Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Thibault, Tristan

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Thibault

Prénom

Tristan

Affiliation

Université Laval. Département de physique, de génie physique et d'optique

ISNI

ORCID

Identifiant Canadiana

ncf13678635

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    Sulfur-rich chalcogenide claddings for athermal and high-Q silicon microring resonators
    (OSA Pub., 2021-02-26) Jean, Philippe; LaRochelle, Sophie; Thibault, Tristan; Shi, Wei; Messaddeq, Younès; Douaud, Alexandre
    Heterogeneous integration of materials with a negative thermo-optic coefficient is a simple and efficient way to compensate the strong detrimental thermal dependence of silicon-on-insulator devices. Yet, the list of materials that are both amenable for photonics fabrication and exhibit a negative TOC is very short and often requires sacrificing loss performance. In this work, we demonstrate that As20S80 chalcogenide glass thin-films can be used to compensate silicon thermal effects in microring resonators while retaining excellent loss figures. We present an experimental characterization of the glass thin-film and of fabricated hybrid microring resonators at telecommunication wavelengths. Nearly athermal operation is demonstrated for the TM polarization with an absolute minimum measured resonance shift of 5.25 pm K−1, corresponding to a waveguide effective index thermal dependence of 4.28×10-6 RIU/K. We show that the thermal dependence can be controlled by changing the cladding thickness and a negative thermal dependence is obtained for the TM polarization. All configurations exhibit unprecedented low loss figures with a maximum measured intrinsic quality factor exceeding 3.9 × 105, corresponding to waveguide propagation loss of 1.37 dB cm−1. A value of−4.75(75)×10-5 RIU/K is measured for the thermo-optic coefficient of As20S80 thin-films.