Personne :
Forget, Pascal

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Forget
Prénom
Pascal
Affiliation
Université Laval. Département de génie mécanique
ISNI
ORCID
Identifiant Canadiana
ncf10463627
person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 10
  • Publication
    Accès libre
    Collaborative and adaptive supply chain planning
    (2009) Forget, Pascal; Frayret, Jean-Marc; D'Amours, Sophie
    Dans le contexte industriel d'aujourd'hui, la compétitivité est fortement liée à la performance de la chaîne d'approvisionnement. En d'autres termes, il est essentiel que les unités d'affaires de la chaîne collaborent pour coordonner efficacement leurs activités de production, de façon a produire et livrer les produits à temps, à un coût raisonnable. Pour atteindre cet objectif, nous croyons qu'il est nécessaire que les entreprises adaptent leurs stratégies de planification, que nous appelons comportements, aux différentes situations auxquelles elles font face. En ayant une connaissance de l'impact de leurs comportements de planification sur la performance de la chaîne d'approvisionnement, les entreprises peuvent alors adapter leur comportement plutôt que d'utiliser toujours le même. Cette thèse de doctorat porte sur l'adaptation des comportements de planification des membres d'une même chaîne d'approvisionnement. Chaque membre pouvant choisir un comportement différent et toutes les combinaisons de ces comportements ayant potentiellement un impact sur la performance globale, il est difficile de connaître à l'avance l'ensemble des comportements à adopter pour améliorer cette performance. Il devient alors intéressant de simuler les différentes combinaisons de comportements dans différentes situations et d'évaluer les performances de chacun. Pour permettre l'utilisation de plusieurs comportements dans différentes situations, en utilisant la technologie à base d'agents, nous avons conçu un modèle d'agent à comportements multiples qui a la capacité d'adapter son comportement de planification selon la situation. Les agents planificateurs ont alors la possibilité de se coordonner de façon collaborative pour améliorer leur performance collective. En modélisant les unités d'affaires par des agents, nous avons simulé avec la plateforme de planification à base d'agents de FORAC des agents utilisant différents comportements de planification dits de réaction et de négociation. Cette plateforme, développée par le consortium de recherche FORAC de l'Université Laval, permet de simuler des décisions de planification et de planifier les opérations de la chaîne d'approvisionnement. Ces comportements de planification sont des métaheurisciques organisationnelles qui permettent aux agents de générer des plans de production différents. La simulation est basée sur un cas illustrant la chaîne d'approvisionnement de l'industrie du bois d'œuvre. Les résultats obtenus par l'utilisation de multiples comportements de réaction et de négociation montrent que les systèmes de planification avancée peuvent tirer avantage de disposer de plusieurs comportements de planification, en raIson du contexte dynamique des chaînes d'approvisionnement. La pertinence des résultats de cette thèse dépend de la prémisse que les entreprises qui adapteront leurs comportements de planification aux autres et à leur environnement auront un avantage concurrentiel important sur leurs adversaires.
  • Publication
    Restreint
    Study of the performance of multi-behaviour agents for supply chain planning
    (Elsevier, 2009-06-30) Frayret, Jean-Marc; Gaudreault, Jonathan; Forget, Pascal; D'Amours, Sophie
    In today's industrial context, competitiveness is closely associated to supply chain performance. Coordination between business units is essential to increase this performance, in order to produce and deliver products on time to customers, at a competitive price. While planning systems usually follow a single straightforward production planning process, this paper proposes that partners adapt together their local planning process (i.e. planning behaviours) to the different situations met in the supply chain environment. Because each partner can choose different behaviour and all behaviours will have an impact on the overall performance, it is difficult to know which is preferable for each partner to increase their performance. Using agent-based technology, simulation experiments have been undertaken to verify if multi-behaviour planning agents who can change planning behaviours to adapt to their environment can increase supply chain performance. These agents have been implemented in an agent-based planning platform, using a case study illustrating a lumber supply chain. The performance analysis shows that advanced planning systems can take advantage of using multiple planning processes, because of the dynamic context of supply chains.
  • Publication
    Restreint
    Coordination mechanism design in supply chains using multi-behaviour agents
    (Olney Inderscience Enterprises, 2010-07-19) Frayret, Jean-Marc; Gaudreault, Jonathan; Forget, Pascal; D'Amours, Sophie
    In today's industrial context, competitiveness is closely associated with supply chain performance. The ongoing development of integrated supply chains has increased the importance of supply chain management. This paper focuses on the design of coordination mechanisms that determine how partners interact to coordinate their production planning. We present a simulation tool to aid in the design of coordination mechanisms using multi-behaviour agents in an agent-based planning system where agents act as partners. The implementation of this solution is realised through the FORAC agent-based planning platform, which is dedicated to supply chain production planning and simulation for the lumber industry.
