Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Purnama, Agung

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Purnama

Prénom

Agung

Affiliation

Département de génie des mines, de la métallurgie et des matériaux, Faculté des sciences et de génie, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11882089

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationAccès libre
    Caveolin : a possible biomarker of degradable metallic materials toxicity on vascular cells
    (Elsevier, 2013-03-14) Couët, Jacques; Mantovani, D. (Diego); Purnama, Agung
    Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their appropriate ductility compared with their counterparts, magnesium alloys. However, the predicted degradation rate of pure iron is considered to be too slow for such applications. We explored manganese (35 wt.%) as an alloying element in combination with iron to circumvent this problem through powder metallurgical processing (Fe–35Mn). Manganese, on the other hand, is highly cytotoxic. We recently explored a new method to better characterize the safety of degradable metallic materials (DMMs) by establishing the gene expression profile (GEP) of cells (mouse 3T3 fibroblasts) exposed to Fe–35Mn degradation products in order to better understand their global response to a potentially cytotoxic DMM. We identified a number of up- and down-regulated genes and confirmed the regulation of a subset of them by quantitative real time polymerase chain reaction. Caveolin-1 (cav1), the structural protein of caveolae, small, smooth plasma membrane invaginations present in various differentiated cell types, was one of the most down-regulated genes in our GEPs. In the present study we further studied the potential of this 22 kDa protein to become a biomarker for cytotoxicity after exposure to degradable metallic elements. In order to better characterize cav1 expression in this context 3T3 mouse fibroblasts were exposed to either ferrous and manganese ions at cytostatic concentrations for 24 or 48 h. cav1 gene expression was not influenced by exposure to ferrous ions. On the other hand, exposure to manganese for 24 h reduced cav1 gene expression by about 30% and by >65% after 48 h compared with control 3T3 cells. The cav1 cellular protein content was reduced to the same extent. The same pattern of expression of cav3 (the muscle-specific caveolin subtype) was also observed in this study. This strong and reproducible pattern of regulation of caveolins thus indicates potential as a biomarker for the toxicity of DMM elements.
  • PublicationAccès libre
    Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.
    (Elsevier, 2013-11-10) Couët, Jacques; Hermawan, Hendra; Mantovani, D. (Diego); Purnama, Agung; Champetier, Serge.
    Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts - magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe-35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe-35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml(-1) of Fe-35 Mn powder, 0.25 mg ml(-1) of pure Mn powder or 5 mg ml(-1) of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe-35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe-35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe-35 Mn alloy and may help in the appraisal of its potential for DMM applications.
  • PublicationAccès libre
    Design, development, and validation of specific methods to assess the biological performances of degradable metals for cardiovascular stents
    (2015) Purnama, Agung; Couët, Jacques; Mantovani, D. (Diego)
    Les métaux biodégradables (MBs) ont été développés pour des applications spécifiques dans les domaines de l’orthopédie, la pédiatrie et le système cardiovasculaire. Les MBs sont conçus pour servir de support temporaire et une fois que leur présence n’est plus nécessaire, ils devront disparaitre progressivement grâce au processus de corrosion. Ces dernières décennies, divers tests aussi bien in vitro que in vivo ont été effectués dans le but de comprendre le comportement à la corrosion des biomatériaux métalliques conçus pour être résistants à la corrosion. Les MBs forment une classe de matériaux relativement nouveau et donc rares sont les tests effectués dans le domaine. Les tests effectués pour améliorer la résistance à la corrosion des biomatériaux métalliques ne peuvent pas non plus être simplement transposés aux MBs. Dans certains cas, ils peuvent être adaptés avec quelques modifications tandis que dans d’autres, la dégradation progressive devra être prise en compte pour la conception et à la mise au point de tests spécifiques. Le défi actuel est de savoir comment évaluer la réaction des tissus environnants et des organes en présence des produits de dégradation. Dans le cadre de ce projet, nous avons exploré une nouvelle méthode qui permet d’établir le profil d’expression des gènes (PEG) des cellules fibroblastique 3T3 de souris exposées à l’alliage Fe-35Mn. Cet alliage de fer récemment développé comme matériau métallique dégradable a été utilisé dans le cadre de cette expérience pour mieux comprendre le comportement des cellules face à des MBs potentiellement cytotoxiques. En résumé, les cellules 3T3 ont étés exposées pendant 24h aux élutions de produits de dégradation à travers un filtre de culture cellulaire contenant des quantités cytostatiques de 3.25mg/ml pour Fe-35Mn en poudre, 0.25mg/ml de poudre de Mn pur ou 5mg/ml de poudre de fer pur. Le profil de l’expression des gènes a été établi pour ces cellules. En comparant l’expression du profil des gènes des cellules fibroblastes 3T3 en présence de Fe-35Mn et Mn, nous avons observé que l’expression de 68 gènes avait été augmentée et l’expression de 54 gènes abaissée. Nous avons testé chez 11 gènes modulés dans les « microarrays » si cette régulation était toujours présente en utilisant le RT-PCR quantitative. C’était le cas pour 10 d’entre eux. Nous avons constaté que la caveoline-1 (cav1), une protéine structurale de caveoles (invaginations lisses de la membrane plasmique), est l’un des gènes les plus régulés de notre GEPs. Nous avons par ailleurs étudié le potentiel d’utiliser cette protéine de 22KDa comme biomarqueur pour l’étude de la cytotoxicité lors de l’exposition aux MBs. Dans le but de mieux caractériser l’expression de la cav1 dans ce contexte, les cellules 3T3 ont étés exposés soit aux ions fer ou manganèse à des concentrations cytostatiques pendant 24h et 48h. L’expression de la cav1 n’a pas été influencée par l’exposition aux ions fer. Par contre l’exposition aux ions manganèse réduit l’expression des gènes de cav1 de 30% pendant 24h et de plus de 65% pendant 48h comparée au control. La contenu en protéin de la cav1 a également été réduit de façon semblable Le même phénomène a été observé pour la cav3 (le sous-type musculaire de la caveoline) dans cette étude. Cette tendance forte et reproductible de la régulation des cavéolines permet ainsi de le considérer comme un biomarqueur potentiel pour les MBs. Ce type de réponse de la caveoline à l’exposition des MBs est similaire chez les cellules endothéliales, fibroblastes et musculaires.