Personne :
Molson, John W. H.

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Nom de famille
John W. H.
Université Laval. Département de géologie et de génie géologique
Identifiant Canadiana

Résultats de recherche

Voici les éléments 1 - 10 sur 26
  • Publication
    Accès libre
    Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
    (Conseil national de recherches du Canada, 2018-06-11) Shojae Ghias, Masoumeh; Therrien, René; Lemieux, Jean-Michel; Molson, John W. H.
    Numerical simulations of coupled groundwater flow and heat transport are used to address how hydrogeological conditions can affect permafrost dynamics. The simulations are based on a 2D vertical-plane conceptual model of a study site at the Iqaluit Airport, Nunavut, Canada, which includes a 50 m deep permafrost terrain with a shallow active layer, overlain by a paved taxiway with winter snow-covered embankments. Coupled groundwater flow and advective-conductive heat transport with freeze-thaw dynamics, temperature-dependent porewater freezing functions and latent heat are included in the model. The simulation results show that a smooth (low-slope) freezing function with a higher residual unfrozen moisture content produced a deeper thaw front compared to that using a steeper freezing function, generating a maximum increase in the depth to permafrost of 17.5 m after 268 years. Permafrost thaw rates in high-permeability zones within a heterogeneous system were also relatively higher compared to an otherwise equivalent homogeneous soil, resulting in a maximum increase of 2.6 m in the depth to permafrost after 238 years. As recharge water cools while flowing along the upgradient permafrost table, advectively driven heat transport is paradoxically shown to temporarily increase the height of the permafrost table in downgradient areas.
  • Publication
    Accès libre
    Numerical evaluation of grouting scenarios for reducing water inflows in underground excavations – Goldcorp’s Éléonore mine study case
    (2017-10-02) Blessent, Daniela; Therrien, René; Grenon, Martin; Lemieux, Jean-Michel; Lajoie, Pierre-Luc; Domingue, Catherine; Molson, John W. H.
    Water inflows through fracture networks are one of the many challenges that the Éléonore mine has to face. Although pregrouting of pilot holes during mine development has been proven to efficiently reduce water inflows into mine excavations, the actual design methods are empirical and can be optimized to increase grouting efficiency and decrease the associated costs. Optimization of the amount of cement needed for pre-grouting is achieved by designing the grouting approach based on the location of major faults around the excavations. Here, a base case finite-element numerical model and associated sensitivity analyses are used to simulate groundwater inflows into a stope, based on the Éléonore mining site characteristics. Simulations are conducted for testing various grout injection scenarios for various major fault locations around the stope. Sensitivity analyses have shown that for a fault located above the stope, the inflow reduction is greater when the zone between the fault and the stope is grouted instead of directly grouting the fault itself. Also, in the case of a fault intersecting a stope, the results have demonstrated that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope.
  • Publication
    Accès libre
    Numerical investigation of methane and formation fluid leakage along the casing of a decommissioned shale gas well
    (American Geophysical Union, 2015-07-20) Nowamooz, Ali; Therrien, René; Lemieux, Jean-Michel; Molson, John W. H.
    Methane and brine leakage rates and associated time scales along the cemented casing of a hypothetical decommissioned shale gas well have been assessed with a multiphase flow and multicomponent numerical model. The conceptual model used for the simulations assumes that the target shale formation is 200 m thick, overlain by a 750 m thick caprock, which is in turn overlain by a 50 m thick surficial sand aquifer, the 1000 m geological sequence being intersected by a fully penetrating borehole. This succession of geological units is representative of the region targeted for shale gas exploration in the St. Lawrence Lowlands (Québec, Canada). The simulations aimed at assessing the impact of well casing cementation quality on methane and brine leakage at the base of a surficial aquifer. The leakage of fluids can subsequently lead to the contamination of groundwater resources and/or, in the case of methane migration to ground surface, to an increase in greenhouse gas emissions. The minimum reported surface casing vent flow (measured at ground level) for shale gas wells in Quebec (0.01 m3/d) is used as a reference to evaluate the impact of well casing cementation quality on methane and brine migration. The simulations suggest that an adequately cemented borehole (with a casing annulus permeability kc math formula 1 mD) can prevent methane and brine leakage over a time scale of up to 100 years. However, a poorly cemented borehole (kc math formula 10 mD) could yield methane leakage rates at the base of an aquifer ranging from 0.04 m3/d to more than 100 m3/d, depending on the permeability of the target shale gas formation after abandonment and on the quantity of mobile gas in the formation. These values are compatible with surface casing vent flows reported for shale gas wells in the St. Lawrence Lowlands (Quebec, Canada). The simulated travel time of methane from the target shale formation to the surficial aquifer is between a few months and 30 years, depending on cementation quality and hydrodynamic properties of the casing annulus. Simulated long-term brine leakage rates after 100 years for poorly cemented boreholes are on the order of 10−5 m3/d (10 mL/d) to 10−3 m3/d (1 L/d). Based on scoping calculations with a well-mixed aquifer model, these rates are unlikely to have a major impact on groundwater quality in a confined aquifer since they would only increase the chloride concentration in a pristine aquifer to 1 mg/L, which is significantly below the commonly recommended aesthetic objective of 250 mg/L for chloride.
