Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Beauregard L., Robert

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Beauregard L.

Prénom

Robert

Affiliation

Université Laval. Département des sciences du bois et de la forêt

ISNI

ORCID

Identifiant Canadiana

ncf10264079

person.page.name

Résultats de recherche

Voici les éléments 1 - 4 sur 4
  • PublicationAccès libre
    The environmental footprint of interior wood doors in non-residential buildings. part 1, Life cycle assessment
    (Butterworth-Heinemann, 2015-04-30) Beauregard L., Robert; Cobut, Aline; Blanchet, Pierre
    Integrating environmental aspects into industrial practices has become a necessity. In fact, climate change and resource depletion have been established scientifically and can no more be neglected. Life Cycle Assessment is acknowledged to be an efficient tool to establish a product environmental profile and can be useful to businesses wishing to analyze their environmental record. Decreasing a building environmental footprint implies, among other considerations, a proper choice of building materials, both structural and architectural. A good avenue would be to select low environmental impact materials from cradle-to-grave. Architectural wooden doors are often specified in non-residential buildings in North America. However, only one Life Cycle Assessment has been carried out on wooden doors. This study explores the cradle-to-grave environmental profile of an interior wood door in a North American context. According to the results, the main contributor to the product impacts is the production of raw materials, especially the particleboard component, and their transportation to the manufacturing plant. The urea formaldehyde production is the main reason for particleboard impacts among the three damage categories, human health, climate change and resources, of IMPACT 2002+. The other life cycle stages that have a noticeable influence on the door environmental impacts are shipping and end-of-life. Transportation as a whole affected the system total environmental score. The current results could serve as a basis for ecodesign implementation.
  • PublicationAccès libre
    Reducing the environmental footprint of interior wood doors in non-residential buildings - part 2 : ecodesign
    (Butterworth-Heinemann, 2015-05-25) Beauregard L., Robert; Cobut, Aline; Blanchet, Pierre
    Ecodesign is a concept that emerged few decades ago as a response to the larger concept of sustainable development. Multiple tools exist to address ecodesign. Life Cycle Assessment, a comprehensive, robust and recognized evaluation tool, enables to identify the product environmental profile. Based on previous LCA results on interior wood doors, this paper aims at proposing an ecodesign strategy based on the generation and evaluation of alternative scenarios. The three selected targets for environmental improvement are particleboard components, transportation and end-of-life. For the particleboard manufacturing, the use of adhesives based on bio-sourced resources was not very conclusive, except for the use of pine tannins in panel manufacture that showed promising results. Concerning transportation issues, switching from road to rail transportation, as well as having a local supplier, decreased the overall environmental impact of the door. The most notable alternative was the end-of-life recycling scenario. The reutilization of the door core in the door manufacturing process proved a great benefit due to the avoidance of new raw materials production. Developing services around door recovery and remanufacturing seems promising in reducing doors environmental impacts. This scenario would be readily viable and realistic.
  • PublicationRestreint
    Prospects for appearance wood products ecodesign in the context of nonresidential applications
    (Forest Product Society, 2016-08-18) Beauregard L., Robert; Cobut, Aline; Blanchet, Pierre
    As environmental awareness grows, societal demand for more environmentally friendly products increases. Demand for environmental responsibility also reached the building material and construction sector. Green building has become more widespread over the past decade and can be considered a challenge for specifiers and building products manufacturers. Ecodesign, an application of the sustainable development concept, is one of the available tools to address this challenge. This article aims at proposing an ecodesign pathway for appearance wood products in the nonresidential building sector. Through extrapolating results from a previous interior wood door case study, it has been possible to obtain environmental profiles for the main segments of the appearance wood products family for nonresidential buildings. These profiles have allowed devising ecodesign solutions. Results show that for this whole family of products, raw materials are what cause the most environmental impacts, followed by shipping and end-of-life stages. Product component weight tends also to influence the environmental profile. Ecodesign solutions for composite-based products are strongly related to decreasing the composite component weight by design and remanufacturing. For solid wood–based products, ecodesign can be approached through remanufacturing or reclaiming, using locally certified sustainable wood. The use of hardwood waste may be available for energy purposes, but this may not be as relevant as reuse and recycle in the context of the province of Quebec energy grid mix.
  • PublicationRestreint
    Using life cycle thinking to analyze environmental labeling : the case of appearance wood products
    (Spinger, 2012-09-25) Beauregard L., Robert; Cobut, Aline; Blanchet, Pierre
    Purpose: Growing public concern about the current state of our planet led to the creation of numerous regulations, standards, and certifications for the protection of humans and the environment. Ecolabels were defined for products such as cleaning products, paints, and many others. Wood building products are no exception. The objective of this study is to analyze the existing ecolabelling programs for appearance wood products in nonresidential applications and to evaluate them relatively to their effective role in environment protection or reduction of environment footprint. Methods: The research was conducted on the most common International Organization for Standardization (ISO) type I ecolabels in North America, the European Union, and Japan. Certification schemes applicable to appearance wood products for nonresidential applications were considered. In a life cycle assessment perspective, certification criteria were compared regarding their ability to consider and integrate environment impacts. Results and discussion: A wide range of ecolabels can apply to appearance wood products, from indoor air quality to wood from sustainable forest management. Moreover, it has been found that among all certification schemes studied, those integrating the whole life cycle were the most relevant. Conclusions: The remaining limitation of ISO type I ecolabels is the lack of environmental information enabling the differentiation between products bearing the same ecolabel. This can be overcome by ISO type III environmental product declarations. Thus, allowing a better understanding of the implications related with the use of wood products compared to other materials in the nonresidential building sector.