Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Doyon, Nicolas

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Doyon

Prénom

Nicolas

Affiliation

Université Laval. Département de mathématiques et de statistique

ISNI

ORCID

Identifiant Canadiana

ncf11853817

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationAccès libre
    Spectral dimension reduction of complex dynamical networks
    (American Physical Society, 2019-03-04) Laurence, Edward; Dubé, Louis J.; Doyon, Nicolas; Desrosiers, Patrick
    Dynamical networks are powerful tools for modeling a broad range of complex systems, including financial markets, brains, and ecosystems. They encode how the basic elements (nodes) of these systems interact altogether (via links) and evolve (nodes’ dynamics). Despite substantial progress, little is known about why some subtle changes in the network structure, at the so-called critical points, can provoke drastic shifts in its dynamics. We tackle this challenging problem by introducing a method that reduces any network to a simplified low-dimensional version. It can then be used to describe the collective dynamics of the original system. This dimension reduction method relies on spectral graph theory and, more specifically, on the dominant eigenvalues and eigenvectors of the network adjacency matrix. Contrary to previous approaches, our method is able to predict the multiple activation of modular networks as well as the critical points of random networks with arbitrary degree distributions. Our results are of both fundamental and practical interest, as they offer a novel framework to relate the structure of networks to their dynamics and to study the resilience of complex systems.
  • PublicationAccès libre
    Counting hidden neural networks
    (Université de Waterloo (Canada), 2016-05-10) Young, Richard A.; Hardy, Simon; Doyon, Nicolas; Desrosiers, Patrick
    We apply combinatorial tools, including P´olya’s theorem, to enumerate all possible networks for which (1) the network contains distinguishable input and output nodes as well as partially distinguishable intermediate nodes; (2) all connections are directed and for each pair of nodes, there are at most two connections, that is, at most one connection per direction; (3) input nodes send connections but don’t receive any, while output nodes receive connections but don’t send any; (4) every intermediate node receives a path from an input node and sends a path to at least one output node; and (5) input nodes don’t send direct connections to output nodes. We first obtain the generating function for the number of such networks, and then use it to obtain precise estimates for the number of networks. Finally, we develop a computer algorithm that allows us to generate these networks. This work could become useful in the field of neuroscience, in which the problem of deciphering the structure of hidden networks is of the utmost importance, since there are several instances in which the activity of input and output neurons can be directly measured, while no direct access to the intermediate network is possible. Our results can also be used to count the number of finite automata in which each cell plays a relevant role.
  • PublicationAccès libre
    Les fascinants nombres de Niven
    (2006) Doyon, Nicolas; De Koninck, Jean-Marie
    Soit sq(n) la somme des chiffres d'un entier positif n dans l'écriture en base q. On dit que n est un g-nombre de Niven ou un nombre de Niven en base q si sq(n)\n. On pose Nq(x) comme le nombre de g-nombres de Niven inférieurs à x. Au chapitre 1, on prouve les propriétés de la cardinalité de l'ensemble {n < x : sq(n) = t} qui seront nécessaires aux démonstrations des résultats principaux des chapitres ultérieurs. Il s'agit d'une synthèse de résultats bien connus présentés avec de nouvelles preuves élémentaires. Au chapitre 2, on démontre quelques résultats élémentaires à propos de la fonction Nq(x) et au chapitre 3, on établit une formule asymptotique pour la valeur de la fonction Nq(x), soit en démontrant qu'il existe une constante positive X) = rj(q) telle que Nq(x) = (1 + o{l))r}-^-^ lorsque x —> oo. La fonction rj(q) fait l'objet d'une étude approfondie au chapitre 4. On définit également Nq^r(x) comme le nombre d'entiers positifs n inférieurs à x tels que n, n + 1,... ,n + r — 1 sont tous des nombres de g-Niven. Grundman [14] a démontré que valeur maximale de r pour laquelle Nq:r(x) est strictement positif est r = 2q. Au chapitre 5, on établit une formule asymptotique pour la valeur de Nq^r(x) soit en démontrant que, pour chaque r G [2, 2q], il existe une constante positive C\ — c\{q,r) telle que NqiT(x) = (1 + o(l))^|f|f lorsque x -> oo.