  • Publication
    A conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Québec, Canada
    (Elsevier, 2015-03-24) Lemieux, Jean-Michel; Montcoudiol, Nelly; Cloutier, Vincent; Molson, John W. H.
    A conceptual model was developed for a hydrogeological flow system in the southern Outaouais Region, Quebec, Canada, where the local population relies heavily on groundwater pumped from shallow overburden aquifers and from deeper fractured crystalline bedrock. The model is based on the interpretation of aqueous inorganic geochemical data from 14 wells along a cross-section following the general flow direction, of which 9 were also analysed for isotopes (δ18O, δ2H, 3H, δ13C, 14C) and 4 for noble gases (He, Ne, Ar, Xe, Kr). Three major water types were identified: (1) Ca–HCO3 in the unconfined aquifer as a result of silicate (Ca-feldspar) weathering, (2) Na–Cl as a remnant of the post-glacial Champlain Sea in stagnant confined zones of the aquifer, and (3) Na–HCO3, resulting from freshening of the confined aquifer due to Ca–Na cation exchange. Chemical data also allowed the identification of significant mixing zones. Isotope and noble gas data confirm the hypothesis of remnant water from the Champlain Sea and also support the hypothesis of mixing processes between a young tritium-rich component with an older component containing high 4He concentrations. It is still unclear if the mixing occurs under natural flow conditions or if it is induced by pumping during the sampling, most wells being open boreholes in the bedrock. It is clear, however, that the hydrogeochemical system is dynamic and still evolving from induced changes since the last glaciation. As a next step, the conceptual model will serve as a basis for groundwater flow, mass transport and geochemical modelling to validate the hypotheses developed in this paper.
  • Publication
    A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada
    (Wiley, 2021-06-16) Lemieux, Jean-Michel; Fortier, Richard; Molson, John W. H.; Liu, Weibo
    Icing occurs each winter along the floodplain of the Kuuguluk River in the continuous permafrost zone at Salluit in Nunavik (Quebec), Canada. The source of successive water overflows which thicken and enlarge this ice cover over time is suprapermafrost groundwater discharging from a talik below the riverbed. Electrical resistivity tomography was used to delineate the talik, while water level and temperature dataloggers were used to assess the thermo-hydraulic conditions of the riverbed. The mean annual riverbed temperature was 1.8°C in 2016 while the mean annual air temperature was −6.0°C. Hydraulic heads below the ice cover as high as 2.8 m and events of abrupt decreases in hydraulic head due to suprapermafrost groundwater overflow through cracks in the ice cover were monitored. An analytical solution based on beam mechanics theory was used to assess the water pressure-induced stresses which are sufficient to fracture the ice cover. A detailed conceptual model of the talik and icing dynamics is proposed to explain the cryo-hydrogeological processes taking place in this complex groundwater–river system. The groundwater pressure buildup in the talik during the winter is due to constricted flow of suprapermafrost groundwater in the talik. These results have implications for understanding the dynamics of river taliks and their use as potential water supplies in northern communities.
  • Publication
    Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada)
    (Springer, 2020-01-29) Jamin, Pierre; Cochand, Marion; Lemieux, Jean-Michel; Dagenais, Sophie; Fortier, Richard; Brouyère, Serge; Molson, John W. H.
    Permafrost thaw is a complex process resulting from interactions between the atmosphere, soil, water and vegetation. Although advective heat transport by groundwater at depth likely plays a significant role in permafrost dynamics at many sites, there is lack of direct measurements of groundwater flow patterns and fluxes in such cold-region environments. Here, the finite volume point dilution method (FVPDM) is used to measure in-situ groundwater fluxes in two sandy aquifers in the discontinuous permafrost zone, within a small watershed near Umiujaq, Nunavik (Quebec), Canada. The FVPDM theory is first reviewed, then results from four FVPDM tests are presented: one test in a shallow supra-permafrost aquifer, and three in a deeper subpermafrost aquifer. Apparent Darcy fluxes derived from the FVPDM tests varied from 0.5 × 10−5 to 1.0 × 10−5 m/s, implying that advective heat transport from groundwater flow could be contributing to rapid permafrost thaw at this site. In providing estimates of the Darcy fluxes at the local scale of the well screens, the approach offers more accurate and direct measurements over indirect estimates using Darcy’s law. The tests show that this method can be successfully used in remote areas and with limited resources. Recommendations for optimizing the test protocol are proposed.
  • Publication
    Accès libre
    Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers
    (American Geophysical Union, 2016-08-19) Roy, Nicolas; Nowamooz, Ali; Stempvoort, Dale Van; Lemieux, Jean-Michel; Molson, John W. H.
    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2–20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10−5 to 1 × 10−3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.
