Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Lemieux, Jean-Michel

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Lemieux

Prénom

Jean-Michel

Affiliation

Université Laval. Département de géologie et de génie géologique

ISNI

ORCID

Identifiant Canadiana

ncf11850011

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 42
  • PublicationAccès libre
    Field performance of four vibrating-wire piezometer installation methods
    (National Research Council of Canada, 2022-01-12) Young, Nathan Lee; Locat, Pascal; Locat, Ariane; Lemieux, Jean-Michel; Locat, Jacques; Mony, Laura; Leroueil, Serge; Demers, Denis; Germain, Alexandra
    Vibrating wire piezometers provide a number of advantages over the traditional hydraulic piezometer design. There are many methods and configurations for installing vibrating-wire piezometers, with the most common being: single piezometers in sand packs (SP), multilevel piezometers in sand packs (MLSP), and fully-grouted multilevel piezometers using either bentonite (FGB) or cement-bentonite grout (FGCB). This study assesses the performance of these four different installation methods for vibrating wire piezometers at a field site possessing complex stratigraphy, including glacial and marine sediments. Pore pressure data recorded between December 2017 and July 2019 were analyzed to accomplish this objective. Data indicate that SP, MLSP, and FGB piezometers performed well. This determination is based on the fact that piezometers installed at the same depth with these arrangements recorded similar pressure variations that were coherent with the hydrogeological setting. Of the two fully-grouted installations using cement-bentonite grout, one installation failed completely due to a hydraulic short circuit, caused either by shrinkage of the grout or flow occurring along the wires of the embedded instruments. While the FGB-type piezometers used in this study worked correctly, the lack of standard methods concerning both the construction of fully-grouted piezometers is concerning. Furthermore, the lack of a standard method for mixing cement-bentonite grout likely contributed to the failure of the FGCB installations. Thus, due to the lack of guidance for both construction and grout preparation, the use of a bentonite grout removes a degree of uncertainty when fully-grouted installation techniques are used.
  • PublicationRestreint
    Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada)
    (Springer, 2020-01-25) Cochand, Marion; Barth, Johannes (Johannes A. C.); Therrien, René; Geldern, Robert van; Lemieux, Jean-Michel; Fortier, Richard; Molson, John W. H.
    Hydrogeochemical data are used to better understand recharge dynamics and to support a hydrogeological conceptual model in a 2-km2 watershed in a discontinuous permafrost zone in Nunavik, Canada. The watershed contains an upper (surficial) and lower aquifer within Quaternary deposits, above and below a marine silt layer containing ice-rich permafrost mounds. The analysis is based on water samples from precipitation, groundwater monitoring wells, ground ice in permafrost mounds, thermokarst lakes and a perennial stream. Groundwater geochemistry in both aquifers reflects young, poorly evolved waters, with mainly Ca-HCO3 water types and low mineralisation ranging from 11 to 158 mg/L total dissolved solids (TDS), implying short pathways and rapid travel times of a year or less. While relatively low, TDS signatures in groundwater and surface water show increasing values downgradient. Groundwater isotope values (δ18OH2O and δ2HH2O) are often strongly influenced by snowmelt, while those of thermokarst lakes show evidence of evaporation. Recharge along the cuesta contributes to a transverse component of groundwater flow within the valley with higher TDS and δ13CDIC values influenced by open-system weathering. Even where permafrost-free, the marine silt unit has a strong confining effect and plays a more important role on recharge dynamics than the discontinuous permafrost. Nevertheless, the vulnerability of these types of hydrogeological aquifer systems is expected to increase due to rapid recharge dynamics associated with the gradual loss of the confining effect of permafrost. This hydrogeochemical data set will be useful as a baseline to document impacts of permafrost degradation on the hydrogeological system.
  • PublicationAccès libre
    Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers
    (American Geophysical Union, 2016-08-19) Roy, Nicolas; Nowamooz, Ali; Stempvoort, Dale Van; Lemieux, Jean-Michel; Molson, John W. H.
    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2–20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10−5 to 1 × 10−3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.
