Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.

Personne :
Messaddeq, Younès

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles


Nom de famille





Université Laval. Département de physique, de génie physique et d'optique



Identifiant Canadiana



Résultats de recherche

Voici les éléments 1 - 9 sur 9
  • PublicationAccès libre
    Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers
    (The Optical Society, 2018-10-01) Essiambre, René-Jean.; Chen, Haoshuo; Matte-Breton, Charles; Fontaine, Nicolas K.; Jin, Cang; Ryf, Roland; LaRochelle, Sophie; Messaddeq, Younès; Kelly, C.
    We present the design and characterization of a cladding-pumped amplifier with erbium doping located in an annular region near the core. This erbium-doped fiber is proposed to reduce gain saturation, leading to smaller gain compression when compared to uniform core doping. Through numerical simulations, we first compare the performance of three fibers with different erbium doping profiles in the core or the cladding. When the doped fibers are operated at the optimum length, results show that the smaller overlap of the signal mode field with the annular erbium doping region leads to higher gain and lower saturation of the amplifier. A single-core erbium-doped fiber with an annular doping and a D-shaped cladding was fabricated. Measurements demonstrate less than 4 dB of gain compression over the C-band for input power ranging from −40 dBm to 3 dBm. Small gain compression EDFAs are of interest for applications that require input channel reconfiguration. Higher gain and saturation output power are also key issues in cladding-pumped multi-core amplifiers.
  • PublicationAccès libre
    The role of tungsten oxide in Er3+ -doped bismuth germanate glasses for optical amplifcation in L-band
    (Nature Publishing Group, 2023-05-31) Çamiçi, Hüseyin Can; Messaddeq, Younès; Guérineau, Théo; Rivera, V. A. G; Falci, Rodrigo Ferreira; LaRochelle, Sophie
    A series of novel Er³+-doped bismuth-germanate glasses containing diferent tungsten concentrations with a molar composition of 97.5[(75 − x)GeO₂–25Bi₂O₃–(x)WO₃]–2Sb₂O₃–0.5Er₂O₃ (x = 5, 10, 15, 20, and 25 mol%) were fabricated. Their thermal properties are measured by diferential scanning calorimetry. A structural investigation by Raman spectroscopy suggested that changes occurred in the glass network by WO3 incorporation. By laser excitation at 980 nm, a strong emission from Er³+ ions at 1532 nm is observed, while the WO₃ addition caused changes in the emission spectra. The emission cross-section spectra of Er³+ are calculated by both McCumber and Füchtbauer–Ladenburg theories and their comparison showed these theories yielded slightly diferent results, but in both cases, the calculations showed that a gain signal in L-band can be achieved when 30% of the Er³+ ions are at the excited state. This study proves that the Er³+-doped bismuth-germanate glasses are suitable for ₂optical fber amplifer applications operating at C- and L-band.
  • PublicationAccès libre
    Analysis of inter-core cross-gain modulation in cladding pumped multi-core fiber amplifiers
    (IEEE Xplore, 2018-11-15) Essiambre, René-Jean.; Chen, Haoshuo; Matte-Breton, Charles; Fontaine, Nicolas K.; LaRochelle, Sophie; Ryf, Roland; Messaddeq, Younès
    We numerically investigate pump-induced gain variations in eight-core fi ber amplifi ers. We compare two fi bers with different erbium profi les by varying input power from -25 dBm to 0 dBm in one or four cores. Inter-core cross-gain modulation is < 0.6 dB.
  • PublicationRestreint
    Baria-silica erbium-doped fibers for extended L-band amplification
    (Institute of Electrical and Electronics Engineers, 2023-02-13) Jalilpiran, Saber; Fuertes, Victor; Lefebvre, Jacques; Grégoire, Nicolas; Durak, Firat; Landry, Nelson; Wang, Lixian; Rivera, V. A. G; Messaddeq, Younès; LaRochelle, Sophie
    We present baria-silica erbium-doped fibers (BaEDF) for extending the bandwidth of L-band EDFAs beyond 1620 nm. Using a combination of modified chemical vapor deposition (MCVD) process and solution-doping technique, we demonstrate low loss (<10 dB/km at 1200 nm) fiber cores with BaO concentration of 1-3 mol% and Er3+ concentration of 8×1024 m-3 . We show that the optical properties and EDFA performance are positively affected by increasing the BaO content. Namely, when we increase the BaO concentration from 1.3 to 3 mol%, we observe a reduction of pair-induced quenching that correlates with a biexponential luminescence decay with a dominant 15.5 ms lifetime component. Furthermore, the slight modifications of absorption/ emission coefficients point to a red-shift of the signal excited state absorption and consequently, to a moderate extension of the L-band gain to longer wavelengths (1622 nm).
  • PublicationAccès libre
    Investigation of C-band pumping for extended L-band EDFAs
    (Optical Society of America, 2020-07-15) Lei, Chengmin; LaRochelle, Sophie; Feng, Hanlin; Messaddeq, Younès
