Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Gauvin, Robert

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Gauvin

Prénom

Robert

Affiliation

Université Laval. Faculté de médecine

ISNI

ORCID

Identifiant Canadiana

ncf12139335

person.page.name

Résultats de recherche

Voici les éléments 1 - 8 sur 8
  • PublicationRestreint
    Tissue reorganization in response to mechanical load increases functionality
    (2005-02-28) Bergeron, François; Langelier, Ève.; Grenier, Guillaume.; Germain, Lucie; Larouche, Danielle; Dupuis, Daniel; Rancourt, Denis; Auger, François A.; Gauvin, Robert; Baker, Kathleen; Rémy-Zolghadri, Murielle
    In the rapidly growing field of tissue engineering, the functional properties of tissue substitutes are recognized as being of the utmost importance. The present study was designed to evaluate the effects of static mechanical forces on the functionality of the produced tissue constructs. Living tissue sheets reconstructed by the self-assembly approach from human cells, without the addition of synthetic material or extracellular matrix (ECM), were subjected to mechanical load to induce cell and ECM alignment. In addition, the effects of alignment on the function of substitutes reconstructed from these living tissue sheets were evaluated. Our results show that tissue constructs made from living tissue sheets, in which fibroblasts and ECM were aligned, presented higher mechanical resistance. This was assessed by the modulus of elasticity and ultimate strength as compared with tissue constructs in which components were randomly oriented. Moreover, tissue-engineered vascular media made from a prealigned living tissue sheet, produced with smooth muscle cells, possessed greater contractile capacity compared with those produced from living tissue sheets that were not prealigned. These results show that the mechanical force generated by cells during tissue organization is an asset for tissue component alignment. Therefore, this work demonstrates a means to improve the functionality (mechanical and vasocontractile properties) of tissues reconstructed by tissue engineering by taking advantage of the biomechanical forces generated by cells under static strain.
  • PublicationRestreint
    A novel cylindrical biaxial computer-controlled bioreactor and biomechanical testing device for vascular tissue engineering
    (Mary Ann Liebert, 2009-04-22) Zaucha, Michael T.; Germain, Lucie; Raykin, Julia; Auger, François A.; Wan, William; Gauvin, Robert; Michaels, Thomas E.; Gleason, Rudolph L.
    It is becoming evident that tissue-engineered constructs adapt to altered mechanical loading, and that specific combinations of multidirectional loads appear to have a synergistic effect on the remodeling. However, most studies of mechanical stimulation of engineered vascular tissue engineering employ only uniaxial stimulation. Here we present a novel computer-controlled bioreactor and biomechanical testing device designed to precisely and simultaneously control mean and cyclic values of transmural pressure (at rates up to 1 Hz and ranges of 40 mmHg), luminal flow rate, and axial length (or load) applied to gel-derived, scaffold-derived, and self-assembly-derived tissue-engineered blood vessels during culture, while monitoring vessel geometry with a resolution of 6.6 μm. Intermittent monitoring of the extracellular matrix and cells is accomplished on live tissues using multi-photon confocal microscopy under unloaded and loaded conditions at multiple time-points in culture (on the same vessel) to quantify changes in cell and extracellular matrix content and organization. This same device is capable of performing intermittent cylindrical biaxial biomechanical testing at multiple time-points in culture (on the same vessel) to quantify changes in the mechanical behavior during culture. Here we demonstrate the capabilities of this new device on self-assembly-derived and collagen-gel-derived tissue-engineered blood vessels.
  • PublicationRestreint
    Biaxial biomechanical properties of self-assembly tissue-engineered blood vessels
    (Royal Society, 2010-06-16) Zaucha, Michael T.; Germain, Lucie; Auger, François A.; Gauvin, Robert; Gleason, Rudolph L.
    Along with insights into the potential for graft success, knowledge of biomechanical properties of small diameter tissue-engineered blood vessel (TEBV) will enable designers to tailor the vessels' mechanical response to closer resemble that of native tissue. Composed of two layers that closely mimic the native media and adventitia, a tissue-engineered vascular adventitia (TEVA) is wrapped around a tissue-engineered vascular media (TEVM) to produce a self-assembled tissue-engineered media/adventia (TEVMA). The current study was undertaken to characterize the biaxial biomechanical properties of TEVM, TEVA and TEVMA under physiological pressures as well as characterize the stress-free reference configuration. It was shown that the TEVA had the greatest compliance over the physiological loading range while the TEVM had the lowest compliance. As expected, compliance of the SA-TEBV fell in between with an average compliance of 2.73 MPa−1. Data were used to identify material parameters for a microstructurally motivated constitutive model. Identified material parameters for the TEVA and TEVM provided a good fit to experimental data with an average coefficient of determination of 0.918 and 0.868, respectively. These material parameters were used to develop a two-layer predictive model for the response of a TEVMA which fit well with experimental data.
