Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Subirade, Muriel

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Subirade

Prénom

Muriel

Affiliation

Université Laval. Département des sciences des aliments

ISNI

0000000000527559

Identifiant Canadiana

ncf11860392

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Development of an encapsulation system for the protection and controlled release of antimicrobial nisin at meat cooking temperature
    (Canadian Center of Science and Education, 2013-04-24) Desjardins, Yves; Subirade, Muriel; Saucier, Linda; Boualem, Khadidja
    Nisin is an antimicrobial peptide produced by Lactococcus lactis spp. lactis widely investigated for use in foods as a natural antimicrobial. However, its effective use in meat products is restricted notably by its reaction with meat constituents (including glutathione) in raw meat. The purpose of this study was to develop an encapsulation system that would optimize nisin activity when used in meat. To achieve this goal, an encapsulation in dipalmitoylphosphatidylcholine (DPPC) liposomes was developed. DPPC liposomes were formed in phosphate buffer with or without nisin. The encapsulation efficiency of nisin in liposomes was greater than 46 ± 2%. The median size of nisin-loaded liposomes was 495 nm, compared to 170 nm for empty liposomes. The liposomes containing nisin were stable for up to 7 days at 4°C but a zone of inhibition was observed afterwards. Stability of the liposome to heat was also tested and demonstrated that above 37°C nisin was released from the melted liposomes to form zones of inhibition. Activity of free and encapsulated nisin was tested in raw and cooked ground beef (71°C). Free nisin lost its activity in raw beef but DPPC-encapsulated nisin remained active and was released upon melting of the liposome during heat treatment.
  • PublicationRestreint
    Lasso-inspired peptides with distinct antibacterial mechanisms
    (Springer-Verlag Wien, 2014-12-04) Biron, Éric; Gomaa, Ahmed; Fliss, Ismaïl; Bédard, François; Subirade, Muriel; Hammami, Riadh
    Abstract Microcin J25 (MccJ25) is an antibacterial peptide with a peculiar molecular structure consisting of 21 amino acids and a unique lasso topology that makes it highly stable. We synthesized various MccJ25-derived peptides that retained some of the inhibitory activity of the native molecule against Salmonella enterica and Escherichia coli. Of the tested peptides, C1, 7-21C and WK_7-21 were the most inhibitory peptides (MIC = 1–250 µM), but all three were less potent than MccJ25. While MccJ25 was not active against Gram-positive bacteria, the three derived peptides were slightly inhibitory to Gram-positive bacteria (MIC = 250 µM). At 5 µM, C1, 7-21C and WK_7-21 reduced E. coli RNA polymerase activity by respectively, 23.4, 37.4 and 65.0 %. The MccJ25 and its derived peptides all appeared to affect the respiratory apparatus of S. enterica. Based on circular dichroism and FTIR spectroscopy, the peptides also interact with bacterial membrane phospholipids. These results suggest the possibility of producing potent MccJ25-derived peptides lacking the lasso structure. Keywords Antimicrobial peptides · Microcin J25 · Solid phase peptide synthesis · Antibacterial activity · Mode of action