Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Bossé, Yohan

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Bossé

Prénom

Yohan

Affiliation

Université Laval. Département de médecine moléculaire

ISNI

ORCID

Identifiant Canadiana

ncf13670723

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 61
  • PublicationRestreint
    Heritability of LDL peak particle diameter in the Quebec Family Study
    (Wiley-Liss, Inc., 2003-11-18) Bouchard, Claude; Pérusse, Louis; Lamarche, Benoît; Bossé, Yohan; Rice, Treva; Vohl, Marie-Claude; Rao, D. C. (Dabeeru C.); Després, Jean-Pierre
    LDL size has been associated with the risk of coronary heart disease. The objective of the present study was to verify whether familial factors influence LDL peak particle diameter (LDL‐PPD), a quantitative trait reflecting the size of the major LDL subclass. LDL‐PPD was measured by 2–16% polyacrylamide gradient gel electrophoresis in 681 members of 236 nuclear families participating in the Quebec Family Study. LDL‐PPD was adjusted for age (LDL‐PPD1), age and body mass index (LDL‐PPD2), or age, body mass index, and plasma triglyceride levels (LDL‐PPD3) separately in men and women. The residual scores were used to test for familial aggregation, using an ANOVA and to compute maximum likelihood estimates of familial correlations. The ANOVA test revealed that family lines accounted for 47.4%, 46.7%, and 48.9% of the variance in the LDL‐PPD1, LDL‐PPD2, and LDL‐PPD3 phenotypes, respectively. The pattern of familial correlations revealed no significant spouse correlations but significant parent‐offspring and sibling correlations for the three LDL‐PPD phenotypes, with maximal heritability estimates of 59%, 58%, and 52% for LDL‐PPD1, LDL‐PPD2, and LDL‐PPD3, respectively. These results suggest that LDL‐PPD strongly aggregates in families, and that the familial resemblance appears to be primarily attributable to genetic factors. Genes responsible for this genetic contribution remain to be identified. Genet Epidemiol 25:375–381, 2003. © 2003 Wiley‐Liss, Inc.
  • PublicationAccès libre
    Genetic association analyses highlight IL6, ALPL, and NAV1 as three new susceptibility genes underlying calcific aortic valve stenosis
    (American Heart Association, 2019-10-15) Gaudreault, Nathalie; Dina, Christian; Thériault, Sébastien; Messika-Zeitoun, David; Arsenault, Benoit; Le Scouarnec, Solena; Capoulade, Romain; Boureau, Anne-Sophie; Bossé, Yohan; Rigade, Sidwell; Lamontagne, Maxime; Li, Zhonglin; Pibarot, Philippe; Simonet, Floriane; Clavel, Marie-Annick; Dagenais, François; Mathieu, Patrick; Lecointe, Simon; Baron, Estelle; Bonnaud, Stéphanie; Karakachoff, Matilde; Charpentier, Eric; Fellah, Imen; Roussel, Jean-Christian; Verhoye, Jean Philippe; Baufreton, Christophe; Probst, Vincent; Roussel, Ronan; Redon, Richard; Le Tourneau, Thierry; Schott, Jean-Jacques
    Background: Calcific aortic valve stenosis (CAVS) is a frequent and life-threatening cardiovascular disease for which there is currently no medical treatment available. To date, only 2 genes, LPA and PALMD, have been identified as causal for CAVS. We aimed to identify additional susceptibility genes for CAVS. Methods: A GWAS (genome-wide association study) meta-analysis of 4 cohorts, totaling 5115 cases and 354 072 controls of European descent, was performed. A TWAS (transcriptome-wide association study) was completed to integrate transcriptomic data from 233 human aortic valves. A series of post-GWAS analyses were performed, including fine-mapping, colocalization, phenome-wide association studies, pathway, and tissue enrichment as well as genetic correlation with cardiovascular traits. Results: In the GWAS meta-analysis, 4 loci achieved genome-wide significance, including 2 new loci: IL6 (interleukin 6) on 7p15.3 and ALPL (alkaline phosphatase) on 1p36.12. A TWAS integrating gene expression from 233 human aortic valves identified NAV1 (neuron navigator 1) on 1q32.1 as a new candidate causal gene. The CAVS risk alleles were associated with higher mRNA expression of NAV1 in valve tissues. Fine-mapping identified rs1800795 as the most likely causal variant in the IL6 locus. The signal identified colocalizes with the expression of the IL6 RNA antisense in various tissues. Phenome-wide association analyses in the UK Biobank showed colocalized associations between the risk allele at the IL6 lead variant and higher eosinophil count, pulse pressure, systolic blood pressure, and carotid artery procedures, implicating modulation of the IL6 pathways. The risk allele at the NAV1 lead variant colocalized with higher pulse pressure and higher prevalence of carotid artery stenosis. Association results at the genome-wide scale indicated genetic correlation between CAVS, coronary artery disease, and cardiovascular risk factors. Conclusions: Our study implicates 3 new genetic loci in CAVS pathogenesis, which constitute novel targets for the development of therapeutic agents.
