Personne :
Laviolette, François

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Laviolette
Prénom
François
Affiliation
Université Laval. Département d'informatique et de génie logiciel
ISNI
ORCID
Identifiant Canadiana
ncf10449218
person.page.name

Résultats de recherche

Voici les éléments 1 - 9 sur 9
  • Publication
    Accès libre
    Interpreting deep learning features for myoelectric control : a comparison with handcrafted features
    (Frontiers Media, 2020-03-03) Côté Allard, Ulysse; Campbell, Evan; Phinyomark, Angkoon; Laviolette, François; Gosselin, Benoit; Scheme, Erik
    Existing research on myoelectric control systems primarily focuses on extracting discriminative characteristics of the electromyographic (EMG) signal by designing handcrafted features. Recently, however, deep learning techniques have been applied to the challenging task of EMG-based gesture recognition. The adoption of these techniques slowly shifts the focus from feature engineering to feature learning. Nevertheless, the black-box nature of deep learning makes it hard to understand the type of information learned by the network and how it relates to handcrafted features. Additionally, due to the high variability in EMG recordings between participants, deep features tend to generalize poorly across subjects using standard training methods. Consequently, this work introduces a new multi-domain learning algorithm, named ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances (p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared to standard training. Using ADANN-generated features, this work provides the first topological data analysis of EMG-based gesture recognition for the characterization of the information encoded within a deep network, using handcrafted features as landmarks. This analysis reveals that handcrafted features and the learned features (in the earlier layers) both try to discriminate between all gestures, but do not encode the same information to do so. In the later layers, the learned features are inclined to instead adopt a one-vs.-all strategy for a given class. Furthermore, by using convolutional network visualization techniques, it is revealed that learned features actually tend to ignore the most activated channel during contraction, which is in stark contrast with the prevalence of handcrafted features designed to capture amplitude information. Overall, this work paves the way for hybrid feature sets by providing a clear guideline of complementary information encoded within learned and handcrafted features.
  • Publication
    Accès libre
    Deep Learning for electromyographic hand gesture signal classification using transfer learning
    (New York, NY : IEEE, 2019-04-08) Côté Allard, Ulysse; Fall, Cheikh Latyr; Drouin, Alexandre; Campeau-Lecours, Alexandre; Glette, Kyrre; Laviolette, François; Gosselin, Benoit
    In recent years, deep learning algorithms have become increasingly more prominent for their unparalleled ability to automatically learn discriminant features from large amounts of data. However, within the field of electromyography-based gesture recognition, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person, to generate tens of thousands of examples. This paper's hypothesis is that general, informative features can be learned from the large amounts of data generated by aggregating the signals of multiple users, thus reducing the recording burden while enhancing gesture recognition. Consequently, this paper proposes applying transfer learning on aggregated data from multiple users while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. Two datasets comprised 19 and 17 able-bodied participants, respectively (the first one is employed for pre-training), were recorded for this work, using the Myo armband. A third Myo armband dataset was taken from the NinaPro database and is comprised ten able-bodied participants. Three different deep learning networks employing three different modalities as input (raw EMG, spectrograms, and continuous wavelet transform (CWT)) are tested on the second and third dataset. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a use-case study employing eight able-bodied participants suggests that real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.
  • Publication
    Accès libre
    Machine learning assisted design of highly active peptides for drug discovery
    (Public Library of Science, 2015-04-07) Tremblay, Denise; Biron, Éric; Giguère, Sébastien; Moineau, Sylvain; Laviolette, François; Liang, Xinxia; Marchand, Mario; Corbeil, Jacques
    The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and even partly replace expensive laboratory experiments by learning a predictor with existing data or with a smaller amount of data generation. Unfortunately, once the model is learned, selecting peptides having the greatest predicted bioactivity often requires a prohibitive amount of computational time. For this combinatorial problem, heuristics and stochastic optimization methods are not guaranteed to find adequate solutions. We focused on recent advances in kernel methods and machine learning to learn a predictive model with proven success. For this type of model, we propose an efficient algorithm based on graph theory, that is guaranteed to find the peptides for which the model predicts maximal bioactivity. We also present a second algorithm capable of sorting the peptides of maximal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an iterative combinatorial chemistry procedure to speed up the discovery and the validation of peptide leads. Moreover, the proposed approach does not require the use of known ligands for the target protein since it can leverage recent multi-target machine learning predictors where ligands for similar targets can serve as initial training data. Finally, we validated the proposed approach in vitro with the discovery of new cationic antimicrobial peptides.
  • Publication
    Accès libre
    Machine learning-based models of sawmills for better wood allocation planning
    (Elsevier, 2020-03-11) Morin, Michael; Gaudreault, Jonathan; Brotherton, Edith; Paradis, Frédérik; Rolland, Amélie; Wéry, Jean; Laviolette, François
