Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Rouillard, Claude

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Rouillard

Prénom

Claude

Affiliation

Université Laval. Faculté de médecine

ISNI

ORCID

Identifiant Canadiana

ncf10155491

person.page.name

Résultats de recherche

Voici les éléments 1 - 9 sur 9
  • PublicationRestreint
    NR4A orphan nuclear receptors in glucose homeostasis : a minireview
    (Elsevier Masson, 2013-09-26) Close, Anne-Françoise; Rouillard, Claude; Buteau, Jean
    Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
  • PublicationAccès libre
    Dopamine D(2) antagonist-induced striatal Nur77 expression requires activation of mGlu5 receptors by cortical afferents
    (Frontiers, 2012-08-14) St-Hilaire, Michel; Maheux, Jérôme; Voyer, David; Lévesque, Daniel; Tirotta, Emanuele; Rouillard, Claude; Borrelli, Emiliana; Rompré, Pierre-Paul
    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists.
  • PublicationRestreint
    Effect of chronic L-DOPA treatment on 5-HT1A receptors in parkinsonian monkey brain
    (Pergamon Press, 2012-08-24) Riahi, Golnasim; Morissette, Marc; Di Paolo, Thérèse; Lévesque, Daniel; Parent, Martin; Rouillard, Claude; Samadi, Pershia
    After chronic use of l-3,4-dihydroxyphenylalanine (l-DOPA), most Parkinson’s disease (PD) patients suffer from its side effects, especially motor complications called l-DOPA-induced dyskinesia (LID). 5-HT1A agonists were tested to treat LID but many were reported to worsen parkinsonism. In this study, we evaluated changes in concentration of serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and of 5-HT1A receptors in control monkeys, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, dyskinetic MPTP monkeys treated chronically with l-DOPA, low dyskinetic MPTP monkeys treated with l-DOPA and drugs of various pharmacological activities: Ro 61-8048 (an inhibitor of kynurenine hydroxylase) or docosahexaenoic acid (DHA) and dyskinetic MPTP monkeys treated with l-DOPA + naltrexone (an opioid receptor antagonist). Striatal serotonin concentrations were reduced in MPTP monkeys compared to controls. Higher striatal 5-HIAA/serotonin concentration ratios in l-DOPA-treated monkeys compared to untreated monkeys suggest an intense activity of serotonin axon terminals but this value was similar in dyskinetic and nondyskinetic animals treated with or without adjunct treatment with l-DOPA. As measured by autoradiography with [3H]8-hydroxy-2-(di-n-propyl) aminotetralin (8-OH-DPAT), a decrease of 5-HT1A receptor specific binding was observed in the posterior/dorsal region of the anterior cingulate gyrus and posterior/ventral area of the superior frontal gyrus of MPTP monkeys compared to controls. An increase of 5-HT1A receptor specific binding was observed in the hippocampus of MPTP monkeys treated with l-DOPA regardless to their adjunct treatment. Cortical 5-HT1A receptor specific binding was increased in the l-DOPA-treated MPTP monkeys alone or with DHA or naltrexone and this increase was prevented in low dyskinetic MPTP monkeys treated with l-DOPA and Ro 61-8048. These results highlight the importance of 5-HT1A receptor alterations in treatment of PD with l-DOPA.
  • PublicationRestreint
    Membrane cholesterol removal and replenishment affect rat and monkey brain monoamine transporters
    (Pergamon Press, 2018-01-31) Morissette, Marc; Di Paolo, Thérèse; Rouillard, Claude; Morin, Nicolas
    The dopamine transporter (DAT) is abundantly expressed in the striatum where it removes extracellular dopamine into the cytosol of presynaptic nerve terminals. It is the target of drugs of abuse and antidepressants. There is a loss of the DAT in Parkinson's disease affecting release of levodopa implicated in levodopa-induced dyskinesias. This study investigated the effect of cholesterol on DAT, serotonin transporter (SERT) and vesicular monoamine transporter 2 (VMAT2) in monkey and rat brains in vitro. DAT protein levels measured by Western blot remained unchanged with in vitro methyl-β-cyclodextrin (MCD) incubations to remove membrane cholesterol or with incubations to increase membrane cholesterol content. By contrast, striatal DAT specific binding labelled with [125I]RTI-121 or with [125I]RTI-55 decreased with increasing concentrations of MCD and increased with cholesterol loading. Moreover, [125I]RTI-121 specific binding of striatal membranes depleted of cholesterol with MCD was restored to initial DAT content with addition of cholesterol showing its rapid and reversible effect. By contrast, striatal VMAT2 and SERT specific binding showed no or limited changes by cholesterol manipulations. Similar results were obtained for monkey caudate nucleus, putamen and nucleus accumbens. Membrane microviscosity was assessed by fluorescence polarization spectroscopy, using the probe 1,6-diphenyl-1,3,5-hexatriene. DAT changes positively correlated with changes of membrane microviscosity in rat and monkey brain regions investigated and with membrane cholesterol contents. Similar findings were observed with desmosterol but to a lower extent than with cholesterol. These results show an important effect of cholesterol on the DAT associated with microviscosity changes that should be considered in drug therapies.