  • PublicationAccès libre
    A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis
    (Nature Publishing Group, 2018-03-07) Gaudreault, Nathalie; Thériault, Sébastien; Rosa, Mickael; Boulanger, Marie-Chloé; Capoulade, Romain; Messika-Zeitoun, David; Bossé, Yohan; Lamontagne, Maxime; Pibarot, Philippe; Clavel, Marie-Annick; Dagenais, François; Mathieu, Patrick
    Calcific aortic valve stenosis (CAVS) is a common and life-threatening heart disease and the current treatment options cannot stop or delay its progression. A GWAS on 1009 cases and 1017 ethnically matched controls was combined with a large-scale eQTL mapping study of human aortic valve tissues (n = 233) to identify susceptibility genes for CAVS. Replication was performed in the UK Biobank, including 1391 cases and 352,195 controls. A tran- scriptome-wide association study (TWAS) reveals PALMD (palmdelphin) as significantly associated with CAVS. The CAVS risk alleles and increasing disease severity are both associated with decreased mRNA expression levels of PALMD in valve tissues. The top variant identified shows a similar effect and strong association with CAVS (P = 1.53 × 10−10) in UK Biobank. The identification of PALMD as a susceptibility gene for CAVS provides insights into the genetic nature of this disease, opens avenues to investigate its etiology and to develop much-needed therapeutic options.
  • PublicationAccès libre
    Influences of gestational obesity on associations between genotypes and gene expression levels in offspring following maternal gastrointestinal bypass surgery for obesity.
    (Public Library of Science, 2015-01-20) Guénard, Frédéric; Marceau, Picard; Bossé, Yohan; Lamontagne, Maxime; Cianflone, Katherine M.; Kral, John G.; Vohl, Marie-Claude; Deshaies, Yves
    Maternal obesity and excess gestational weight gain with compromised metabolic fitness predispose offspring to lifelong obesity and its comorbidities. We demonstrated that compared to offspring born before maternal gastrointestinal bypass surgery (BMS) those born after (AMS) were less obese, with less cardiometabolic risk reflected in the expression and methylation of diabetes, immune and inflammatory pathway genes. Here we examine relationships between gestational obesity and offspring gene variations on expression levels. Methods : Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. Results : Significant interactions (p ≤ 1.22x10-12) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. Conclusion : We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism.
  • PublicationAccès libre
    Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Québec Family Study
    (American Society for Biochemistry et Molecular Biology, Inc., 2003-12-16) Bouchard, Claude; Chagnon, Yvon C.; Pérusse, Louis; Rice, Treva; Bossé, Yohan; Rao, D. C. (Dabeeru C.); Vohl, Marie-Claude; Després, Jean-Pierre
    A genome-wide linkage study was performed to identify chromosomal regions harboring genes influencing lipid and lipoprotein levels. Linkage analyses were conducted for four quantitative lipoprotein/lipid traits, i.e., total cholesterol, triglyceride, HDL-cholesterol (HDL-C), and LDL-C concentrations, in 930 subjects enrolled in the Québec Family Study. A maximum of 534 pairs of siblings from 292 nuclear families were available. Linkage was tested using both allele-sharing and variance-component linkage methods. The strongest evidence of linkage was found on chromosome 12q14.1 at marker D12S334 for HDL-C, with a logarithm of the odds (LOD) score of 4.06. Chromosomal regions harboring quantitative trait loci (QTLs) for LDL-C included 1q43 (LOD = 2.50), 11q23.2 (LOD = 3.22), 15q26.1 (LOD = 3.11), and 19q13.32 (LOD = 3.59). In the case of triglycerides, three markers located on 2p14, 11p13, and 11q24.1 provided suggestive evidence of linkage (LOD > 1.75). Tests for total cholesterol levels yielded significant evidence of linkage at 15q26.1 and 18q22.3 with the allele-sharing linkage method, but the results were nonsignificant with the variance-component method. In conclusion, this genome scan provides evidence for several QTLs influencing lipid and lipoprotein levels. Promising candidate genes were located in the vicinity of the genomic regions showing evidence of linkage.
  • PublicationAccès libre
    Genetic susceptibility to the metabolic syndrome
    (2004) Bossé, Yohan; Vohl, Marie-Claude; Després, Jean-Pierre
