Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Dubuis, Marie-Eve

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Dubuis

Prénom

Marie-Eve

Affiliation

Université Laval. Département de biochimie, de microbiologie et de bio-informatique

ISNI

ORCID

Identifiant Canadiana

ncf11906798

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Aérosols viraux en milieux de soins : contrôle, mesure et caractérisation
    (2021) Dubuis, Marie-Eve; Duchaine, Caroline
    Les éclosions virales constituent des menaces persistantes pour les établissements de soins. En plus de compromettre la santé des usagers, du personnel et des visiteurs, ces éclosions représentent d'énormes défis de gestion des ressources humaines, matérielles et financières. La pandémie de SRAS-CoV-2 sévissant depuis plus d'une année a mis en lumière la méconnaissance du rôle de l'air dans la transmission des virus. Des technologies de traitement de l'air pourraient contribuer au contrôle des virus aérosolisés et éventuellement à la protection des occupants des milieux de soins. Dans le cadre de ce doctorat, une stratégie de traitement de l'air utilisant l'ozone a été testée pour inactiver des bioaérosols viraux. Afin d'obtenir un portrait de la contamination aérienne en milieu hospitalier, une campagne d'échantillonnage a été menée lors de trois éclosions d'influenza. Enfin, la production d'aérosols pendant le traitement d'échantillons en laboratoire clinique a été examinée. Dans la première étude, le norovirus murin ainsi que les bactériophages PhiX174, Phi6, PR772 et MS2 ont été nébulisés dans une chambre d'aérosols rotative et exposés à un traitement de l'air utilisant l'ozone à différents niveaux d'humidité relative. Le norovirus murin a été exposé à 0,23 ppm d'ozone et à 20% et 85% d'humidité relative alors que les bactériophages ont été exposés à 1,13 ppm d'ozone et à trois humidités relatives, soit 20%, 55% et 85%. Pour tous les virus, des temps d'exposition de 10, 40 et 70 minutes ont été évalués. Ce traitement a été comparé à une condition de référence, qui consistait en une exposition à l'air. Les aérosols ont été récupérés à l'aide d'un échantillonneur d'air et les virus ont été quantifiés en culture et par biologie moléculaire. Des ratios infectieux ont été calculés afin de déterminer la réduction de l'infectiosité virale attribuable au traitement à l'ozone. Une inactivation d'au moins deux ordres de grandeur a été observée après 40 minutes d'exposition à l'ozone à 85% d'humidité relative pour PhiX174, MS2 et MNV-1. Une exposition à la condition de référence à 20% d'humidité relative pendant 10 minutes a été suffisante pour une inactivation similaire des bactériophages PR772 et Phi6. Ce même traitement de l'air a ensuite été évalué pour l'inactivation d'aérosols d'influenza et du virus respiratoire syncytial. Toutefois, dans le cas de ce second virus, la perte d'infectiosité lors des procédés d'aérosolisation et d'échantillonnage était trop importante pour pouvoir l'exposer à l'ozone. Concernant l'influenza, des concentrations d'ozone de 0,23 et 1,70 ppm ont été testées à des niveaux faibles et élevés d'humidité relative. Deux suppléments, l'un de nature lipidique et l'autre de nature protéique, ont été ajoutés au lysat viral afin de quantifier l'effet protecteur qu'ils pourraient procurer aux virus aérosolisés. Une condition sans supplément a aussi été testée à des fins de comparaison. Une exposition pendant 80 minutes à une concentration d'ozone de 1,70 ppm combinée à une humidité relative élevée a engendré la meilleure inactivation, soit une réduction de quatre ordres de grandeur, pour les aérosols sans supplément ou additionnés de supplément protéique Lors de la troisième étude, l'air d'un milieu hospitalier en contexte d'éclosion grippale a été échantillonné à trois reprises. L'efficacité de récupération de trois appareils, dont deux fonctionnant à haut débit et un à bas débit, a été évaluée. Cette campagne a révélé une variabilité des concentrations aériennes d'influenza A et B entre les éclosions. Bien que des concentrations maximales de l'ordre de 10⁵ copies d'ARN/m³ aient été détectées, aucun virus infectieux n'a été quantifié. Finalement, la génération d'aérosols pendant le traitement d'échantillons sanguins et urinaires dans un laboratoire clinique de biochimie a été examinée. Les employés redoutaient de produire des aérosols contenant du SRAS-CoV-2 infectieux à partir d'échantillons récoltés chez des patients infectés par la COVID-19. Pour ce projet, une culture liquide d'une bactérie modèle a été employée en remplacement des échantillons cliniques. Trois méthodes de collecte ont été utilisées pour évaluer la production d'aérosols, soit le prélèvement d'air par un appareil standard, l'emploi de boîtes indicatrices et l'écouvillonnage de surfaces. Aucune bactérie n'a été récupérée par ces trois méthodes d'échantillonnage, ce qui indique que les procédures de traitement étudiées n'ont produit qu'une faible quantité d'aérosols.
  • PublicationAccès libre
    Exposition des travailleurs aux bioaérosols dans les usines de biométhanisation des matières organiques putrescibles
    (2017) Dubuis, Marie-Eve; Duchaine, Caroline
    La livraison et la manutention de la matière organique putrescible effectuées dans les usines de biométhanisation produisent des bioaérosols, mettant en suspension dans l’air les microorganismes retrouvés dans les matières premières qui peuvent varier en nature et en état de décomposition. Les travailleurs des usines de biométhanisation se retrouvent exposés à ces microorganismes, dont certains peuvent être nuisibles à la santé. La biométhanisation étant une méthode récente de traitement et de valorisation des déchets, aucune étude ne fait mention de la présence de bioaérosols dans l’air des bâtiments en émergence au Québec. Il est donc nécessaire de procéder à une évaluation exploratoire de l’air des usines de biométhanisation afin d’en connaitre la composition en microorganismes. Deux usines ont été visitées une fois en été et une fois en hiver, pour un total de 4 visites, ceci dans le but de tenir compte de la variation saisonnière des conditions de travail. L’échantillonnage effectué était de type stationnaire. Les six échantillonneurs utilisés ont servi à l’analyse des microorganismes cultivables et à l’analyse moléculaire des bioaérosols. Des concentrations en bactéries et en moisissures supérieures aux recommandations émises par l’IRSST ont été observées. La quantification par qPCR a permis la détection de quelques microorganismes potentiellement pathogènes, tels Saccharopolyspora rectivirgula, Legionella spp. et Mycobacterium spp. Des concentrations d’endotoxines inférieures à la valeur suggérée ont été décrites. Finalement, une meilleure vue d’ensemble de la diversité bactérienne a été possible grâce au séquençage nouvelle génération. La technologie utilisée pour le traitement des déchets étant encore nouvelle, ce projet constitue un ajout important à la littérature. Des moyens de protection pourront être suggérés pour les travailleurs œuvrant dans ce secteur d’activités.