Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Beaulieu, Jean

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Beaulieu

Prénom

Jean

Affiliation

Université Laval. Département des sciences du bois et de la forêt

ISNI

ORCID

Identifiant Canadiana

ncf10393557

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationRestreint
    Prediction of tracheid length and diameter in white spruce (Picea glauca)
    (Rijksherbarium/Hortus botanicus, 2015-05-20) Mvolo, Cyriac Serge; Defo, Maurice.; Cloutier, Alain; Koubaa, Ahmed; Ngueho Yemele, Martin Claude; Beaulieu, Jean
    The establishment of patterns of radial and longitudinal variations and the development of models to predict the wood anatomical properties, especially from juvenile wood, are of interest for both wood industry and researchers. Linear regressions were used to predict whole-tree, breast height and mature tracheid length and diameter in white spruce (Picea glauca (Moench) Voss) and the WBE model was used to predict the variation of tracheid diameter. Tracheid length and diameter increased from pith to bark. Tracheid length decreased, while tracheid diameter increased from apex to lower heights. Cambial age was the most important predictor of tracheid length. The final tracheid length models with either a log transformation or a third-order polynomial of cambial age explained 82% of the variation in the whole-tree tracheid length. At breast height, 83% of the variation in the whole tracheid length was explained using the juvenile value at a cambial age of 3 years. Up to 87% of the variation was explained by the model, including the average value of juvenile wood. However, mature wood tracheid length at breast height could not be predicted from juvenile wood. Distance from the apex predicted the tracheid widening in outer rings but failed to predict tracheid expansion of samples collected at fixed cambial ages. The WBE explained 86% of conduit widening in the outer rings. The sampling strategy, i.e. collecting samples longitudinally at a fixed cambial age vs. at a fixed calendar year is important in predicting tracheid diameter.
  • PublicationAccès libre
    Variation in wood quality in white spruce (Picea glauca (Moench) Voss). Part I. Defining the juvenile–mature wood transition based on tracheid length
    (MDPI, 2015-01-08) Mvolo, Cyriac Serge; Koubaa, Ahmed; Beaulieu, Jean; Cloutier, Alain; Mazerolle, Marc J.
    Estimations of transition age (TA) and juvenile wood proportion (JWP) are important for wood industries due to their impact on end-product quality. However, the relationships between analytical determination of TA based on tracheid length (TL) and recognized thresholds for adequate end products have not yet been established. In this study, we used three different statistical models to estimate TA in white spruce (Picea glauca (Moench) Voss) based on TL radial variation. We compared the results with technological maturity. A two-millimeter threshold, previously suggested for good paper tear strength, was used. Tracheid length increased from pith to bark and from breast height to upper height. Juvenile wood (JW) was conical with the three models. At breast height, TA ranged from 11 to 27 years and JWP ranged from 15.3% to 47.5% across the three models. The linear mixed model produced more conservative estimates than the maximum-quadratic-linear (M_Q_L) model. Both the linear mixed model and the M_Q_L model produced more conservative TA estimates than the piecewise model. TA estimates by the MIXED model, and to a lesser extent by the M_Q_L model, were equivalent to those for real mature wood, whereas TA estimates by the piecewise model were considerably lower, falling into the transition wood area.