    Le syndrome métabolique est caractérisé par un regroupement de facteurs de risque présents chez un même individu et augmentant ainsi ses chances de développer le diabète de type 2 et les maladies cardiovasculaires. Il est donc important de comprendre l’étiologie génétique de ce trait. Dans cette thèse, une multitude d’approches génétiques ont été utilisées afin d’apporter un brin de connaissance sur l’architecture génétique du syndrome métabolique et de ses composantes individuelles. Trois gènes candidats ont été testés incluant le récepteur activé par les proliférateurs de péroxisomes (PPAR) α et PPARγ ainsi que la protéine de transfert des phospholipides (PLTP). Les gènes PPARα et PLTP ont tous deux été associés significativement avec plusieurs variables d’adiposité. Des effets significatifs d’interaction entre les gènes PPARα et PPARγ ont été obtenus pour les paramètres de glucose et d’insuline. Il a aussi été démontré que le polymorphisme PPARα L162V influence les changements de cholestérol-HDL2 suite à un traitement au gemfibrozil. Par la suite, des criblages génomiques ont été effectués sur les concentrations de lipides et de lipoprotéines plasmatiques. Plusieurs régions chromosomiques ont été identifiées incluant 1q43, 11q13 q24, 15q26.1, et 19q13.32 pour le cholestérol-LDL, 12q14.1 pour le cholestérol-HDL, 2p14, 11p13, et 11q24.1 pour les triglycérides, 18q21.32 pour l’apolipoprotéine (apo) B-LDL, et 3p25.2 pour l’apoAI. La contribution génétique à la variation du diamètre principal des particules LDL (DP-LDL) a aussi été étudiée. Les résultats démontrent une forte ressemblance familiale avec des coefficients d’héritabilité de plus de 50%, la présence d’un gène à effet majeur, et une forte évidence de liaison sur le chromosome 17q. Le gène de l’apoH, localisé à cet endroit, a par la suite été significativement associé au DP-LDL, suggérant que ce gène est responsable du signal de liaison observé sur le chromosome 17. Finalement, une variable quantitative du syndrome métabolique a été construite à l’aide d’une analyse factorielle. Un criblage génomique effectué sur cette variable a démontré une évidence de liaison sur le chromosome 15q, suggérant la présence d’un gène à cet endroit contribuant au regroupement des facteurs de risques caractérisant le syndrome métabolique. Plusieurs de ces résultats devront être répliqués, alors que d’autres méritent d’être suivis.
  • PublicationRestreint
    Evidence for a major quantitative trait locus on chromosome 17q21 affecting low-density lipoprotein peak particle diameter
    (Grune & Stratton, 2003-05-05) Bouchard, Claude; Chagnon, Yvon C.; Pérusse, Louis; Lamarche, Benoît; Bossé, Yohan; Rice, Treva; Vohl, Marie-Claude; Rao, D. C. (Dabeeru C.); Després, Jean-Pierre
    Background— Several lines of evidence suggest that small dense LDL particles are associated with the risk of coronary heart disease. Heritability and segregation studies suggest that LDL particle size is characterized by a large genetic contribution and the presence of a putative major genetic locus. However, association and linkage analyses have thus far been inconclusive in identifying the underlying gene(s). Methods and Results— An autosomal genome-wide scan for LDL peak particle diameter (LDL-PPD) was performed in the Québec Family Study. A total of 442 markers were genotyped, with an average intermarker distance of 7.2 cM. LDL-PPD was measured by gradient gel electrophoresis in 681 subjects from 236 nuclear families. Linkage was tested by both sib-pair–based and variance components–based linkage methods. The strongest evidence of linkage was found on chromosome 17q21.33 at marker D17S1301, with an LOD score of 6.76 by the variance-components method for the phenotype adjusted for age, body mass index, and triglyceride levels. Similar results were obtained with the sib-pair method (P<0.0001). Other chromosomal regions harboring markers with highly suggestive evidence of linkage (P≤0.0023; LOD ≥1.75) include 1p31, 2q33.2, 4p15.2, 5q12.3, and 14q31. Several candidate genes are localized under the peak linkages, including apolipoprotein H on chromosome 17q, the apolipoprotein E receptor 2, and members of the phospholipase A2 family on chromosome 1p as well as HMG-CoA reductase on chromosome 5q. Conclusions— This genome-wide scan for LDL-PPD indicates the presence of a major quantitative trait locus located on chromosome 17q and others interesting loci influencing the phenotype.
  • PublicationRestreint
    Combined effects of PPARγ2 P12A and PPARα L162V polymorphisms on glucose and insulin homeostasis : the Québec Family Study
    (Springer-Verlag, 2003-11-20) Bouchard, Claude; Pérusse, Louis; Weisnagel, John; Bossé, Yohan; Vohl, Marie-Claude; Després, Jean-Pierre
