Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
St-Onge, Guillaume

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

St-Onge

Prénom

Guillaume

Affiliation

Département de physique, de génie physique et d'optique, Faculté des sciences et de génie, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11909369

person.page.name

Résultats de recherche

Voici les éléments 1 - 9 sur 9
  • PublicationAccès libre
    Geometric evolution of complex networks with degree correlations
    (American Physical Society, 2018-03-19) Allard, Antoine; St-Onge, Guillaume; Laurence, Edward; Dubé, Louis J.; Murphy, Charles
    We present a general class of geometric network growth mechanisms by homogeneous attachment in which the links created at a given time t are distributed homogeneously between a new node and the existing nodes selected uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent chemical potential μ(t). The chemical potential limits the spatial extent of newly created links. Using a hidden variable framework, we obtain an analytical expression for the degree sequence and show that μ(t) can be fixed to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that depending on the order in which nodes appear in the network—its history—the degree-degree correlations can be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the average clustering coefficient ⟨c⟩. In the thermodynamic limit, we identify a phase transition between a random regime where ⟨c⟩→ 0 when β<βc and a geometric regime where ⟨c⟩ > 0 when β>βc.
  • PublicationAccès libre
    Threefold way to the dimension reduction of dynamics on networks : an application to synchronization
    (American Physical Society, 2020-11-11) Thibeault, Vincent; St-Onge, Guillaume; Dubé, Louis J.; Desrosiers, Patrick
    Several complex systems can be modeled as large networks in which the state of the nodes continuously evolves through interactions among neighboring nodes, forming a high-dimensional nonlinear dynamical system. One of the main challenges of Network science consists in predicting the impact of network topology and dynamics on the evolution of the states and, especially, on the emergence of collective phenomena, such as synchronization. We address this problem by proposing a Dynamics Approximate Reduction Technique (DART) that maps high-dimensional (complete) dynamics unto low-dimensional (reduced) dynamics while preserving the most salient features, both topological and dynamical, of the original system. DART generalizes recent approaches for dimension reduction by allowing the treatment of complex-valued dynamical variables, heterogeneities in the intrinsic properties of the nodes as well as modular networks with strongly interacting communities. Most importantly, we identify three major reduction procedures whose relative accuracy depends on whether the evolution of the states is mainly determined by the intrinsic dynamics, the degree sequence, or the adjacency matrix. We use phase synchronization of oscillator networks as a benchmark for our threefold method. We successfully predict the synchronization curves for three phase dynamics (Winfree, Kuramoto, theta) on the stochastic block model. Moreover, we obtain the bifurcations of the Kuramoto-Sakaguchi model on the mean stochastic block model with asymmetric blocks and we show numerically the existence of periphery chimera state on the two-star graph. This allows us to highlight the critical role played by the asymmetry of community sizes on the existence of chimera states. Finally, we systematically recover well-known analytical results on explosive synchronization by using DART for the Kuramoto-Sakaguchi model on the star graph. Our work provides a unifying framework for studying a vast class of dynamical systems on networks.
  • PublicationAccès libre
    Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks
    (American Physical Society, 2018-02-12) Young, Jean-Gabriel; St-Onge, Guillaume; Laurence, Edward; Dubé, Louis J.; Murphy, Charles
    We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.
  • PublicationRestreint
    Efficient sampling of spreading processes on complex networks using a composition and rejection algorithm
    (Elsevier, 2019-02-19) Young, Jean-Gabriel; Hébert-Dufresne, Laurent; St-Onge, Guillaume; Dubé, Louis J.
    Efficient stochastic simulation algorithms are of paramount importance to the study of spreading phenomena on complex networks. Using insights and analytical results from network science, we discuss how the structure of contacts affects the efficiency of current algorithms. We show that algorithms believed to require O(log N) or even O(1) operations per update – where N is the number of nodes – display instead a polynomial scaling for networks that are either dense or sparse and heterogeneous. This significantly affects the required computation time for simulations on large networks. To circumvent the issue, we propose a node-based method combined with a composition and rejection algorithm, a sampling scheme that has an average-case complexity of O[log(log N)] per update for general networks. This systematic approach is first set-up for Markovian dynamics, but can also be adapted to a number of non-Markovian processes and can enhance considerably the study of a wide range of dynamics on networks.
  • PublicationAccès libre
    Processus de contagion sur réseaux complexes au-delà des interactions dyadiques
    (2022) St-Onge, Guillaume; Hébert-Dufresne, Laurent; Allard, Antoine
