Personne : Grenon, Martin
En cours de chargement...
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Grenon
Prénom
Martin
Affiliation
Université Laval. Département de génie des mines, de la métallurgie et des matériaux
ISNI
ORCID
Identifiant Canadiana
ncf10580926
person.page.name
51 Résultats
Résultats de recherche
Voici les éléments 1 - 10 sur 51
- PublicationAccès librePractical considerations in establishing the statistical reliability of geomechanical data(Chapman & Hall, 2019-07-17) Fillion, Marie-Hélène; Hadjigeorgiou, John; Grenon, Martin; Caumartin, RichardIn an underground mining operation, the design of safe excavations can be influenced by the quality and quantity of collected geomechanical data. Data collection is the first step in mine design, and a sufficient level of confidence in the input data should be reached depending on the project stage and the design requirements (e.g. temporary and non-entry vs. permanent and entry excavations). This paper compares two statistical analysis methods for quantifying the level of confidence in the intact rock properties obtained through a series of laboratory tests. The laboratory testing database of an underground hard rock mine was used to highlight the variations in the two methods. The impact of the two methods, from an engineering perspective, was illustrated with an example using the Kirsch analytical solution. This investigation demonstrated that the selection of the appropriate analysis method should be guided by the project requirements.
- PublicationAccès libreDeterministic and probabilistic stability analysis of a mining rock slope in the vicinity of a major public road : case study of the LAB Chrysotile mine in Canada(National Research Council Canada, 2018-01-18) Amoushahi, Sina; Grenon, Martin; Locat, Jacques; Turmel, DominiqueIn recent years, several large open-pit mines have started operating in the province of Quebec in Canada, and some of the largest planned pits are located close to public infrastructure. Historically, large open-pit mining has seldom been done in many mining regions, such as the Abitibi region, where underground mines are the norm. As an integral part of achieving social acceptability of open-pit mining, the stability of mining slopes must be carefully analyzed during the design process and the presence of public infrastructure near the slopes must be adequately considered. The province of Quebec does not have specific guidelines regarding such design considerations. This paper provides a short overview of the literature on some current practices regarding mining slope design close to public infrastructure. To demonstrate its applicability in the Quebec provincial context, the paper then investigates the stability of the west wall of the LAB Chrysotile open-pit mine in Thetford Mines (Quebec) near the new Road 112. Deterministic and probabilistic analyses were conducted using finite element shear strength reduction and limit equilibrium methods to investigate slope stability. The impact of pit infilling and rapid dewatering as well as long-term stability of the slope were investigated. The results of all analyses reveal that the current mining slopes at LAB Chrysotile are within acceptable design criteria limits.
- PublicationAccès libreNumerical evaluation of grouting scenarios for reducing water inflows in underground excavations – Goldcorp’s Éléonore mine study case(2017-10-02) Blessent, Daniela; Therrien, René; Grenon, Martin; Lemieux, Jean-Michel; Lajoie, Pierre-Luc; Domingue, Catherine; Molson, John W. H.Water inflows through fracture networks are one of the many challenges that the Éléonore mine has to face. Although pregrouting of pilot holes during mine development has been proven to efficiently reduce water inflows into mine excavations, the actual design methods are empirical and can be optimized to increase grouting efficiency and decrease the associated costs. Optimization of the amount of cement needed for pre-grouting is achieved by designing the grouting approach based on the location of major faults around the excavations. Here, a base case finite-element numerical model and associated sensitivity analyses are used to simulate groundwater inflows into a stope, based on the Éléonore mining site characteristics. Simulations are conducted for testing various grout injection scenarios for various major fault locations around the stope. Sensitivity analyses have shown that for a fault located above the stope, the inflow reduction is greater when the zone between the fault and the stope is grouted instead of directly grouting the fault itself. Also, in the case of a fault intersecting a stope, the results have demonstrated that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope.
- PublicationAccès libreStability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model(ScienceDirect, 2008-11-20) Esmaieli, Kamran; Hadjigeorgiou, John; Grenon, MartinThis paper presents an implementation of a comprehensive engineering approach to the analysis of the stability of vertical excavations in rock. This approach relies in the generation of discrete fracture systems to better capture the structural complexity of the rock mass. The resulting fracture system is consequently linked into a distinct element stress analysis. The particle flow code was selected as it potentially allows greater flexibility in representing a fracture system. In the first example a 3D fracture system was linked into a 2D PFC model. Although this has allowed for an improved quantification of stress structure interaction it necessitated important simplifications which may not be necessarily appropriate. These have been overcome by providing a complete integration of a 3D fracture system to a 3D PFC model. This will potentially lead into a design tool that adequately account for the stress structure interaction on the stability of vertical or near vertical excavations in hard rock.
