Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Paquin, Simon

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Paquin

Prénom

Simon

Affiliation

Université Laval. Département de génie mécanique

ISNI

ORCID

Identifiant Canadiana

ncf13705630

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Récupération d'énergie mécanique à partir de sources vibratoires déterministes et aléatoires
    (2017) Paquin, Simon; St-Amant, Yves
    L'alimentation électrique d'un appareil électronique sans fil est souvent effectuée via une pile électrique. Une solution alternative pour produire une alimentation en continue est de récupérer l'énergie provenant des vibrations d'une structure mécanique. Il a déjà été démontré que le récupérateur d'énergie vibratoire classique est efficace uniquement lorsque la source d'excitation vibratoire a un contenu fréquentiel à bande étroite. Les sources vibratoires étant souvent composées d'un large spectre fréquentiel, le récupérateur classique est alors peu performant. L'objectif principal de cette thèse est donc de proposer et d'évaluer une architecture de récupération d'énergie permettant de récupérer efficacement de l'énergie provenant d'une source vibratoire dont le contenu fréquentiel est déterministe ou aléatoire. Une revue de documentation scientifique permet d'abord de classifier et de hiérarchiser les différentes stratégies qui ont déjà été proposées pour récupérer de l'énergie à partir des sources vibratoires les plus courantes. Basée sur cette revue, une architecture composée de plusieurs récupérateurs piézoélectriques couplés via des impédances électriques est ensuite proposée. Afin de prédire la densité de puissance adimensionnelle de cette architecture, un modèle électromécanique de celle-ci est développé puis validé expérimentalement avec un prototype composé de deux récupérateurs. Ce modèle est ensuite introduit dans une procédure d'optimisation qui maximise un critère de performances basé sur le type de source vibratoire d'excitation, soit une source stationnaire ou non-stationnaire. Les résultats d'optimisation sont par la suite analysés sous forme d'études paramétriques. Pour différentes sources vibratoires, ces études établissent l'influence de chacun des paramètres composant l'architecture sur ses performances tout en développant un outil de conception de l'architecture proposée. La première partie de ces études considère le cas où l'architecture est excitée par une source vibratoire harmonique tandis que la seconde partie le fait pour une source aléatoire stationnaire et non-stationnaire. Finalement, des cas d'application sont présentés pour démontrer comment utiliser l'outil de conception. Bien que les résultats obtenus dans ces cas ne soient pas généraux, il y est démontré que l'utilisation de l'architecture proposée permet d'augmenter la densité de puissance ou de l'uniformiser sur un plus large spectre fréquentiel : comparativement au récupérateur classique, une architecture de deux récupérateurs permet un gain de performances de 51% pour une source vibratoire harmonique, de 184% pour une source de type passe-bas et de 212% pour une source non-stationnaire.
  • PublicationAccès libre
    Modélisation et optimisation mécanique d'un récupérateur piézoélectrique d'énergie vibratoire
    (2011) Paquin, Simon; St-Amant, Yves
    Dans la dernière décennie, plusieurs chercheurs ont démontré un intérêt concernant la possibilité de récupérer de l'énergie mécanique provenant de structures vibrantes. Une façon commune de procéder consiste à utiliser l'effet piézoélectrique direct à partir d'une poutre en porte-à-faux ayant des céramiques piézoélectriques intégrées. Les études portant sur la modélisation du phénomène se sont jusqu'ici limitées à des geometries simples de récupérateur tandis que peu d'études se sont intéressées à la modélisation d'une forme optimale de récupérateur. Les travaux de recherche de ce mémoire étudient donc le phénomène de récupération d'énergie vibratoire afin d'élaborer un design optimal de récupérateur piézoélectrique. Le phénomène piézoélectrique est d'abord décrit théoriquement afin que le volume piézoélectrique soit intégré adéquatement à une structure vibrante. Une analyse détaillée de modèles est ensuite réalisée pour faire ressortir les bases de la récupération d'énergie vibratoire. À la lumière de cette analyse, une modélisation semi-analytique est développée à partir des approximations de Rayleigh-Ritz et intégrée à un modèle électromécanique. Une fois validée, des études numériques sont réalisées avec ce modèle permettant ainsi de poser le problème d'optimisation de la géométrie du récupérateur. Un algorithme génétique est finalement utilisé pour maximiser la puissance récupérée. La géométrie optimale permet de récupérer une puissance de 62.8 mW lorsque le récupérateur est soumis à une source vibratoire ayant une amplitude d'accélération de 9.81 m.s⁻² et une fréquence d'excitation de 100 Hz, ce qui constitue une densité énergétique de 0.38 mW.g⁻¹.