    Peroxisome proliferator-activated receptors γ2 and α are nuclear factors known to be important regulators of lipid and glucose metabolism. Two polymorphisms, namely PPARγ2 P12A and PPARα L162V, were investigated for their individual and interaction effects on glucose and insulin homeostasis. Genotypes were determined in 663 nondiabetic adults participating in the Québec Family Study and who underwent an oral glucose tolerance test (OGTT). The insulin and C-peptide areas under the curve (AUC) following the OGTT were higher in subjects carrying the PPARα V162 allele compared to homozygous for the L162 allele. When subjects were grouped according to both polymorphisms, higher levels of insulin and C-peptide during the OGTT were observed for those carrying the PPARα V162 allele except when they carry at the same time the PPARγ2 A12 allele. Thus, the PPARγ2 A12 allele seems protective against the deleterious effect of the PPARα V162 allele. Furthermore, a significant gene-gene interaction was observed for the acute (0–30 min) (p<0.001) and the total (p=0.05) C-peptide AUC following the OGTT. These results provide evidence of a gene-gene interaction in the regulation of plasma glucose-insulin homeostasis, and emphasize that these interactions need to be taken into account when dissecting the genetic etiology of complex disorders.
  • PublicationAccès libre
    Soluble CD14 is associated with the structural failure of bioprostheses
    (Elsevier, 2018-06-30) Dahou, Abdellaziz; Bouchareb, Rihab; Arsenault, Benoit; Mkannez, Ghada; Boulanger, Marie-Chloé; Bossé, Yohan; Pibarot, Philippe; Clavel, Marie-Annick; Nsaibia, Mohamed Jalloul; Mathieu, Patrick; Salaun, Erwan
    Introduction: Aortic valve bioprostheses, which do not mandate chronic anticoagulation, are prone to structural valve degeneration (SVD). The processes involved in SVD are likely multifactorial. We hypothesized that inflammation and macrophage activation could be involved in SVD. Methods: In 203 patients with an aortic valve bioprosthesis, we evaluated the association between the macrophage activation marker soluble CD14 (sCD14) and SVD. Results: After a mean follow-up of 8 ± 3 years, 42 (21%) patients developed SVD. Patients with SVD had higher peak (44 ± 13 mmHg vs. 25 ± 12 mmHg, p < .0001) and mean (24 ± 7 mmHg vs. 12 ± 5 mmHg, p < .0001) transprosthetic gradients. On univariable analysis, low-density lipoprotein cholesterol (LDL) and sCD14 were associated with SVD. After correction for covariates, sCD14 (OR: 1.12, 95%CI: 1.02–1.23, p = .01) remained independently associated with SVD. In turn, sCD14 was associated with the HOMA index and high-density lipoprotein (HDL) level. Patients with a metabolic syndrome (MetS) had higher level of sCD14. In a model corrected for age, sex, HOMA and HDL, the MetS remained independently associated with sCD14 levels (β = 0.65, SE = 0.30, p = .03). Conclusion: Circulating level of sCD14 is an independent predictor of SVD. In turn, patients with MetS have higher sCD14 levels.
  • PublicationRestreint
    Influence of the angiotensin-converting enzyme gene insertion/deletion polymorphism on lipoprotein/lipid response to gemfibrozil
    (Blackwell Munksgaard, 2002-07-18) Brochu, Martin.; Bossé, Yohan; Dumont, Martine; Prud'homme, Denis; Vohl, Marie-Claude; Després, Jean-Pierre; Bergeron, Jean
    Evidence suggests that fibrate therapy reduces the risk of recurrent coronary heart disease among men with low levels of high density lipoprotein cholesterol (HDL-C). Indirect observations and new possible biological pathways suggest that the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism might modulate the lipoprotein/lipid profile and its response to fibrate therapy. To assess the possible interaction between fibrate therapy and such variants on plasma lipid and lipoprotein levels, 65 dyslipidemic abdominally obese men were treated for 6 months with or without gemfibrozil (600 mg twice daily). No differences in baseline plasma lipid and lipoprotein levels were found between genotype groups except for the HDL(3)-C subfraction, which was higher in the DD group (p = 0.02). A two-way factorial ANOVA was used to evaluate the effect of the genotype (DD homozygotes vs I allele carriers), the treatment (placebo vs gemfibrozil), and the interaction between these two independent variables on changes observed in lipid and lipoprotein concentrations. A significant genotype-by-treatment interaction (p = 0.02) was found for the plasma HDL-C response to the intervention program. In fact, having the DD genotype and being treated with gemfibrozil had a synergical effect on HDL-C levels. The results of this study suggest that the ACE I/D polymorphism influences the effect of gemfibrozil on plasma HDL-C levels.