- PublicationRestreintCaractérisation structurale à l’aide de la photogrammétrie : mine Kikialik, Nunavik, Québec(Transportation Association of Canada = Association des tranports du Canada, 2012-10-01) Grenon, Martin; Dubois, EricDigital photogrammetry was used to quantify the structural regime at Kikialik underground mine – Xstrata Nickel. This operation is located in the arctic region of Canada – where permafrost reaches 500 meters. The objective of this paper was to demonstrate that photogrammetry can be used routinely at this mining site to conduct structural mapping under difficult operational and climatic conditions. Photogrammetry can be well integrated to the geomechanical design workflow used at the mine. Simple practical field considerations are also provided
- PublicationAccès libreOpen stope stability using 3D joint networks(Wien New York Springer, 2003-01-21) Hadjigeorgiou, John; Grenon, MartinThe most popular exploitation method used in Canadian hard rock mines is open stope mining. Geomechanical design of open stopes relies on a range of analytical, numerical, and empirical tools. This paper presents an engineering approach for the analysis and the design of reinforcement for open stopes in jointed rock. The proposed methodology, illustrated by three case studies, relies on developing 3D joint network models from field data. The 3D joint networks have been successfully linked to a 3D limit equilibrium software package. The models account for the finite length of joints as well as the influence of random joints. The integrated approach facilitates comparative analyses
- PublicationRestreintAssessing rock mass structural conditions in underground mining drifts using an integrated photogrammetry-DFN approach(2014-10-01) Grenon, Martin; Landry, Alex; Lajoie, Pierre-LucThis paper presents a case study in which photogrammetry was used to characterize the structural regime of a fractured rock mass at a hard-rock underground mine in development in northern Canada. The effectiveness of the photogrammetry tools used in an underground environment is discussed. The operational benefits from using such an approach at this site are also presented. The ability of photogrammetry to provide all the necessary inputs for DFN modelling is then addressed. Based on the photogrammetry results, DFN models are created and calibrated for several drifts at the mine site. For standard drift dimensions used at the mining site, possible wedge formation is evaluated. The geometrical characteristics of fracture networks intersecting the drift are also discussed. This integrated approach provides a robust and very effective means to assess structural conditions at this underground mine.
- PublicationRestreintStatistical assessment of intact rock properties for two underground mining projects at Raglan Mine, Quebec, Canada(Taylor & Francis, 2020-04-30) Boudreau, Catherine; Grenon, Martin; Caumartin, Richard; Bruneau, Geneviève.The design of underground mining excavations relies on geotechnical characterization of intact rock through laboratory testing. As mining project development progresses through prefeasibility to production stages, the reliability of estimates of rock mechanics properties needs to increase. However, it is challenging to determine the number of tests needed to adequately estimate intact rock properties at different development stages. This paper looks at the early stages of an underground mining project in the Canadian Arctic where two field and laboratory testing campaigns were conducted to evaluate intact rock tensile and uniaxial compressive strength. Results were statistically compared to target confidence levels associated with different stages of a mining project. The study provides insights for planning future field and laboratory testing campaigns. The methodology also provides a quantitative means to assess whether additional laboratory testing is needed to improve tensile and uniaxial compressive strength estimates.
- PublicationRestreintContributions to geomechanical stope optimization at the Goldcorp Eleonore Mine using statistical analysis.(International Society for Rock Mechanics and Rock Engineering, 2018-10-01) Guido, Sébastien; Grenon, MartinStope performance is critical and is therefore usually assessed in mine operations. However, the factors controlling stope performance (such as overbreak) are not always fully understood. This was the case at the Goldcorp Eleonore operation, a relatively new mine located in a new mining area hundreds of kilometers from other existing operations. Still, stope design guidelines had to be elaborated to mitigate hanging wall overbreak and sustain a high mining rate from narrow vein stopes (as many as four per week) at acceptable costs. This paper presents a database of 105 stopes, mined between July 2014 and November 2016, which collated more than 50 parameters defining spatial, geometrical, geomechanical, geological and stope performance aspects. The points in this database were superimposed on the existing Stability Graph with ELOS curves (Clark, 1998) to assess its accuracy at Eleonore. This accuracy was shown to be limited and improvements were needed for forward analyses to be reliable. Improved predictions were obtained using various statistical analysis techniques such as multiple linear regressions (MLR), binary logistic regressions and principal component logistic regressions (PCLR) with parameters other than those used in the standard method. These statistical techniques and their results are presented in this paper and compared with those from the existing stability graph.
- PublicationRestreintÉtude des critères de fiabilité des bancs miniers : le cas de la fosse Tiriganiaq au Nunavut(Canadian Institute of Mining Metallurgy and Petroleum, 2012-01-18) Hadjigeorgiou, John; Matte, Pierre; Grenon, Martin; Kabuya Mukendi, Joseph; Brunet, Francis; LeBlanc, Daniel B.Bench stability in mines is an important element of pit design. There is no consensus on which criteria to use to evaluate the bench design reliability. When designing the pits, bench design reliability is analyzed according to one or two criteria. The objective of this paper is to analyze the bench design for the Tiriganiaq pit, part of the Meliadine mine project, with regards to the reliability criteria found in the literature and in practice. The paper presents the similarities and the differences between the results obtained according to the various criteria and it proposes a systematic multicriteria approach to evaluate pit bench design reliability using susceptibility maps.