  • Publication
    Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada)
    (Springer, 2020-01-25) Cochand, Marion; Barth, Johannes (Johannes A. C.); Therrien, René; Geldern, Robert van; Lemieux, Jean-Michel; Fortier, Richard; Molson, John W. H.
    Hydrogeochemical data are used to better understand recharge dynamics and to support a hydrogeological conceptual model in a 2-km2 watershed in a discontinuous permafrost zone in Nunavik, Canada. The watershed contains an upper (surficial) and lower aquifer within Quaternary deposits, above and below a marine silt layer containing ice-rich permafrost mounds. The analysis is based on water samples from precipitation, groundwater monitoring wells, ground ice in permafrost mounds, thermokarst lakes and a perennial stream. Groundwater geochemistry in both aquifers reflects young, poorly evolved waters, with mainly Ca-HCO3 water types and low mineralisation ranging from 11 to 158 mg/L total dissolved solids (TDS), implying short pathways and rapid travel times of a year or less. While relatively low, TDS signatures in groundwater and surface water show increasing values downgradient. Groundwater isotope values (δ18OH2O and δ2HH2O) are often strongly influenced by snowmelt, while those of thermokarst lakes show evidence of evaporation. Recharge along the cuesta contributes to a transverse component of groundwater flow within the valley with higher TDS and δ13CDIC values influenced by open-system weathering. Even where permafrost-free, the marine silt unit has a strong confining effect and plays a more important role on recharge dynamics than the discontinuous permafrost. Nevertheless, the vulnerability of these types of hydrogeological aquifer systems is expected to increase due to rapid recharge dynamics associated with the gradual loss of the confining effect of permafrost. This hydrogeochemical data set will be useful as a baseline to document impacts of permafrost degradation on the hydrogeological system.
  • Publication
    Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec)
    (Elsevier, 2017-03-17) Beaudoin, Georges; Dupont, Pierre; Gras, Antoine; Bussière, Bruno; Lemieux, Jean-Michel; Plante, Benoît; Molson, John W. H.
    Natural weathering of ultramafic rocks in mine tailings captures atmospheric CO2 through the formation of magnesium carbonates. The Dumont Nickel Project (DNP) is of particular interest as it will generate 1.7 Gt of ultramafic residues. A field experiment has been conducted at the DNP site in order to understand the process of natural CO2 sequestration. Two experimental cells were built using waste rock and mineral processing tailings and were instrumented with gas sampling ports and probes to monitor water saturation and suction. A decrease of the interstitial gas-phase CO2 concentration in both cells, from atmospheric values (∼390 ppmv) near the surface to ∼100 ppmv near the bottom, reflects active CO2 consumption by the residues. The total carbon content of the weathered DNP mine waste ranges from 0.2 wt% to 6.5 wt% C. Hydrotalcites supergroup minerals (pyroaurite-3R, brugnatellite, pyroaurite 2-H), aragonite, nesquehonite, dypingite and hydromagnesite were absent from the unweathered residues and precipitated in the cells during passive mineral carbonation. In situ measurements using Wavelength-Scanned Cavity Ring Down Spectroscopy reveal an increase of δ13C(air) from −8‰ near the surface of the cells to ∼2‰ near the bottom that is correlated with the decrease in CO2 concentration. This trend is explained by kinetic carbon isotope fractionation during dissolution of atmospheric CO2 in interstitial water (ΔDIC-CO2 = −11.2‰). Secondary carbonates, precipitated from the interstitial water, are characterized by a moderately high δ18O and low δ13C. These isotopic compositions of the carbonates are consistent with precipitation in an evaporative environment where the kinetic carbon fractionation during atmospheric CO2 dissolution produces interstitial water depleted in 13C. Moreover, isotopic compositions of hydrotalcite supergroup minerals and other carbonate minerals are consistent with modern precipitation from the weathering of mining residue. These observations demonstrate the atmospheric source for the sequestered CO2 and help constrain a conceptual model of the carbonation reaction in the residues.
  • Publication
    Accès libre
    Numerical evaluation of grouting scenarios for reducing water inflows from major faults in underground excavations
    (Springer, 2019-01-19) Blessent, Daniela; Therrien, René; Grenon, Martin; Lemieux, Jean-Michel; Lajoie, Pierre-Luc; Domingue, Catherine; Molson, John W. H.
    Water inflows through fracture networks are a major economic and safety issue in underground mines. Although pre-grouting of pilot holes during mine development efficiently reduces water inflows into mine excavations, current design methods remain empirical. We used a finite-element numerical model to simulate groundwater inflow into a stope with the objective of finding the best configuration to increase pre-grouting efficiency for sealing faults while decreasing the associated costs. We designed simulations to test various grout injection scenarios for two different major fault locations around the stope, based on the site characteristics of the Éléonore mine (Québec, Canada). Sensitivity analyses show that, for a fault located above the stope, grouting the zone between the fault and the stope reduces inflow more than directly grouting the fault. Also, in the case of a fault intersecting a stope, the simulations suggest that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope.