Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Hoesli, Corinne A.

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Hoesli

Prénom

Corinne A.

Affiliation

Université Laval. Département de génie des mines, de la métallurgie et des matériaux

ISNI

ORCID

Identifiant Canadiana

ncf13681531

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Human saphenous vein endothelial cell adhesion and expansion on micropatterned polytetrafluoroethylene
    (Wiley, 2012-08-31) Boivin, Marie-Claude; Laroche, Gaétan; Hoesli, Corinne A.; Lagueux, Jean; Bareille, Reine; Rémy-Zolghadri, Murielle; Chevallier, Pascale; Bordenave, Laurence; Durrieu, Marie-Christine
    Intimal hyperplasia and thrombosis are responsible for the poor patency rates of small-diameter vascular grafts. These complications could be avoided by a rapid and strong adhesion of endothelial cells to the prosthetic surfaces, which typically consist of expanded polytetrafluoroethylene (PTFE) for small-diameter vessels. We have previously described two peptide micropatterning strategies that increase the endothelialization rates of PTFE. The micropatterns were generated either by inkjet printing 300 μm squares or by spraying 10.1 ± 0.1 μm diameter droplets of the CGRGDS cell adhesion peptide, while the remaining surface was functionalized using the CWQPPRARI cell migration peptide. We now directly compare these two micropatterning strategies and examine the effect of hydrodynamic stress on human saphenous vein endothelial cells grown on the patterned surfaces. No significant differences in cell adhesion were observed between the two micropatterning methods. When compared to unpatterned surfaces treated with a uniform mixture of the two peptides, the cell expansion was significantly higher on sprayed or printed surfaces after 9 days of static cell culture. In addition, after 6 h of exposure to hydrodynamic stress, the cell retention and cell cytoskeleton reorganization on the patterned surfaces was improved when compared to untreated or random treated surfaces. These results indicate that micropatterned surfaces lead to improved rates of PTFE endothelialization with higher resistance to hydrodynamic stress.
  • PublicationAccès libre
    Dynamics of endothelial cell responses to laminar shear stress on surfaces functionalized with fibronectin-derived peptides
    (American Chemical Society, 2018-10-11) Duchesne, Carl; Ruel, Jean; Tremblay, Catherine; Juneau, Pierre-Marc; Beland, Ariane V.; Garnier, Alain; Ling, Si Da; Boulanger, Mariève D.; Laroche, Gaétan; Hoesli, Corinne A.; Gaillet, Bruno
    Surface endothelialization could improve the long-term performance of vascular grafts and stents. We previously demonstrated that aerosol-generated fibronectin-derived peptide micropatterns consisting of GRGDS spots over a WQPPRARI background increase endothelial cell yields in static cultures. We developed a novel fluorophore-tagged RGD peptide (RGD-TAMRA) to visualize cell–surface interactions in real-time. Here, we studied the dynamics of endothelial cell response to laminar flow on these peptide-functionalized surfaces. Endothelial cells were exposed to 22 dyn/cm² wall shear stress while acquiring time-lapse images. Cell surface coverage and cell alignment were quantified by undecimated wavelet transform multivariate image analysis. Similar to gelatin-coated surfaces, surfaces with uniform RGD-TAMRA distribution led to cell retention and rapid cell alignment (∼63% of the final cell alignment was reached within 1.5 h), contrary to the micropatterned surfaces. The RGD-TAMRA peptide is a promising candidate for endothelial cell retention under flow, and the spray-based micropatterned surfaces are more promising for static cultures.