Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Auger, François A.

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Auger

Prénom

François A.

Affiliation

Université Laval. Département chirurgie

ISNI

ORCID

Identifiant Canadiana

ncf11847160

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 149
  • PublicationAccès libre
    Le génie tissulaire au service de la compréhension du vivant
    (Société des Périodiques Flammarion, 2003-10-15) Germain, Lucie; Auger, François A.; Berthod, François; Goulet, Francine; Moulin, Véronique
    Le génie tissulaire est un nouveau domaine, qui permet l’étude des mécanismes physiologiques du vivant. Il s’agit d’une technologie fondée sur la capacité des cellules vivantes, en présence ou non de biomatériaux, à s’assembler en un tissu tridimensionnel. Elle constitue une voie intéressante ouvrant aux chercheurs la possibilité de considérer les cellules dans un contexte proche de celui retrouvé in vivo. Cet article résume les travaux en génie tissulaire menés par le laboratoire d’organogenèse expérimentale (LOEX) au cours des dernières années, dans le but de comprendre certains des mécanismes physiologiques et pathologiques de l’organisme humain. Ainsi, la cicatrisation cutanée, mais aussi les cellules souches, l’angiogenèse et les interactions cellulaires sont des secteurs ayant profité de l’apport du génie tissulaire.
  • PublicationRestreint
    Production of bioengineered cancer tissue constructs in vitro : epithelium–mesenchyme heterotypic interactions
    (Tissue Culture Association, 2001-07-01) Tremblay, Nathalie; Germain, Lucie; Wang, Chang Shu; Auger, François A.; Têtu, Bernard; Goulet, Francine
    A few models have been established to study cancer cells in vitro. However, the cellular interactions have rarely been studied specifically using bioengineered cancer constructs combining human carcinoma cells and tumor-associated fibroblasts. We developed an in vitro model of tridimensional bioengineered cancer tissue constructs (bCTC) by seeding mammary epithelial cancer cells or normal keratinocytes over a mesenchymal layer containing tumor-derived fibroblastic cells or normal skin fibroblasts. After the introduction of epithelial cells, each construct was cultured for another 10 d. Histologic analyses showed that carcinoma cell lines could invade the subjacent mesenchymal layer and that the capacity to migrate was related to the invasive potential of cancer cells and the type of fibroblasts used, while noninvasive populations did not. Of the tested epithelial cells, MDA-MB-231 and, to a lesser degree, HDQ-P1 cell lines were invasive, and the invasion was deeper into the mesenchymal component containing tumor-derived fibroblasts. However, with normal skin fibroblasts, the mesenchymal layer was degraded twice faster than with tumor-derived fibroblastic cells. MDA-MB-231 cells and normal keratinocytes induced the highest level of gelatinase B, and the level was lowest with the MCF-7 cell line. The activated form of gelatinase B was, however, induced to the highest levels in the keratinocyte-seeded bCTC containing tumor-derived but not normal fibroblasts. MDA-MB-231 was the only epithelial cancer cell line whose activity of gelatinase A was reduced when cocultured with tumor-derived fibroblasts but not under normal fibroblast stimulation. Finally, a 50/48-kDa gelatinase band has been observed in bCTCs with noninvasive epithelial cells only. Our study demonstrates the selective secretion of gelatinases according to the phenotype of the cells seeded in the various bCTCs.
  • PublicationRestreint
    Considerations in the choice of a skin donor site for harvesting keratinocytes containing a high proportion of stem cells for culture in vitro
    (Butterworth-Heinemann, 2010-12-03) Germain, Lucie; Larouche, Danielle; Paquet, Claudie; Fugère, Claudia.; Genest, Hervé; Auger, François A.; Gauvin, Robert; Têtu, Félix-Andre; Bouchard, Maurice; Roy, Aphonse; Fradette, Julie; Lavoie, Amélie; Beauparlant, Annie.
    The treatment of severely burned patients has benefited from the grafting of skin substitutes obtained by expansion of epithelial cells in culture. The aim of this study was to evaluate whether the anatomic site chosen for harvesting skin had an impact on the quality of the derived cell cultures. Considering that hair follicles contain epithelial stem cells, we compared hairy skin sites featuring different densities and sizes of hair follicles for their capacity to generate high quality keratinocyte cultures. Three anatomic sites from adult subjects were compared: scalp, chest skin and p-auricular (comprising pre-auricular and post-auricular) skin. Keratin (K) 19 was used as a marker to evaluate the proportion of stem cells. Keratinocytes were isolated using the two-step thermolysin and trypsin cell extraction method, and cultured in vitro. The proportion of K19-positive cells harvested from p-auricular skin was about twice that of the scalp. This K19-positive cell content also remained higher during the first subcultures. In contrast to these in vitro results, the number of K19-positive cells estimated in situ on skin sections was about double in scalp as in p-auricular skin. Chest skin had the lowest number of K19-positive cells. These results indicate that in addition to the choice of an adult anatomic site featuring a high number of stem cells in situ, the quality of the cultures greatly depends on the ability to extract stem cells from the skin biopsy
  • PublicationRestreint
    Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels : clinical and fundamental applications
    (Springer, 1998-11-01) Germain, Lucie; Auger, François A.; Rouabhia, Mahmoud; Berthod, François; Goulet, Francine; Moulin, Véronique
    The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.
  • PublicationAccès libre
    In vivo remodeling of fibroblast-derived vascular scaffolds implanted for 6 months in rats
    (Hindawi, 2016-11-24) Tondreau, Maxime; Laterreur, Véronique; Germain, Lucie; Vallières, Karine; Ruel, Jean; Tremblay, Catherine; Bourget, Jean-Michel; Auger, François A.; Gauvin, Robert; Lacroix, Dan.
    There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies.
  • PublicationAccès libre
