Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Renaud, Jacques

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Renaud

Prénom

Jacques

Affiliation

Université Laval. Département d'opérations et systèmes de décision

ISNI

ORCID

Identifiant Canadiana

ncf10313377

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    Measuring fuel consumption in vehicle routing : new estimation models using supervised learning
    (Taylor & Francis Group, 2021-07-06) Heni, Hamza; Diop, Serigne Arona; Renaud, Jacques; Coelho, Leandro C.
    In this paper, we propose and assess the accuracy of new fuel consumption estimation models for vehicle routing. Based on real-world data consisting of instantaneous fuel consumption, time-varying speeds observations, and high-frequency traffic, we propose effective methods to estimate fuel consumption. By carrying out nonlinear regression analysis using supervised learning methods, namely Neural Networks, Support Vector Machines, Conditional Inference Trees, and Gradient Boosting Machines, we develop new models that provide better prediction accuracy than classical models. We correctly estimate consumption for time-dependent point-to-point routing under realistic conditions. Our methods provide a more precise alternative to classical regression methods used in the literature, as they are developed for a specific situation. Extensive computational experiments under realistic conditions show the effectiveness of the proposed machine learning consumption models, clearly outperforming macroscopic and microscopic consumption models such as the Comprehensive Modal Emissions Model (CMEM) and the Methodology for Estimating air pollutant Emissions from Transport (MEET). Based on sensitivity analyses we show that MEET underestimates real-world consumption by 24.94% and CMEM leads to an overestimation of consumption by 7.57% with optimised parameters. Our best machine learning model (Gradient Boosting Machines) exhibited superior estimation accuracy with a gap of only 1.70%.