    In this study, we present systematic numerical and experimental analysis of high-power C-band light pumping in extended L-band EDFAs. We investigate, for the first time to our best knowledge, how C-band light sources can be used as pump sources to extend the bandwidth of L-band EDFAs beyond 1610 nm. Results show that, when using a C-band light source as the sole pump, efficient amplification is obtained over the extended L-band but at the expense of higher noise figure. However, the advantage of C-band pumping in terms of power conversion efficiency can be exploited when using a two-stage EDFA, with a first stage pumped by 1480 nm to maintain good noise figure performance and a high-power C-band light source (up to several hundred mW) as the pump source for the second stage. Thus, a 20-dB gain covering 1570-1618 nm with a maximum noise figure of 5.7 dB is demonstrated.
  • PublicationAccès libre
    Modeling and characterization of cladding-pumped erbium-ytterbium co-doped fibers for amplification in communication systems
    (Institute of Electrical and Electronics Engineers, 2019-12-20) Essiambre, René-Jean.; Ryf, Roland; Matte-Breton, Charles; Fontaine, Nicolas K.; LaRochelle, Sophie; Messaddeq, Younès; Chen, Haoshuo; Kelly, C.
    Cladding-pumped optical fiber amplifiers are of increased interest in the context of space-division multiplexing but are known to suffer from low power efficiency. In this context, ytterbium (Yb) co-doping can be an attractive solution to improve the performance of erbium (Er) doped fiber amplifiers. We present a detailed direct comparison between Er/Yb-co-doping and Er-doping using numerical simulations validated by experimental results. Two double-cladding fibers, one doped with Er only and the other one co-doped with Er and Yb, were designed, fabricated and characterized. Using the experimentally extracted parameters, we simulate multi-core fiber amplifiers and investigate the interest of Er/Yb-co-doping. We calculate the minimum gain of the amplifiers over a 35-nm spectral window considering various scenarios.
  • PublicationAccès libre
    Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications
    (Nature Pub. Group, 2016-07-11) Chen, Haoshuo; Essiambre, René-Jean.; Grégoire, Nicolas; Huang, Bin; Morency, Steeve; Fontaine, Nicolas K.; Jin, Cang; Ryf, Roland; LaRochelle, Sophie; Shang, Kuanping; Messaddeq, Younès; Li, Guifang
    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode1 and multicore2 optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch3,4 and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.
  • PublicationAccès libre
    Large area Bragg grating for pump recycling in cladding-pumped multicore erbium-doped fiber amplifiers
    (Optical Society of America, 2022-05-09) Talbot, Lauris; Matte-Breton, Charles; LaRochelle, Sophie; Messaddeq, Younès; Bernier, Martin
    We demonstrate for the first time that a Bragg grating can be written over a large area inside the cladding of a multicore erbium-doped fiber amplifier to increase the power conversion efficiency (PCE) by recycling the output pump power. Our results indicate that a Bragg grating covering ~25% of the cladding area allows to recycle 19% of the output pump power which leads to a relative increase of the PCE by 16% for an input pump power of 10.6 W in the specific case of an eight-core erbium-doped fiber with a length of 20.3 m and one core loaded with an input signal power of 1.5 dBm.
  • PublicationRestriction temporaire
    Novel insights on energy transfer processes in [Ce4+/Ce3+]-Er3+-doped tellurite glass
    (Elsevier Ltd., 2022-10-14) Carvalho Pinto, Iago; Falci, Rodrigo Ferreira; Rivera, V. A. G; Guérineau, Théo; LaRochelle, Sophie; Messaddeq, Younès
    Previous works have been already reported on multiphonon-assisted non-resonant energy transfer in Ce3+-Er3+-doped tellurite glasses. However, it is not clear the mechanism of the radiative emission of Er3+ centered at 1530 nm. In this paper, we reported a better understanding of the mechanism of interactions between those two rare-earth ions via a systematic study. For that, we will explore the energy transitions between Ce4+/Ce3+ and Er3+ ions in a tungsten-tellurite glass to both emission (in the near infrared) and upconversion (in the visible) spectrum. Here, Ce4+ and Ce3+ were obtained in an Er3+-doped tellurite glasses via the addition of different concentrations of CeO2 as part of the composition of the samples. Emission spectrum, under a 980 nm excitation, giving rise to a series of interactions between Ce3+↔Er3+ resulting in: (i) a subtle increase of the Er3+ emission intensity in the near-infrared region for 0.1 mol% of CeO2, and then a decrease in the emission for higher CeO2 concentration in both cases without any significant increase in the bandwidth, and (ii) a decrease of the visible upconversion emission intensity with the addition of CeO2. Such interactions are achieved via a coupling yielding and energy transfer from both rare-earth ions.