    What is new in mechanical properties of tissue-engineered organs
    (Springer, 1999-01-01) Germain, Lucie; Auger, François A.; Berthod, François; Goulet, Francine
    Tissue engineering is a promising new field based on expertise in cell biology, medicine and mechanical engineering. It raises exciting hopes of producing autologous tissue substitutes to replace altered organs. This challenge involves highly specialized technology in order to provide the proper shape to the tissue and promote the maintenance of its native physiological properties. Primary cell populations may lose some of their functional and morphological properties in vitro in the absence of a proper environment. In order to maintain cell integrity, a three-dimensional matrix that mimics the in vivo environment as closely as possible was developed, according to the type of tissue produced [1, 5, 18, 26, 27, 29, 34, 35].
  • PublicationAccès libre
    Fibronectin grafting to enhance skin sealing around transcutaneous titanium implant
    (John Wiley & Sons, 2021-04-30) Bilem, Ibrahim; Ghadhab, Souhaila; Ruel, Jean; Laroche, Gaétan; Auger, François A.; Guay-Bégin, Andrée-Anne; Pauthe, Emmanuel; Chevallier, Pascale
    Intraosseous transcutaneous amputation prosthesis is a new approach in orthopedic implants that overcomes socket prosthesis problems. Its long-term performance requires a tight skin-implant seal to prevent infections. In this study, fibronectin (Fn), a widely used adhesion protein, was adsorbed or grafted onto titanium alloy. Fn grafting was performed using two different linking arms, dopamine/glutaric anhydride or phosphonate. The characterization of Fn-modified surfaces showed that Fn grating via phosphonate has led to the highest amount of Fn cell-binding site (RGD, arginine, glycine, and aspartate) available on the surface. Interestingly, cell culture studies revealed a strong correlation between the amount of available RGD ligands and cellular behavior, since enhanced proliferation and spreading of fibroblasts were noticed on Fn-grafted surfaces via phosphonate. In addition, an original in vitro mechanical test, inspired from the real situation, to better predict clinical outcomes after implant insertion, has been developed. Tensile test data showed that the adhesion strength of a bio-engineered dermal tissue was significantly higher around Fn-grafted surfaces via phosphonate, as compared to untreated surfaces. This study sheds light on the importance of an appropriate selection of the linking arm to tightly control the spatial conformation of biomolecules on the material surface, and consequently cell interactions at the interface tissue/implant.
  • PublicationRestreint
    A truly new approach for tissue engineering : the LOEX self-assembly technique
    (SpringerLink, 2002-01-01) Grenier, Guillaume.; Germain, Lucie; Auger, François A.; Rémy-Zolghadri, Murielle
    Tissue engineering has created several original and new avenues in the biomedical sciences. There is ongoing progress, but the tissue-engineering field is currently at a crossroads in its evolution; the validity of this technique is weIl established. Thus, new clinical applications must appear rapidly, within a few years, so that it will have a true impact on patient care. The self-assembly approach of the Laboratoire d'Organogénèse Expérimentale (LOEX) should be at the forefront.
  • PublicationAccès libre
    What's New in Human Wound-Healing Myofibroblasts?
    (springerLink, 1999-01-01) Germain, Lucie; Garrel, Dominique A.; Castilloux, G.; Auger, François A.; O'Connor-McCourt, Maureen; Moulin, Véronique
    During wound healing and fibrocontractive diseases, clinical and experimental investigations have shown that fibroblastic cells acquire some morphological and biochemical features similar to those of smooth muscle cells [33]. These modified fibroblasts, called myofibroblasts, express de novo α-SM actin temporarily during wound healing and permanently in fibrotic situations, such as hypertrophic scars or fibromatosis. Myofibroblasts are thought to be involved in contraction and have been observed in practically all fibrotic conditions involving retraction and reorganization of connective tissues
  • PublicationRestreint
    A human tissue-engineered vascular media : a new model for pharmacological studies of contractile responses
    (Federation of American Societies for Experimental Biology, 2001-02-01) Germain, Lucie; Stoclet, Jean-Claude; L'Heureux, Nicolas; Auger, François A.; Bago, Jean-Louis; Andriantsitohaina, Ramaroson
    Our method for producing tissue-engineered blood vessels based exclusively on the use of human cells, i.e., without artificial scaffolding, has previously been described (1). In this report, a tissue-engineered vascular media (TEVM) was specifically produced for pharmacological studies from cultured human vascular smooth muscle cells (VSMC). The VSMC displayed a differentiated phenotype as demonstrated by the re-expression of VSMC-specific markers and actual tissue contraction in response to physiological stimuli. Because of their physiological shape and mechanical strength, rings of human TEVM could be mounted on force transducers in organ baths to perform standard pharmacological experiments. Concentration-response curves to vasoconstrictor agonists (histamine, bradykinin, ATP, and UTP) were established, with or without selective antagonists, allowing pharmacological characterization of receptors (H1, B2, and P2Y1, and pyrimidinoceptors). Sustained agonist-induced contractions were associated with transient increases in cytosolic Ca2+ concentration, suggesting sensitization of the contractile machinery to Ca2+. ATP caused both Ca2+ entry and Ca2+ release from a ryanodine- and caffeine-sensitive store. Increased cyclic AMP or cyclic GMP levels caused relaxation. This human TEVM displays many of functional characters of the normal vessel from which the cells were originally isolated, including contractile/relaxation responses, cyclic nucleotide sensitivity, and Ca2+ handling mechanisms comparable to those of the normal vessel from which the cells were originally isolated. These results demonstrate the potential of this human model as a versatile new tool for pharmacological research.