  • PublicationRestreint
    Groundwater hydrogeochemistry in permafrost regions
    (Wiley, 2019-04-25) Cochand, Marion; Lemieux, Jean-Michel; Molson, John W. H.
    This review paper provides a summary of the current state of knowledge regarding groundwater hydrogeochemistry in permafrost regions and presents expected impacts of permafrost degradation on groundwater quality. Using published case studies, the most practical monitoring approaches are reviewed, possible monitoring issues are highlighted, and links between groundwater chemistry signatures and associated flow systems in northern climates are identified. Hydrogeochemical characteristics of groundwater in permafrost regions depend on the same reactions as in nonpermafrost regions, but in acting as a confining layer, permafrost can affect groundwater chemistry by restricting recharge and limiting exchange of energy and mass between the ground surface, surface water and groundwater. Rock (mineral)–water interactions can also increase due to longer residence times. The impacts of climate change on groundwater quality in permafrost regions are thought to be linked to the loss of this confining layer. Various studies have reported significant modifications in shallow and deep groundwater contributions to surface water, marked by a decrease in dissolved organic carbon and an increase in total dissolved solids in stream water linked to declining permafrost coverage. Future studies related to hydrogeology in permafrost areas should include better in situ hydrogeochemical characterization of groundwater to assess its potential for future use as the climate warms.
  • PublicationAccès libre
    Late Pleistocene and Holocene groundwater flow history in the Baltic Artesian Basin : a synthesis of numerical models and hydrogeochemical data
    (Tallinn Estonian Academy Publishers, 2021-06-20) Vaikmäe, Rein; Pärn, Joonas; Sterckx, Arnaud; Raidla, Valle; Lemieux, Jean-Michel; Ivask, Jüri; Kaup, Enn; Aeschbach, Werner; Gerber, Christoph; Purtscher, Roland; Martma, Tõnu; Vallner, Leo
    We review our current understanding of groundwater flow history in the northern part of the Baltic Artesian Basin (BAB) from the end of the Late Pleistocene to current conditions based on the hydrogeological studies carried out in 2012–2020 by the Department of Geology, Tallinn University of Technology and its partners. Hydrogeochemical data and various numerical models are combined in order to understand the link between glaciations and groundwater flow. The results of our earlier research and published literature on groundwater flow history in the BAB are also taken into account. The reconstruction of groundwater flow history is based on the database of the isotopic, chemical and dissolved gas composition of groundwater. The database contains data on 1155 groundwater samples collected during 1974–2017. We find that groundwater in the BAB is controlled by the mixing of three distinct water masses: interglacial/modern meteoric water (δ18O ≈ –11‰), glacial meltwater (δ18O ≤ –18‰) and an older syngenetic end­member (δ18O ≥–4.5‰). The numerical modelling has suggested that the preservation of meltwater in the northern part of the BAB is controlled by confining layers and the proximity to the outcrop areas of aquifers. Aquifers containing groundwater of glacial origin are in a transient state with respect to modern topographically­driven groundwater flow conditions. The most important topics for future research that can address gaps in our current knowledge are also reviewed.
  • PublicationAccès libre
    Portrait des ressources en eau souterraine des îles de la Madeleine : rapport scientifique
    (Université Laval Département de géologie et génie géologique, 2022-03-01) Lemieux, Jean-Michel; Germain, Alexandra; Tremblay, Yohann; Gatel, Laura; Arbour, Guillaume; Coulon, Cécile; Dupuis, J. Christian
    L’eau souterraine constitue l’unique source d’approvisionnement en eau potable des îles de la Madeleine. Elle est vulnérable à l’intrusion d’eau salée qui provient de la mer et aux nombreuses activités humaines qui peuvent avoir un impact sur la quantité ou la qualité de la ressource. Les changements climatiques pourraient aussi influer sur la disponibilité future de cette ressource. Une connaissance accrue sur l’eau souterraine et les aquifères qui la contiennent est nécessaire pour la mise en place de mesures de protection et de gestion durable de la ressource. La présente étude établit le Portrait des ressources en eau souterraine des îles de la Madeleine en recensant d’abord l’ensemble des connaissances existantes sur les eaux souterraines du territoire d’étude. Des données