge. The unsaturated clay crust in slopes susceptible to superficial landslides will be characterized and instrumented. The current lifetime of the monitoring project has been set to a period of 25 years.
  • Publication
    Accès libre
    Field performance of four vibrating-wire piezometer installation methods
    (National Research Council of Canada, 2022-01-12) Young, Nathan Lee; Locat, Pascal; Locat, Ariane; Lemieux, Jean-Michel; Locat, Jacques; Mony, Laura; Leroueil, Serge; Demers, Denis; Germain, Alexandra
    Vibrating wire piezometers provide a number of advantages over the traditional hydraulic piezometer design. There are many methods and configurations for installing vibrating-wire piezometers, with the most common being: single piezometers in sand packs (SP), multilevel piezometers in sand packs (MLSP), and fully-grouted multilevel piezometers using either bentonite (FGB) or cement-bentonite grout (FGCB). This study assesses the performance of these four different installation methods for vibrating wire piezometers at a field site possessing complex stratigraphy, including glacial and marine sediments. Pore pressure data recorded between December 2017 and July 2019 were analyzed to accomplish this objective. Data indicate that SP, MLSP, and FGB piezometers performed well. This determination is based on the fact that piezometers installed at the same depth with these arrangements recorded similar pressure variations that were coherent with the hydrogeological setting. Of the two fully-grouted installations using cement-bentonite grout, one installation failed completely due to a hydraulic short circuit, caused either by shrinkage of the grout or flow occurring along the wires of the embedded instruments. While the FGB-type piezometers used in this study worked correctly, the lack of standard methods concerning both the construction of fully-grouted piezometers is concerning. Furthermore, the lack of a standard method for mixing cement-bentonite grout likely contributed to the failure of the FGCB installations. Thus, due to the lack of guidance for both construction and grout preparation, the use of a bentonite grout removes a degree of uncertainty when fully-grouted installation techniques are used.
  • Publication
    Accès libre
    The 1994 landslide at Sainte-Monique, Quebec : geotechnical investigation and application of progressive failure analysis
    (Canadian Science Publishing, 2014-09-11) Locat, Ariane; Leroueil, Serge; Fortin, Alexis; Demers, Denis; Jostad, Hans Petter
    In 1994, a landslide occurred in the municipality of Sainte-Monique, Quebec. The debris of the landslide had graben and host shapes, typical of spreads in sensitive clays. The geotechnical investigation shows that the soil involved is a firm to stiff, sensitive, nearly normally consolidated grey silty clay of high plasticity. This soil exhibits a high sensitivity and a high brittleness during shear and is therefore susceptible to progressive failure. Traditional stability analysis cannot explain this landslide. This gives the opportunity to examine the applicability of progressive failure analysis to this spread. Using the finite elements method, it is demonstrated that the initiation and observed extent of the failure surface are explained by a soil having high brittleness during shear and a large-deformation shear strength close to the remoulded shear strength of the soil. The dislocation of the soil mass can also be explained by the active failure occurring in the soil mass above the failure surface during or shortly after failure propagation. It is therefore numerically demonstrated that progressive failure explains the initiation and the extent of the failure surface of this spread.