  • Publication
    Restreint
    Motivations for multi behavior agents in supply chain planning
    (Édition Tec & doc-Lavoisier, 2008-01-01) Frayret, Jean-Marc; Gaudreault, Jonathan; Forget, Pascal; D'Amours, Sophie
    In today’ industrial context competitiveness is closely associated to supply chain performance. Coordiantion between production partners is essential in supply chains to deliver products on time to final clients. As perturbations occur all the time, production centers have to react quickly correct deviances and create new plans, while coordinating changes with partners. Agent-based technology provides a natural approach to model supply chain networks and describe specialized planning agents. To coordinate and optimize their production plan, agents ue specify the heuristic parameters a priori, at the time of their design and prior to their use. The solution proposed here is to give agents the opportunity to change these parameters, modifying their planning behaviors following the environmental conditions met. Using simulation, agents can identify optimal team behaviors for the supply chain in different situations. This paper explains the methodology followed to experiment multi-behavior agents and presents results from an application to the lumber supply chain.
  • Publication
    Accès libre
    Multi-behavior agent model for supply chain management
    (ICEB, 2006) Frayret, Jean-Marc; Forget, Pascal; D'Amours, Sophie
    Recent economic and international threats to occidental industries have encouraged companies to rethink their planning systems. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and the need for collaboration. Thus, agility and the ability to deal quickly with disturbances in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network. This paper proposes a multi-behavior agent model using different decision making approaches in a context where planning decisions are supported by a distributed advanced planning system (d-APS). The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to the supply chain planning for the forest products industry.
  • Publication
    Restreint
    Collaborative event management in supply chains : an agent-based approach
    (Springer, 2006-01-01) Frayret, Jean-Marc; Forget, Pascal; D'Amours, Sophie
    The development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies. Thus, the ability to deal quickly and seamlessly with everyday unplanned events is critical to maintain the overall performance of the supply chain. In order to develop tools to promote the collaborative management of such events, agent-based technology takes advantage of agents' ability to make autonomous decisions in a distributed context. Collaborative Event Management (CEM) is an approach designed to improve agility in a context where planning decisions are supported by a distributed advanced planning system (d-APS). This paper proposes an agent model geared with tools to collaboratively plan operations to deal with unplanned events.
  • Publication
    Restreint
    Multi-behavior agent model for planning in supply chains : an application to the lumber industry
    (Pergamon, 2007-12-03) Frayret, Jean-Marc; Forget, Pascal; D'Amours, Sophie
    Recent economic and international threats to western industries have encouraged companies to increase their performance in all ways possible. Many look to deal quickly with disturbances, reduce inventory, and exchange information promptly throughout the supply chain. In other words they want to become more agile. To reach this objective it is critical for planning systems to present planning strategies adapted to the different contexts, to attain better performances. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and in turn the need for increased collaboration to deal with disturbance in a synchronized way. Thus, agility and synchronization in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network through the use of advanced collaboration mechanisms. Moreover, because of the highly instable and dynamic environment of today's supply chains, planning agents must handle multiple problem solving approaches. This paper proposes a Multi-behavior planning agent model using different planning strategies when decisions are supported by a distributed planning system. The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to supply chain planning for the lumber industry.
  • Publication
    Accès libre
    Design of multi-behavior agents for supply chain planning : an application to the lumber industry
    (IntechOpen, 2008-02-01) Frayret, Jean-Marc; Gaudreault, Jonathan; Forget, Pascal; D'Amours, Sophie
  • Publication
    Accès libre
    Collaborative agent-based negotiation in supply chain planning using multi-behaviour agents
    (Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport, 2008-12-01) Frayret, Jean-Marc; Monteiro, Thibaud; Forget, Pascal; D'Amours, Sophie
    In order to work efficiently, supply chain partners must coordinate their actions. When planning is distributed instead of being centralized (as in most cases), it is necessary to use specific coordination protocols between partners in order to act in a coherent manner. On many occasions, partners negotiate in order to act mutually to satisfy their needs. Negotiation is used as a coordination mechanism to find an acceptable agreement between partners or to collectively search for a coordination solution. Agent-based supply chain planning systems can integrate automated negotiation in order to implement negotiation capabilities. While various negotiation mechanisms (or behaviours) can be used in many situations, planning agents using case-based reasoning abilities can learn which to select under specific conditions. This paper proposes to study the performance of the use of a variety of negotiation behaviours and to compare this strategy to the use of a single one. A review of automated negotiation in general and specifically adapted to supply chain planning is first presented, followed by an empirical analysis from simulations of one-to-one collaborative negotiation behaviours. Partners have equivalent negotiation powers and are fully cooperative. These heuristic-based negotiation behaviours are implemented in an agent-based supply chain planning platform, using Multi-behaviour planning agents. Simulations are based on a study case from the lumber supply chain.
  • Publication
    Accès libre
    Distributed operations planning in the softwood lumber supply chain : models and coordination
    (Centre interuniversitaire de recherche sur les réseaux d'entreprises, la logistique et le transport, 2009-02-01) Frayret, Jean-Marc; Gaudreault, Jonathan; Rousseau, Alain N.; Forget, Pascal; D'Amours, Sophie
    Agent-based technology provides a natural approach to model supply chain networks. Each production unit, represented by an agent, is responsible for planning its operations and uses communication to coordinate with the others. In this paper, we study a softwood lumber supply chain made of three planning units (sawing unit, drying unit and finishing unit). We define the problems and propose agent-specific mathematical models to plan and schedule operations. Then, in order to coordinate these plans between the three agents, we propose different coordination mechanisms. Using these developments, we show how an agent-based simulation tool can be used to integrate planning models and evaluate different coordination mechanisms.