complémentaires de terrain ont ensuite été acquises. L’ensemble des informations récoltées ont enfin été intégrées et interprétées en format cartographique, principalement à l’aide d’une approche méthodologique basée sur la modélisation numérique des écoulements. Les aquifères au potentiel d’exploitation moyen à très élevé, composés principalement de grès, ont été identifiés. Ceux-ci contiennent la presque totalité de l’eau souterraine qui est actuellement exploitée et constituent la réserve principale en eau douce disponible pour les besoins futurs. Cette eau est de très bonne qualité et peut souvent être distribuée sans traitement particulier. Les aires d’alimentation de ces aquifères correspondent aux territoires qui devraient être ciblés par les mesures de protection et de gestion de la ressource. La consommation annuelle en eau douce est faible comparativement à la réalimentation annuelle des aquifères. Ainsi, la quantité d’eau contenue dans les aquifères suffit aux besoins en eau potable actuels. Les ressources en eau souterraine et les réseaux d'exploitation actuels semblent suffisants pour les besoins futurs de la municipalité selon les projections en 2050 de la hausse de la consommation et de la diminution du volume d’eau disponible causée par les changements climatiques.
  • PublicationRestreint
    Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec)
    (Elsevier, 2017-03-17) Beaudoin, Georges; Dupont, Pierre; Gras, Antoine; Bussière, Bruno; Lemieux, Jean-Michel; Plante, Benoît; Molson, John W. H.
    Natural weathering of ultramafic rocks in mine tailings captures atmospheric CO2 through the formation of magnesium carbonates. The Dumont Nickel Project (DNP) is of particular interest as it will generate 1.7 Gt of ultramafic residues. A field experiment has been conducted at the DNP site in order to understand the process of natural CO2 sequestration. Two experimental cells were built using waste rock and mineral processing tailings and were instrumented with gas sampling ports and probes to monitor water saturation and suction. A decrease of the interstitial gas-phase CO2 concentration in both cells, from atmospheric values (∼390 ppmv) near the surface to ∼100 ppmv near the bottom, reflects active CO2 consumption by the residues. The total carbon content of the weathered DNP mine waste ranges from 0.2 wt% to 6.5 wt% C. Hydrotalcites supergroup minerals (pyroaurite-3R, brugnatellite, pyroaurite 2-H), aragonite, nesquehonite, dypingite and hydromagnesite were absent from the unweathered residues and precipitated in the cells during passive mineral carbonation. In situ measurements using Wavelength-Scanned Cavity Ring Down Spectroscopy reveal an increase of δ13C(air) from −8‰ near the surface of the cells to ∼2‰ near the bottom that is correlated with the decrease in CO2 concentration. This trend is explained by kinetic carbon isotope fractionation during dissolution of atmospheric CO2 in interstitial water (ΔDIC-CO2 = −11.2‰). Secondary carbonates, precipitated from the interstitial water, are characterized by a moderately high δ18O and low δ13C. These isotopic compositions of the carbonates are consistent with precipitation in an evaporative environment where the kinetic carbon fractionation during atmospheric CO2 dissolution produces interstitial water depleted in 13C. Moreover, isotopic compositions of hydrotalcite supergroup minerals and other carbonate minerals are consistent with modern precipitation from the weathering of mining residue. These observations demonstrate the atmospheric source for the sequestered CO2 and help constrain a conceptual model of the carbonation reaction in the residues.
  • PublicationAccès libre
    Development of a long term monitoring network of sensitive clay slopes in Québec in the context of climate change
    (springer international publishing, 2017-05-24) Locat, Pascal; Cloutier, Catherine; Locat, Ariane; Fortin, Alexis; Lemieux, Jean-Michel; Locat, Jacques; Leroueil, Serge; Demers, Denis; Bilodeau, Chantal
    The Government of Québec recently initiated the deployment of a vast groundwater pressures monitoring network in postglacial marine clays to document their variations in time and improve our understanding of the relationship between failure initiation and climate in clay slopes. This project aims at evaluating the impacts of climate change on clay-slope stability and how it can be integrated in landslide risk management to improve public safety. Hydrogeological data will be acquired at sites located throughout the Québec Province’s post-glacial clay deposits to create a public georeferenced index of typical hydrogeological conditions. The project goes beyond the characterization of groundwater pressures and their variations in clay slopes. Indeed, slope deformation will be measured at several sites. Also, two sites in flat terrain will be instrumented in order to evaluate mechanical properties of clay layers in simple 1-D conditions and groundwater recharge. The unsaturated clay crust in slopes susceptible to superficial landslides will be characterized and instrumented. The current lifetime of the monitoring project has been set to a period of 25 years.