  • PublicationRestreint
    17β-estradiol delays 6-OHDA-induced apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm
    (Springer New York LLC, 2013-11-26) Renaud, Justine; Martinoli, Maria-Grazia; Rouillard, Claude; Bournival, Julie; Chiasson, Keith
    Nuclear receptors (Nurs) represent a large family of gene expression regulating proteins. Gathering evidence indicates an important role for Nurs as transcription factors in dopamine neurotransmission. Nur77, a member of the Nur superfamily, plays a role in mediating the effects of antiparkinsonian and neuroleptic drugs. Besides, Nur77 survival and apoptotic roles depend largely on its subcellular localization. Estrogens are known for their neuroprotective properties, as demonstrated in animal and clinical studies. However, their action on Nur77 translocation pertaining to neuroprotection has not been investigated yet. The aim of our study was to perform a kinetic study on the effect of neurotoxic 6-hydroxydopamine (6-OHDA) and 17β-estradiol (E2) on the subcellular localization of Nur77 with reference to the modulation of apoptosis in PC12 cells. Our results demonstrate that E2 administration alone does not affect Nur77 cytoplasmic/nuclear ratio, mRNA levels, or apoptosis in PC12 cells. The neurotoxin 6-OHDA significantly enhances cytoplasmic localization of Nur77 after merely 3 h, while precipitating apoptosis. 6-OHDA also increases Nur77 transcription, which could partly explain the rise in cytoplasmic localization of the protein. Finally, treatment with both E2 and 6-OHDA delays Nur77 accumulation in the cytoplasm and delays cell death for a few hours in our cellular paradigm. Pre-treatment with E2 does not alter the increase in levels of Nur77 mRNA produced by 6-OHDA, suggesting that a raise in nuclear translocation is likely responsible for the stabilization of the cytoplasmic/nuclear ratio until 6 h. These results suggest an intriguing cooperation between E2 and Nur77 toward cellular fate guidance.
  • PublicationRestreint
    Cystamine metabolism and brain transport properties : clinical implications for neurodegenerative diseases
    (Wiley, 2010-06-20) Bousquet, Mélanie; Calon, Frédéric; Gibrat, Claire; Rouillard, Claude; Cicchetti, Francesca; Ouellet, Mélissa
    Cystamine has shown significant neuroprotective properties in preclinical studies of Parkinson’s disease (PD) and Huntington’s disease (HD). Cysteamine, its FDA-approved reduced form, is scheduled to be tested for clinical efficacy in HD patients. Here, we studied the key cystamine metabolites, namely cysteamine, hypotaurine and taurine, as well as cysteine, in order to identify which one is more distinctively responsible for the neuroprotective action of cystamine. After a single administration of cystamine (10, 50 or 200 mg/kg), naïve mice were perfused with phosphate-buffered saline (PBS) at 1, 3, 12, 24 or 48 h post-injection and brain and plasma samples were analyzed by two distinct HPLC methods. Although plasma levels remained under the detection threshold, significant increases in cysteamine brain levels were detected with the 50 and 200 mg/kg doses in mice perfused 1 and 3 h following cystamine injection. To further assess cysteamine as the candidate molecule for pre-clinical and clinical trials in PD, we evaluated its capacity to cross the blood brain barrier. Using an in situ cerebral perfusion technique, we determined that the brain transport coefficient (Clup) of cysteamine (259 μM) was 0.15 ± 0.02 μL/g/s and was increased up to 0.34 ± 0.07 μL/g/s when co-perfused in the presence of cysteine. Taken together, these results strongly suggest that cysteamine is the neuroactive metabolite of cystamine and may further support its therapeutic use in neurodegenerative diseases, particularly in HD and PD.
  • PublicationAccès libre
    Modulation of haloperidol-induced patterns of the transcription factor Nur77 and Nor-1 expression by serotonergic and adrenergic drugs in the mouse brain
    (Oxford Academic, 2012-05-01) Maheux, Jérôme; Vuillier, Laura; Lévesque, Daniel; Mahfouz, Mylène; Rouillard, Claude
    Different patterns of expression of the transcription factors of Nur77 and Nor-1 are induced following acute administration of typical and atypical antipsychotic drugs. The pharmacological profile of atypical antipsychotics suggests that serotonergic and/or adrenergic receptors might contribute to these reported differences. In order to test this possibility, we examined the abilities of serotonin 5-HT1A and 5-HT2A/2C, and α1- and α2-adrenergic receptor drugs to modify the pattern of Nur77 (NR4A1) and Nor-1 (NR4A3) mRNA expression induced by haloperidol. Various groups of mice were treated with either saline, DOI, a 5-HT2A/2C agonist, MDL11939, a 5-HT2A antagonist, 8-OH-DPAT, a 5-HT1A agonist, prazosin, an α1-adrenergic antagonist and idazoxan, an α2-adrenergic antagonist, alone or in combination with haloperidol. The 5-HT2A/2C agonist DOI alone significantly increased Nur77 