Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Berthod, François

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Berthod

Prénom

François

Affiliation

Université Laval. Département de chirurgie

ISNI

ORCID

Identifiant Canadiana

ncf13671513

person.page.name

Résultats de recherche

Voici les éléments 1 - 4 sur 4
  • PublicationRestreint
    Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels : clinical and fundamental applications
    (Springer, 1998-11-01) Germain, Lucie; Auger, François A.; Rouabhia, Mahmoud; Berthod, François; Goulet, Francine; Moulin, Véronique
    The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.
  • PublicationAccès libre
    What is new in mechanical properties of tissue-engineered organs
    (Springer, 1999-01-01) Germain, Lucie; Auger, François A.; Berthod, François; Goulet, Francine
    Tissue engineering is a promising new field based on expertise in cell biology, medicine and mechanical engineering. It raises exciting hopes of producing autologous tissue substitutes to replace altered organs. This challenge involves highly specialized technology in order to provide the proper shape to the tissue and promote the maintenance of its native physiological properties. Primary cell populations may lose some of their functional and morphological properties in vitro in the absence of a proper environment. In order to maintain cell integrity, a three-dimensional matrix that mimics the in vivo environment as closely as possible was developed, according to the type of tissue produced [1, 5, 18, 26, 27, 29, 34, 35].
  • PublicationRestreint
    DifferentiaI expression of collagens XII and XIV in human skin and in reconstructed skin
    (Elsevier, 1997-05-01) Germain, Lucie; Auger, François A.; Guignard, Rina; Lethias, Claire; Berthod, François; Garrone, Robert; Damour, Odile; Rest, Michel van der
    Collagens XII and XIV localize near the surface of collagen fibrils and may be involved in epithelial-mesenchymal interactions as well as in the modulation of tissue biomechanical properties. Moreover, human skin fibroblasts cultured in monolayer are known to lose their ability to produce collagen XIV and to switch the transcription of collagen XII from the small splice variant (220 kDa) to the large (320 kDa), whereas the small form is the main form found in human skin. We have investigated the expression patterns of these two molecules in human skin as a function of donor age and anatomic site, by using immunohistology with specific monoclonal antibodies. We demonstrated changes in the expression patterns of collagens XII and XIV in human skin after birth. Moreover, in adult scalp skin, very strong staining of collagen XII fibril bundles was observed around hair follicles, in association with very low expression of collagen XW. We also investigated the expression of collagens XII and XIV by fibroblasts and keratinocytes cultured in a reconstructed skin. In these culture conditions, fibroblasts recovered theft ability to produce collagen XIV and re-expressed the small splice variant of collagen XII. These results could be explained by the deposition of large amounts of collagen fibrils by fibroblasts in this culture system. Thus, the re-expression of these collagens suggests that the deposition of banded collagen fibrils is a pre-requisite for the expression of collagen XIV and small variant of collagen XII.
  • PublicationRestreint
    In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent
    (Federation of American Societies for Experimental Biology, 1998-10-01) Germain, Lucie; L'Heureux, Nicolas; Black, Annie.; Auger, François A.; Berthod, François
    For patients with extensive burns, wound coverage with an autologous in vitro reconstructed skin made of both dermis and epidermis should be the best alternative to split-thickness graft. Unfortunately, various obstacles have delayed the widespread use of composite skin substitutes. Insufficient vascularization has been proposed as the most likely reason for their unreliable survival. Our purpose was to develop a vascular-like network inside tissue-engineered skin in order to improve graft vascularization. To reach this aim, we fabricated a collagen biopolymer in which three human cell types—keratinocytes, dermal fibroblasts, and umbilical vein endothelial cells—were cocultured. We demonstrated that the endothelialized skin equivalent (ESE) promoted spontaneous formation of capillary-like structures in a highly differentiated extracellular matrix. Immunohistochemical analysis and transmission electron microscopy of the ESE showed characteristics associated with the microvasculature in vivo (von Willebrand factor, Weibel-Palade bodies, basement membrane material, and intercellular junctions). We have developed the first endothelialized human tissue-engineered skin in which a network of capillary-like tubes is formed. The transplantation of this ESE on human should accelerate graft revascularization by inosculation of its preexisting capillary-like network with the patient's own blood vessels, as it is observed with autografts. In addition, the ESE turns out to be a promising in vitro angiogenesis model.