  • PublicationAccès libre
    Portrait des ressources en eau souterraine des îles de la Madeleine : atlas hydrogéologique
    (Université Laval. Département de géologie et de génie géologique, 2022-06-01) Lemieux, Jean-Michel; Germain, Alexandra; Tremblay, Yohann; Gatel, Laura; Arbour, Guillaume; Coulon, Cécile; Dupuis, J. Christian
    L’eau souterraine constitue l’unique source d’approvisionnement en eau potable des îles de la Madeleine. Elle est vulnérable à l’intrusion d’eau salée qui provient de la mer et aux nombreuses activités humaines qui peuvent avoir un impact sur la quantité ou la qualité de la ressource. Les changements climatiques pourraient aussi influer sur la disponibilité future de cette ressource. Une connaissance accrue sur l’eau souterraine et les aquifères qui la contiennent est nécessaire pour la mise en place de mesures de protection et de gestion durable de la ressource. La présente étude établit le Portrait des ressources en eau souterraine des îles de la Madeleine en recensant d’abord l’ensemble des connaissances existantes sur les eaux souterraines du territoire d’étude. Des données complémentaires de terrain ont ensuite été acquises. L’ensemble des informations récoltées ont enfin été intégrées et interprétées en format cartographique, principalement à l’aide d’une approche méthodologique basée sur la modélisation numérique des écoulements. Les aquifères au potentiel d’exploitation moyen à très élevé, composés principalement de grès, ont été identifiés. Ceux-ci contiennent la presque totalité de l’eau souterraine qui est actuellement exploitée et constituent la réserve principale en eau douce disponible pour les besoins futurs. Cette eau est de très bonne qualité et peut souvent être distribuée sans traitement particulier. Les aires d’alimentation de ces aquifères correspondent aux territoires qui devraient être ciblés par les mesures de protection et de gestion de la ressource. La consommation annuelle en eau douce est faible comparativement à la réalimentation annuelle des aquifères. Ainsi, la quantité d’eau contenue dans les aquifères suffit aux besoins en eau potable actuels. Les ressources en eau souterraine et les réseaux d'exploitation actuels semblent suffisants pour les besoins futurs de la municipalité selon les projections en 2050 de la hausse de la consommation et de la diminution du volume d’eau disponible causée par les changements climatiques.
  • PublicationRestreint
    Integrated hydrological modeling of climate change impacts in a snow-influenced catchment
    (Water Well Journal Pub. Co., 2018-11-19) Therrien, René; Lemieux, Jean-Michel; Cochand, Fabien
    The potential impact of climate change on water resources has been intensively studied for different regions and climates across the world. In regions where winter processes such as snowfall and melting play a significant role, anticipated changes in temperature might significantly affect hydrological systems. To address this impact, modifications have been made to the fully integrated surface-subsurface flow model HydroGeoSphere (HGS) to allow the simulation of snow accumulation and melting. The modified HGS model was used to assess the potential impact of climate change on surface and subsurface flow in the Saint-Charles River catchment, Quebec (Canada) for the period 2070 to 2100. The model was first developed and calibrated to reproduce observed streamflow and hydraulic heads for current climate conditions. The calibrated model was then used with three different climate scenarios to simulate surface flow and groundwater dynamics for the 2070 to 2100 period. Winter stream discharges are predicted to increase by about 80, 120, and 150% for the three scenarios due to warmer winters, leading to more liquid precipitation and more snowmelt. Conversely, the summer stream discharges are predicted to fall by about 10, 15, and 20% due to an increase in evapotranspiration. However, the annual mean stream discharge should remain stable (±0.1 m3/s). The predicted increase in hydraulic heads in winter may reach 15 m and the maximum decrease in summer may reach 3 m. Simulations show that winter processes play a key role in the seasonal modifications anticipated for surface and subsurface flow dynamics.