    Alors que la pandémie de COVID-19 affecte le monde depuis presque deux ans, il va sans dire qu'une meilleure compréhension des processus de contagion, de leur évolution et des effets des mesures de contrôle est essentielle pour réduire leur impact sur la société. Le cadre théorique pour la modélisation des processus de contagion est très général et permet, bien entendu, de décrire la propagation des maladies infectieuses causées par des agents pathogènes (virus, bactéries, parasites, etc.), mais aussi la propagation des rumeurs et de la désinformation. Peu importe la nature du processus, la transmission s'effectue de proche en proche grâce aux interactions entre les individus. Par conséquent, la structure sociale complexe des populations, qui n'est ni parfaitement ordonnée, ni complètement aléatoire, joue un rôle de premier plan. Dans cette thèse, nous étudions les processus de contagion sur réseaux, où les individus et les interactions entre ces individus sont représentés par des nœuds et des liens respectivement. Nous utilisons une approche théorique principalement basée sur la physique statistique et la dynamique non linéaire. Nous nous concentrons plus spécifiquement sur les réseaux d'ordre supérieur, lesquels mettent les interactions de groupe à l'avant-plan. Notre analyse va donc au-delà des interactions dyadiques. Bien plus qu'une reformulation mathématique de la structure, cette perspective est primordiale pour obtenir une compréhension plus complète de la phénoménologie des processus de contagion. Nous démontrons l'importance des interactions de groupe à l'aide de trois résultats principaux. D'abord, nous caractérisons un phénomène de localisation mésoscopique : pour certaines structures hétérogènes, la propagation persiste uniquement dans les groupes de grande taille. Ce phénomène a notamment une incidence sur l'effet des mesures de contrôle visant à prohiber les regroupements au-delà d'une certaine taille, à l'instar de ce qui fut instauré pour endiguer la pandémie de COVID-19. Ensuite, nous étudions un modèle où les individus doivent accumuler une dose infectieuse minimale pour devenir infectés. Nous montrons qu'une structure d'ordre supérieur et des temps d'exposition hétérogènes induisent une probabilité d'infection non linéaire universelle. L'épidémie résultante peut alors croître de manière super-exponentielle en fonction du temps. Finalement, nous poussons plus en profondeur l'analyse des processus de contagion non linéaire. Dans ce contexte, nous montrons que les groupes peuvent avoir plus d'importance que les individus ultra-connectés pour qu'une épidémie ou un phénomène social envahissent le plus rapidement possible une population.
  • PublicationAccès libre
    Social confinement and mesoscopic localization of epidemics on networks
    (American Physical Society, 2021-03-01) Hébert-Dufresne, Laurent; Allard, Antoine; St-Onge, Guillaume; Dubé, Louis J.; Thibeault, Vincent
    Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.
  • PublicationAccès libre
    Dynamique de propagation sur réseaux aléatoires : caractérisation de la transition de phase
    (2017) St-Onge, Guillaume; Dubé, Louis J.
    Pour modéliser des systèmes complexes où un grand nombre d’éléments interagissent, la science des réseaux offre une approche systématique et universelle où les éléments sont représentés par des noeuds et les interactions par des liens. Cette science est devenu un incontournable pour l’étude des dynamiques stochastiques de propagation, servant à modéliser la transmission d’un virus ou quelconque type d’information qui se propage par contacts à l’intérieur d’une population. Un des aspects intéressants des dynamiques de propagation sur réseaux est l’émergence d’un phénomène collectif, prenant la forme d’une transition de phase au sens de la physique statistique, lorsque l’on varie le taux de transmission. Ce phénomène critique marque le moment où une fraction non nulle de la population sera affectée par le processus. Dans ce mémoire, on se consacre au développement de méthodes d’analyse pour caractériser la transition de phase des dynamiques de propagation sur réseaux. On s’intéresse plus particulièrement au modèle susceptible-infecté-susceptible sur réseaux aléatoires issus du modèle des configurations et variant temporellement. Nous proposons un cadre théorique pour l’étude de ce modèle, menant à une description autocohérente de l’état stationnaire du système. Cela nous permet d’obtenir plusieurs résultats analytiques associés au phénomène critique, notamment une expression implicite pour le seuil de transition de phase et des bornes pour la valeur des exposants critiques de certains observables. Ces résultats nous permettent de mieux comprendre le concept de transition de phase localisée et comment chaque classe de noeuds s’active au-delà du seuil d’épidémie.
  • PublicationAccès libre
    On the universality of the stochastic block model
    (American Physical Society, 2018-09-24) Young, Jean-Gabriel; St-Onge, Guillaume; Dubé, Louis J.; Desrosiers, Patrick
    Mesoscopic pattern extraction (MPE) is the problem of finding a partition of the nodes of a complex network that maximizes some objective function. Many well-known network inference problems fall in this category, including, for instance, community detection, core-periphery identification, and imperfect graph coloring. In this paper, we show that the most popular algorithms designed to solve MPE problems can in fact be understood as special cases of the maximum likelihood formulation of the stochastic block model (SBM) or one of its direct generalizations. These equivalence relations show that the SBM is nearly universal with respect to MPE problems.
  • PublicationAccès libre
    Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks
    (American Physical Society through the American Institute of Physics, 2021-03-01) Hébert-Dufresne, Laurent; Allard, Antoine; St-Onge, Guillaume; Dubé, Louis J.; Thibeault, Vincent
    Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best described by a higher-order network structure. We model contagions on higher-order networks using group-based approximate master equations, in which we track all states and interactions within a group of nodes and assume a mean-field coupling between them. Using the susceptible-infected-susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease can concentrate and self-sustain only around large groups in the network overall organization. In this regime, the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic level, we observe that the distribution of infected nodes within groups of the same size can be very dispersed, even bimodal. When considering heterogeneous networks, both at the level of nodes and at the level of groups, we characterize analytically the region associated with mesoscopic localization in the structural parameter space. We put in perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic localization affects the response to structural interventions and how this framework could provide important insights for a broad range of dynamics.