    The forest-products supply chain gives rise to a variety of interconnected problems. Addressing these problems is challenging, but could be simplified by rigorous data analysis through a machine learning approach. A large amount of data links these problems at various hierarchical levels (e.g., strategic, tactical, operational, online) which complicates the data computation phase required to model and solve industrial problem instances. In this study, we propose to use machine learning to generate models of the sawmills (converting logs into lumber) to simplify the data computation phase for solving optimization problems. Specifically, we show how to use these models to provide a recommendation for the allocation of cutblocks to sawmills for a wood allocation planning problem without needing extensive sawing simulations. Our experimental results on an industrial problem instance demonstrate that the generated models can be used to provide high-quality recommendations (sending the right wood to the right mill). Machine learning models of the sawmill transformation process from logs to lumber allows a better allocation exploiting the strengths of the mills to process the logs in our industrial case.
  • Publication
    Accès libre
    A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition
    (MDPI, 2019-06-24) Côté Allard, Ulysse; Gagnon-Turcotte, Gabriel; Laviolette, François; Gosselin, Benoit
    Wearable technology can be employed to elevate the abilities of humans to perform demanding and complex tasks more efficiently. Armbands capable of surface electromyography (sEMG) are attractive and noninvasive devices from which human intent can be derived by leveraging machine learning. However, the sEMG acquisition systems currently available tend to be prohibitively costly for personal use or sacrifice wearability or signal quality to be more affordable. This work introduces the 3DC Armband designed by the Biomedical Microsystems Laboratory in Laval University; a wireless, 10-channel, 1000 sps, dry-electrode, low-cost ( 150 USD) myoelectric armband that also includes a 9-axis inertial measurement unit. The proposed system is compared with the Myo Armband by Thalmic Labs, one of the most popular sEMG acquisition systems. The comparison is made by employing a new offline dataset featuring 22 able-bodied participants performing eleven hand/wrist gestures while wearing the two armbands simultaneously. The 3DC Armband systematically and significantly (p < 0.05) outperforms the Myo Armband, with three different classifiers employing three different input modalities when using ten seconds or more of training data per gesture. This new dataset, alongside the source code, Altium project and 3-D models are made readily available for download within a Github repository.
  • Publication
    Accès libre
    A transferable adaptive domain adversarial neural network for virtual reality augmented EMG-Based gesture recognition
    (IEEE Xplore, 2021-02-16) Côté Allard, Ulysse; Gagnon-Turcotte, Gabriel; Phinyomark, Angkoon; Glette, Kyrre; Scheme, Erik; Laviolette, François; Gosselin, Benoit
    Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the off line accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between off line and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different-recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly (p <; 0.05) outperforms using fine-tuning as the recalibration technique.
  • Publication
    Accès libre
    Unsupervised domain adversarial self-calibration for electromyography-based gesture recognition
    (IEEE Access, 2020-10-08) Côté Allard, Ulysse; Gagnon-Turcotte, Gabriel; Phinyomark, Angkoon; Glette, Kyrre; Scheme, Erik J.; Laviolette, François; Gosselin, Benoit
    Surface electromyography (sEMG) provides an intuitive and non-invasive interface from which to control machines. However, preserving the myoelectric control system's performance over multiple days is challenging, due to the transient nature of the signals obtained with this recording technique. In practice, if the system is to remain usable, a time-consuming and periodic recalibration is necessary. In the case where the sEMG interface is employed every few days, the user might need to do this recalibration before every use. Thus, severely limiting the practicality of such a control method. Consequently, this paper proposes tackling the especially challenging task of unsupervised adaptation of sEMG signals, when multiple days have elapsed between each recording, by introducing Self-Calibrating Asynchronous Domain Adversarial Neural Network (SCADANN). SCADANN is compared with two state-of-the-art self-calibrating algorithms developed specifically for deep learning within the context of EMG-based gesture recognition and three state-of-the-art domain adversarial algorithms. The comparison is made both on an offline and a dynamic dataset (20 participants per dataset), using two different deep network architectures with two different input modalities (temporal-spatial descriptors and spectrograms). Overall, SCADANN is shown to substantially and systematically improves classification performances over no recalibration and obtains the highest average accuracy for all tested cases across all methods.
  • Publication
    Accès libre
    Transfer learning for sEMG hand gesture recognition using convolutional neural networks
    (IEEE, 2017-12-01) Gosselin, Benoit; Gosselin, Clément; Campeau-Lecours, Alexandre; Laviolette, François; Fall, Cheikh Latyr; Côté Allard, Ulysse
    In the realm of surface electromyography (sEMG) gesture recognition, deep learning algorithms are seldom employed. This is due in part to the large quantity of data required for them to train on. Consequently, it would be prohibitively time consuming for a single user to generate a sufficient amount of data for training such algorithms. In this paper, two datasets of 18 and 17 able-bodied participants respectively are recorded using a low-cost, low-sampling rate (200Hz), 8-channel, consumer-grade, dry electrode sEMG device named Myo armband (Thalmic Labs). A convolutional neural network (CNN) is augmented using transfer learning techniques to leverage inter-user data from the first dataset and alleviate the data generation burden imposed on a single individual. The results show that the proposed classifier is robust and precise enough to guide a 6DoF robotic arm (in conjunction with orientation data) with the same speed and precision as with a joystick. Furthermore, the proposed CNN achieves an average accuracy of 97.81% on seven hand/wrist gestures on the 17 participants of the second dataset.
  • Publication
    Accès libre
    Relaxation of the optimal search path problem with the cop and robber game
    (2014-09-01) Simard, Frédéric; Morin, Michael; Quimper, Claude-Guy; Laviolette, François; Desharnais, Josée
    In the Optimal Search Path problem from search theory, the objective is to find a finite length searcher’s path that maximizes the probability of detecting a lost wanderer on a graph. We introduce a novel bound on the probability of finding the wanderer in the remaining search time and discuss how this bound is derived from a relaxation of the problem into a game of cop and robber from graph theory. We demonstrate the efficiency of this bound on a constraint programming model of the problem.