  • PublicationRestreint
    Mechanical properties of tissue-engineered vascular constructs produced using arterial or venous cells
    (Mary Ann Liebert, Inc. Publishers, 2011-04-02) Guillemette, Maxime.; Germain, Lucie; Galbraith, Todd; Larouche, Danielle; Aubé, David; Marcoux, Hugo; Hayward, Cindy Jean; Bourget, Jean-Michel; Auger, François A.; Gauvin, Robert
    There is a clinical need for better blood vessel substitutes, as current surgical procedures are limited by the availability of suitable autologous vessels and suboptimal behavior of synthetic grafts in small caliber arterial graft (<5 mm) applications. The aim of the present study was to compare the mechanical properties of arterial and venous tissue-engineered vascular constructs produced by the self-assembly approach using cells extracted from either the artery or vein harvested from the same human umbilical cord. The production of a vascular construct comprised of a media and an adventitia (TEVMA) was achieved by rolling a continuous tissue sheet containing both smooth muscle cells and adventitial fibroblasts grown contiguously in the same tissue culture plate. Histology and immunofluorescence staining were used to evaluate the structure and composition of the extracellular matrix of the vascular constructs. The mechanical strength was assessed by uniaxial tensile testing, whereas viscoelastic behavior was evaluated by stepwise stress-relaxation and by cyclic loading hysteresis analysis. Tensile testing showed that the use of arterial cells resulted in stronger and stiffer constructs when compared with those produced using venous cells. Moreover, cyclic loading demonstrated that constructs produced using arterial cells were able to bear higher loads for the same amount of strain when compared with venous constructs. These results indicate that cells isolated from umbilical cord can be used to produce vascular constructs. Arterial constructs possessed superior mechanical properties when compared with venous constructs produced using cells isolated from the same human donor. This study highlights the fact that smooth muscle cells and fibroblasts originating from different cell sources can potentially lead to distinct tissue properties when used in tissue engineering applications.
  • PublicationRestreint
    A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs
    (Mary Ann Liebert, 2009-12-28) Germain, Lucie; Ahsan, Taby; Larouche, Danielle; Auger, François A.; Gauvin, Robert; Dubé, Jean; Tanguay, Robert M.; Lévesque, Philippe
    There is a clinical need for a functional tissue-engineered blood vessel because small-caliber arterial graft (<5 mm) applications are limited by the availability of suitable autologous vessels and suboptimal performances of synthetic grafts. This study presents an analysis of the mechanical properties of tissue-engineered vascular constructs produced using a novel single-step self-assembly approach. Briefly, the tissue-engineered vascular media were produced by culturing smooth muscle cell in the presence of sodium l-ascorbate until the formation of a cohesive tissue sheet. This sheet was then rolled around a tubular support to create a media construct. Alternatively, the tissue-engineered vascular adventitia was produced by rolling a tissue sheet obtained from dermal fibroblasts or saphenous vein fibroblasts. The standard self-assembly approach to obtain the two-layer tissue-engineered vascular constructs comprising both media and adventitia constructs consists of two steps in which tissue-engineered vascular media were first rolled on a tubular support and a tissue-engineered vascular adventitia was then rolled on top of the first layer. This study reports an original alternative method for assembling tissue-engineered vascular constructs comprising both media and an adventitia in a single step by rolling a continuous tissue sheet containing both cell types contiguously. This tissue sheet was produced by growing smooth muscle cells alongside fibroblasts (saphenous vein fibroblasts or dermal fibroblasts) in the same culture dish separated by a spacer, which is removed later in the culture period. The mechanical strength assessed by uniaxial tensile testing, burst pressure measurements, and viscoelastic behavior evaluated by stepwise stress relaxation tests reveals that the new single-step fabrication method significantly improves the mechanical properties of tissue-engineered vascular construct for both ultimate tensile strength and all the viscoelastic moduli.
  • PublicationRestreint
    A computer-controlled apparatus for the characterization of mechanical and viscoelastic properties of tissue-engineered vascular constructs
    (Springer, 2011-01-25) Germain, Lucie; Larouche, Danielle; Auger, François A.; Gauvin, Robert; Lévesque, Philippe