expression in the medial striatum and nucleus accumbens. DOI reduced Nor-1 expression, while MDL11939 increased the expression of this transcript in the cortex. Prazosin reduced Nur77 expression in the dorsal striatum and nucleus accumbens. Interestingly, 8-OH-DPAT and MDL11939 partially prevented haloperidol-induced Nur77 up-regulation, while MDL11939 completely abolished Nor-1 expression in the striatum. In addition, MDL11939 decreased haloperidol-induced Nur77 and Nor-1 mRNA levels in the ventral tegmental area. On the contrary, idazoxan (α2 antagonist) consistently potentiated haloperidol-induced Nur77, but not Nor-1 mRNA levels in the striatum, whereas prazosin (α1 antagonist) remained without effect. Taken together, these results show the ability of a 5-HT1A agonist or a 5-HT2A antagonist to reduce haloperidol-induced Nur77 and Nor-1 striatal expression, suggesting that these serotonin receptor subtypes participate in the differential pattern of gene expression induced by typical and atypical antipsychotic drugs.
  • PublicationRestreint
    Estrogen receptors and lesion-induced response of striatal dopamine receptors
    (Elsevier Ltd., 2013-01-25) Al-Sweidi, Sara; Morissette, Marc; Di Paolo, Thérèse; Rouillard, Claude
    Neuroprotection by 17β-estradiol and an estrogen receptor (ER) agonist against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion were shown to implicate protein kinase B (Akt) signaling in mice. In order to evaluate the associated mechanisms, this study compared estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) intact or knockout (KO) and wild-type (WT) C57Bl/6 male mice following MPTP treatment of 7, 9, 11 mg/kg and/or 17β-estradiol. Striatal D1 and D2 dopamine (DA) receptors were measured by autoradiography with the specific ligands [3H]-SCH 23390 and [3H]-raclopride, respectively and signaling by Western blot for Akt, glycogen synthase kinase 3β (GSK3β) and extracellular-regulated signal kinases (ERK1 and ERK2). Control ERKOβ mice had lower striatal [3H]-SCH 23390 specific binding than WT and ERKOα mice; both KO mice had lower [3H]-raclopride specific binding. Striatal D1 receptors decreased with increasing doses of MPTP in correlation with striatal DA concentrations in ERKOα mice and remained unchanged in WT and ERKOβ mice. Striatal D2 receptors decreased with increasing doses of MPTP in correlation with striatal DA concentrations in WT and ERKOα mice and increased in ERKOβ mice. In MPTP-lesioned mice, 17β-estradiol treatment increased D1 receptors in ERKOα and ERKOβ mice and D2 receptors in WT and ERKOβ mice. MPTP did not affect striatal pAkt/Akt and pGSK3β/GSK3β levels in WT and ERKOα mice, while in vehicle-treated ERKOβ mice these levels were higher and increased with MPTP lesioning. Striatal pERK1/ERK1 and pERK2/ERK2 levels showed to a lesser extent a similar pattern. In conclusion, ERs affected the response of striatal DA receptors to a MPTP lesion and post receptor signaling.
  • PublicationAccès libre
    The stress-induced transcription factor NR4A1 adjusts mitochondrial function and synapse number in prefrontal cortex
    (2018-02-07) Jeanneteau, Freddy; Lévesque, Daniel; Barrère, Christian; Rouillard, Claude; Vos, Mariska; De Vries, Carlie J.M.; Dromard, Yann; Moisan, Marie-Pierre; Duric, Vanja; Franklin, Tina C.; Duman, Ronald S.; Lewis, David A.; Ginsberg, Stephen D.
    The energetic costs of behavioral chronic stress are unlikely to be sustainable without neuronal plasticity. Mitochondria have the capacity to handle synaptic activity up to a limit before energetic depletion occurs. Protective mechanisms driven by the induction of neuronal genes likely evolved to buffer the consequences of chronic stress on excitatory neurons in prefrontal cortex (PFC), as this circuitry is vulnerable to excitotoxic insults. Little is known about the genes involved in mitochondrial adaptation to the build up of chronic stress. Using combinations of genetic manipulations and stress for analyzing structural, transcriptional, mitochondrial and behavioral outcomes, we characterized NR4A1 as a stress-inducible modifier of mitochondrial energetic competence and dendritic spine number in PFC. NR4A1 acted as transcription factor for changing the expression of target genes previously involved in mitochondrial uncoupling, AMPK activation and synaptic growth. Maintenance of NR4A1 activity by chronic stress played a critical role in the regressive synaptic organization in PFC of mouse models of stress (male only). Knockdown, dominant negative and knockout of NR4A1 in mice and rats (male only) protected pyramidal neurons against the adverse effects of chronic stress. In human PFC tissues of men and women, high levels of the transcriptionally-active NR4A1 correlated with measures of synaptic loss and cognitive impairment. In the context of chronic stress, prolonged expression and activity of NR4A1 may lead to responses of mitochondria and synaptic connectivity that do not match environmental demand, resulting in circuit malfunction between PFC and other brain regions constituting a pathological feature across disorders.