    Tissue-engineered blood vessels can be partly characterized by analyzing their mechanical properties using burst pressure testing, compliance measurement, creep and cyclic testing. Studying these parameters provides information on the capability of a fabrication method to produce tissue-engineered blood vessels (TEBV) and allow for the optimization of their resistance and viscoelastic properties. This study presents the design and fabrication of an apparatus allowing accurate and reliable measurements of the mechanical properties of tissue-engineered vascular constructs. A computer-controlled system was designed to monitor pressure and diameter variations of vascular constructs submitted to hydrostatic loading. The system was programmed to control the motorized portion of the setup and allow simultaneous data acquisition, analysis and real-time display. Data acquisition cards allow for synchronous monitoring of pressure and diameter of the constructs through a pressure transducer and a CCD camera. Image analysis and pressure data computation resulted in compliance, creep and dynamic characterization of the tested tissues. This experimental setup succeeded in measuring the burst pressure, compliance, creep and cyclic behavior of tissue-engineered vascular media (TEVM), adventitia (TEVA) and a combination of a media and an adventitia (TEVMA) reconstructed by the self-assembly method. Our apparatus has proven to be a precise and reliable tool for the characterization of the mechanical properties of vascular constructs.
  • PublicationRestreint
    Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding
    (Elsevier, 2011-09-01) Germain, Lucie; Parenteau-Bareil, Rémi; Larouche, Danielle; Bisson, Francis; Marcoux, Hugo; Bolduc, Stéphane; Auger, François A.; Gauvin, Robert; Bonnet, Adrien
    Mechanical strength and the production of extracellular matrix (ECM) are essential characteristics for engineered tissues designed to repair and replace connective tissues that are subject to stress and strain. In this study, dynamic mechanical stimulation (DMS) was investigated as a method to improve the mechanical properties of engineered tissues produced without the use of an exogenous scaffold, referred to as the self-assembly approach. This method, based exclusively on the use of human cells without any exogenous scaffolding, allows for the production of a tissue sheet comprised of cells and ECM components synthesized by dermal fibroblasts in vitro. A bioreactor chamber was designed to apply cyclic strain to engineered tissues in order to determine if dynamic culture had an impact on their mechanical properties and ECM organization. Fibroblasts were cultured in the presence of ascorbic acid for 35 days to promote ECM production and allow the formation of a tissue sheet. This sheet was grown on a custom-built anchoring system allowing for easy manipulation and fixation of the tissue in the bioreactor. Following the 35 day period, tissues were maintained for 3 days in static culture (SC), or subjected either to a static mechanical stimulation of 10% strain, or a dynamic DMS with a duty cycle of 10% uniaxial cyclic strain at 1 Hz. ECM was characterized by histology, immunofluorescence labeling and Western blotting. Both static and dynamic mechanical stimulation induced the alignment of assessed cytoskeletal proteins and ECM components parallel to the axis of applied strain and increased the ECM content of the tissues compared to SC. Measurement of the tensile mechanical properties revealed that mechanical stimulation significantly increases both the ultimate tensile strength and tensile modulus of the engineered tissues when compared to the non-stimulated control. Moreover, we demonstrated that cyclic strain significantly increases these parameters when compared to a static-loading stimulation and that mechanical stimulation contributes to the establishment of anisotropy in the structural and mechanical properties of self-assembled tissue sheets.
  • PublicationRestreint
    Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor
    (Elsevier BV, 2015-03-06) Tondreau, Maxime; Laterreur, Véronique; Germain, Lucie; Vallières, Karine; Ruel, Jean; Tremblay, Catherine; Bourget, Jean-Michel; Auger, François A.; Gauvin, Robert; Lacroix, Dan.
    There is an ongoing clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are restricted by the limited availability of autologous living grafts or the lack of suitability of synthetic grafts. The present study uses our self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold that can then be available off-the-shelf. Briefly, scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and then decellularized by immersion in deionized water. Constructs were then endothelialized and perfused for 1 week in an appropriate bioreactor. Mechanical testing results showed that the decellularization process did not influence the resistance of the tissue and an increase in ultimate tensile strength was observed following the perfusion of the construct in the bioreactor. These fibroblast-derived vascular scaffolds could be stored and later used to deliver readily implantable grafts within 4 weeks including an autologous endothelial cell isolation and seeding process. This technology could greatly accelerate the clinical availability of tissue-engineered blood vessels.